О СЕКЦИОННОЙ СВЯЗНОСТИ КОНТИНГЕНЦИИ

С. П. Пономарев, М. Туровска

Аннотация. Пусть X — вещественное нормированное пространство, $f: \mathbb{R} \to X$ — непрерывное отображение. Пусть $\mathrm{T}_f(t_0)$ — контингенция графика G(f) в точке $(t_0, f(t_0)), \, S^+ \subset (0, \infty) \times X$ — «правая» единичная полусфера с центром в $(0, 0_X)$. Доказаны следующие результаты.

- 1. Если $\dim X < \infty$ и растяжение $D(f,t_0)$ отображения f в t_0 конечно, то $\mathrm{T}_f(t_0) \cap S^+$ компактна и связна. Результат остается верным для $\mathrm{T}_f(t_0) \cap \overline{S^+}$ даже при бесконечном растяжении в случае, когда $f:[0,\infty) \to X$.
- 2. Если $\dim X = \infty$, то для любого компактного множества $F \subset S^+$ существует липшицево отображение $f: \mathbb{R} \to X$ такое, что $\mathrm{T}_f(t_0) \cap S^+ = F$.
- 3. Если замкнутое множество $F\subset S^+$ имеет мощность больше континуума, то соотношение $\mathrm{T}_f(t_0)\cap S^+=F$ неверно для любого липшицева $f:\mathbb{R}\to X$.

Ключевые слова: контингенция (касательный конус), растяжение, связность, компактность, евклидово пространство, мощность.

1. Основные определения и вспомогательные утверждения

Определение 1 [1]. Пусть $\varnothing \neq M \subset Z$, где Z — вещественное нормированное пространство, $z \in \overline{M}$. Множество

$$\{v \in Z: \exists (z_n)_{n \in \mathbb{N}}, z_n \in M, \lim_{n \to \infty} z_n = z, \exists (\lambda_n)_{n \in \mathbb{N}}, \lambda_n > 0: \lim_{n \to \infty} \lambda_n(z_n - z) = v\}$$

называется касательным конусом к M в точке z и обозначается через $\mathrm{Tan}_M(z)$. Элементы $\mathrm{Tan}_M(z)$ называются векторами, касательными к M в z. Множество $\mathrm{Tan}_M(z)$ называется также контингенцией M в z [2, 3].

Как всегда, мы используем более короткий термин «контингенция». Через 0_Z обозначим нулевой вектор пространства Z. Заметим, что $\mathrm{Tan}_M(z)$ замкнуто и всегда содержит вектор 0_Z . Более подробно о контингенциях см. [4]. Полагаем $\mathbb{R}^+ = (0, \infty)$, $\overline{\mathbb{R}^+} = [0, \infty)$.

Определение 2. Для любого непустого множества $A \subset Z \setminus \{0_Z\}$ множество $C(A) = \mathbb{R}^+ A := \{tx : t > 0, x \in A\}$ назовем конусом, порожеденным A, с вершиной 0_Z .

Далее через $X=(X,\|\cdot\|)$ обозначаем вещественное нормированное пространство. Изучим отображения $f:\mathbb{R}\to X.$

Определение 3. Растяжение $D(f,t_0)$ отображения $f:\mathbb{R}\to X$ в t_0 определяется по формуле

$$D(f, t_0) = \limsup_{t \to t_0} \frac{\|f(t) - f(t_0)\|}{|t - t_0|}.$$

Для точки $z\in Z$ и r>0 через B(z,r) обозначим открытый шар в Z с центром в z радиуса r.

В случае $Z=\mathbb{R} imes X$ зафиксируем норму $\|(t,x)\|=\sqrt{t^2+\|x\|^2},$ где $\|x\|-$ норма в X.

Через S(z,r) обозначим границу $\partial B(z,r)$ шара B(z,r). В дальнейшем полагаем $S=S(0_Z,1)$ и $S^+=S\cap (\mathbb{R}^+\times X),\ \overline{S^+}=S\cap (\overline{\mathbb{R}^+}\times X).$

Через G(f) обозначим график отображения $f:\mathbb{R} \to X$ и исследуем его контингенцию

$$\operatorname{Tan}_{G(f)}(t_0, f(t_0)) \tag{1}$$

для произвольного фиксированного $t_0 \in \mathbb{R}$. Проведя очевидные сдвиги, всегда можем предполагать в дальнейшем, что $t_0 = 0$ и $f(0) = 0_X$. Удобно сократить обозначения, а именно при указанных предположениях будем писать $T_f(0)$ вместо (1).

Опишем главную цель работы. Известно, что контингенция каждого непустого подмножества векторного пространства, в частности, $T_f(0) \subset \mathbb{R} \times X$, очевидно, связна. В этой статье будет исследована связность сечений $T_f(0)$ гиперповерхностями, не проходящими через $(0,0_X)$. Будет установлено, что такие сечения не обязаны быть связными. Для определенности в качестве гиперповерхности возьмем правую единичную полусферу S^+ .

Лемма 4. Пусть Z — вещественное нормированное пространство, M — непустое подмножество Z и 0_Z — точка сгущения M. Пусть $v \in \operatorname{Tan}_M(0_Z)$ — ненулевой вектор и C — открытый конус c вершиной 0_Z такой, что $v \in C$. Пусть $v = \lim_{k \to \infty} \lambda_k z_k, \ \lambda_k > 0, \ z_k \in M, \ z_k \to 0_Z$. Тогда существует K > 0 такое, что $z_k \in C$ для всех $k \geq K$.

Доказательство от противного тривиально и непосредственно следует из определения 1.

2. Случай $\dim X < \infty$

Сначала заметим, что если $\dim X < \infty$, то $\mathrm{T}_f(0)$ нетривиальна (т. е. отлична от $\{(0,0_X)\}$) для любого отображения $f:\mathbb{R} \to X$, непрерывного в 0. Доказательство опустим ввиду простоты. Но в случае $\dim X = \infty$ возможно $\mathrm{T}_f(0) = \{(0,0_X)\}$ [5].

Теорема 5. Пусть dim $X < \infty$ и $f : \mathbb{R} \to X$ — непрерывное отображение c конечным растяжением D(f,0). Тогда $\mathrm{T}_f(0) \cap S^+$ компактно и связно.

ДОКАЗАТЕЛЬСТВО. Поскольку $D(f,0)<\infty$ и $\dim X<\infty$, то $\mathrm{T}_f(0)\cap S^+$ – компактное подмножество S^+ .

Будем доказывать от противного. Предположим, что $T_f(0) \cap S^+$ не связно. Тогда существуют два непустых непересекающихся компактных (в $\mathbb{R} \times X$) множества F_1 , F_2 таких, что $F_1 \cup F_2 = \mathrm{T}_f(0) \cap S^+$. Возьмем два непересекающихся множества $U_1 \subset S^+$ и $U_2 \subset S^+$ таких, что U_1 , U_2 открыты в S^+ , $F_1 \subset U_1$, $F_2 \subset U_2$.

Конусы $C(U_1)$ и $C(U_2)$ открытые, непересекающиеся и содержат конусы $C(F_1)$ и $C(F_2)$ соответственно.

Зафиксируем два вектора $v_1 \in F_1, \ v_2 \in F_2$. Ввиду определения 1 существуют последовательности $(t'_n)_{n \in \mathbb{N}}, \ t'_n > 0, \ t'_n \to 0, \ (t''_n)_{n \in \mathbb{N}}, \ t''_n > 0, \ t''_n \to 0, \ и$ последовательности $(\lambda'_n)_{n \in \mathbb{N}}, \ \lambda'_n > 0, \ (\lambda''_n)_{n \in \mathbb{N}}, \ \lambda''_n > 0, \ \text{такие}, \ \text{что}$

$$\lim_{n\to\infty}\lambda_n'(t_n',f(t_n'))=v_1 \quad \text{if} \quad \lim_{n\to\infty}\lambda_n''(t_n'',f(t_n''))=v_2.$$

Поскольку $D(f,0)<\infty$, векторы $v_1,\,v_2$ имеют вид $v_1=(\tau',x'),\,\tau'>0$, и $v_2=(\tau'',x''),\,\tau''>0$. Очевидно, что последовательности $(t'_n)_{n\in\mathbb{N}},\,(t''_n)_{n\in\mathbb{N}}$ содержат строго убывающие подпоследовательности $(t'_{n_k})_{k\in\mathbb{N}},\,(t''_{n_k})_{k\in\mathbb{N}}$ такие, что

$$0 < t'_{n_{k+1}} < t''_{n_{k+1}} < t'_{n_k} < t''_{n_k}$$
 для всех $k \in \mathbb{N}$.

Применяя лемму 4 к векторам v_1 , v_2 и конусам $C(U_1)$, $C(U_2)$, заключаем, что существует натуральное K такое, что для всех $k \geq K$

$$(t'_{n_k}, f(t'_{n_k})) \in C(U_1), \quad (t''_{n_k}, f(t''_{n_k})) \in C(U_2).$$
 (2)

Для каждого $k \geq K$ рассмотрим дугу $\Gamma_k = \{(t, f(t)) : t \in [t'_{n_k}, t''_{n_k}]\}$, которая является континуумом, поскольку f непрерывное. Так как $C(U_1)$, $C(U_2)$ открытые непересекающиеся, в силу (2) для каждого $k \geq K$ получим

$$\Gamma_k \setminus (C(U_1) \cup C(U_2)) \neq \varnothing.$$

Для любого $k \geq K$ выберем точку $(t_k^*, f(t_k^*)) \in \Gamma_k \setminus (C(U_1) \cup C(U_2))$ с $t_k^* \in [t'_{n_k}, t''_{n_k}]$, тем самым $t_k^* \to 0$. Поскольку $D(f,0) < \infty$, последовательность $\left(\frac{f(t_k^*)}{t_k^*}\right)_{k \in \mathbb{N}}$ ограничена, значит, содержит сходящуюся подпоследовательность $\left(\frac{f(t_k^*)}{t_k^*}\right)_{i \in \mathbb{N}}$, предел которой обозначим через v. Отсюда

$$\lim_{i \to \infty} \frac{1}{t_{k_{-}}^{*}}(t_{k_{i}}^{*}, f(t_{k_{i}}^{*})) = (1, v) \in \mathcal{T}_{f}(0).$$

Следовательно,

$$\frac{(1,v)}{\|(1,v)\|} = \frac{(1,v)}{\sqrt{1+\|v\|^2}} \in \mathcal{T}_f(0) \cap S^+ = F_1 \cup F_2.$$

Можем считать, что $\frac{(1,v)}{\sqrt{1+\|v\|^2}} \in F_1$. Поскольку $F_1 \subset U_1$, в силу леммы 4 существует натуральное число N такое, что $(t_{k_i}^*, f(t_{k_i}^*)) \subset C(U_1)$ для всех $i \geq N$, а это противоречит выбору точки $(t_k^*, f(t_k^*))$. Тем самым $\mathrm{T}_f(0) \cap S^+$ связно, что и требовалось доказать. \square

Следующий пример показывает, что предположение $D(f,0) < \infty$, вообще говоря, не может быть опущено.

ПРИМЕР 6. Рассмотрим $f(t)=\sqrt[3]{t},\ t\in\mathbb{R}$. Имеем $D(f,0)=\infty,\ \mathrm{T}_f(0)=\{\xi(0,1):\xi\in\mathbb{R}\}$ и $\mathrm{T}_f(0)\cap S^+=\varnothing$. Но $\mathrm{T}_f(0)\cap\overline{S^+}=\{(0,-1),(0,1)\}$ несвязно.

Тем не менее покажем, что если f рассматривается только для $t \geq 0$, то предположение $D(f,0) < \infty$ может быть опущено.

Лемма 7. Пусть $\dim X < \infty$, $C \subset \mathbb{R} \times X$ — открытый конус c вершиной $0_Z = (0,0_X)$ такой, что $C \cap (\overline{\mathbb{R}^+} \times X) \neq \varnothing$. Предположим, что 0_Z — точка сгущения $E \subset \mathbb{R}^+ \times X$ и $E \cap C = \varnothing$. Тогда $\mathrm{Tan}_E(0_Z)$ нетривиальна и не пересекается c C.

Доказательство. По предположению существует последовательность $(z_n)_{n\in\mathbb{N}},\,z_n\in E,\,z_n\to 0_Z,\,z_n\neq 0_Z.$ Рассмотрим последовательность единичных векторов $\left(\frac{z_n}{\|z_n\|}\right)_{n\in\mathbb{N}}.$ Поскольку единичная сфера S компактна, существует подпоследовательность $\left(\frac{z_{n_k}}{\|z_{n_k}\|}\right)_{k\in\mathbb{N}},$ сходящаяся к некоторому $v\in S$. Очевидно, что

 $v\in \mathrm{Tan}_E(0_Z)$. Действительно, достаточно положить $\lambda_k=\frac{1}{\|z_{n_k}\|}$ и применить определение 1.

Докажем от противного, что $\mathrm{Tan}_E(0_Z)\cap C=\varnothing$. Допустим, что существует $w\in\mathrm{Tan}_E(0_Z)\cap C$. Предположим, что $\|w\|=1$. Поскольку C — открытый конус, найдется шар $B(w,r)\subset C$. Тогда $\mathbb{R}^+B(w,r)\subset C$. В силу определения 1 применительно к $w\in\mathrm{Tan}_E(0_Z)$ существует последовательность $(z_n)_{n\in\mathbb{N}},\,z_n\in E,\,z_n\to 0_Z,\,\frac{z_n}{\|z_n\|}\to w$. По лемме 4 найдется натуральное K такое, что $z_n\in\mathbb{R}^+B(w,r)\subset C$ для каждого $k\geq K$; противоречие с предположением $E\cap C=\varnothing$. \square

Следующее утверждение аналогично теореме 5, но теперь допускается возможность бесконечного растяжения D(f,0).

Теорема 8. Пусть X — вещественное нормированное пространство конечной размерности и $f:[0,\infty)\to X$ непрерывное. Тогда $\mathrm{T}_f(0)\cap \overline{S^+}$ компактно и связно.

ДОКАЗАТЕЛЬСТВО. Очевидно, что $T_f(0) \cap \overline{S^+}$ — компактное подмножество $\overline{S^+}$. За исключением некоторых деталей, теорема доказывается аналогично теореме 5, тем не менее для полноты изложения приведем доказательство целиком.

Предположим, что $T_f(0)\cap \overline{S^+}$ несвязно. Тогда существуют два непустых непересекающихся замкнутых множества F_1, F_2 таких, что $F_1\cup F_2=\mathrm{T}_f(0)\cap \overline{S^+}$. Возьмем любые два непересекающихся множества $U_1\subset S$ и $U_2\subset S$ таких, что $U_1,\ U_2$ открыты в $S,\ F_1\subset U_1,\ F_2\subset U_2$. Легко заметить, что конусы $C(U_1),\ C(U_2)$ открыты в $\mathbb{R}\times X$, не пересекаются и содержат конусы $C(F_1)$ и $C(F_2)$ соответственно.

Зафиксируем два вектора $v_1 \in F_1, v_2 \in F_2$. С учетом того, что f определено для $t \geq 0$, ввиду определения 1 существуют последовательности $(t'_n)_{n \in \mathbb{N}}, t'_n > 0$, $t'_n \to 0, (t''_n)_{n \in \mathbb{N}}, t''_n > 0, t''_n \to 0$, и последовательности $(\lambda'_n)_{n \in \mathbb{N}}, \lambda'_n > 0, (\lambda''_n)_{\in \mathbb{N}}, \lambda''_n > 0$, такие, что $\lambda'_n(t'_n, f(t'_n)) \to v_1, \lambda''_n(t''_n, f(t''_n)) \to v_2$ при $n \to \infty$. В отличие от теоремы 5 векторы v_1, v_2 , вообще говоря, имеют вид

$$v_1 = (\tau', x'), \ \tau' \ge 0; \quad v_2 = (\tau'', x''), \ \tau'' \ge 0.$$

Следовательно, их первые компоненты τ', τ'' могут быть равны нулю.

Очевидно, последовательности $(t'_n)_{n\in\mathbb{N}}, (t''_n)_{n\in\mathbb{N}}$ содержат строго убывающие подпоследовательности $(t'_{n_k})_{k\in\mathbb{N}}, (t''_{n_k})_{k\in\mathbb{N}}$ такие, что для любого $k\in\mathbb{N}$

$$0 < t_{n_{k+1}}' < t_{n_{k+1}}'' < t_{n_k}' < t_{n_k}''.$$

Применяя лемму 4 к векторам v_1 , v_2 и конусам $C(U_1)$, $C(U_2)$, заключаем, что существует натуральное K такое, что для любого $k \geq K$

$$(t'_{n_k}, f(t'_{n_k})) \in C(U_1) \text{ if } (t''_{n_k}, f(t''_{n_k})) \in C(U_2).$$
 (3)

Для каждого $k \geq K$ рассмотрим дугу $\Gamma_k = \{(t,f(t)): t \in [t'_{n_k},t''_{n_k}]\}$. Поскольку $C(U_1),\,C(U_2)$ открыты и не пересекаются, ввиду (3) для каждого $k \geq K$ имеем $\Gamma_k \setminus (C(U_1) \cup C(U_2)) \neq \varnothing$. Положим

$$E = igcup_{k=K}^{\infty} \Gamma_{\!k} \setminus (C(U_1) \cup C(U_2)).$$

Ясно, что множество E содержится в $\mathbb{R}^+ \times X$ и 0_Z — его точка сгущения (вспомним выбор точек $(t_k^*, f(t_k^*))$ в доказательстве теоремы 5). Значит, E удовлетворяет предположениям леммы 7. Следовательно, $\operatorname{Tan}_E(0_Z) \subset \operatorname{T}_f(0)$ непусто и не пересекается с $C(U_1) \cup C(U_2)$; противоречие. Тем самым $\operatorname{T}_f(0) \cap \overline{S^+}$ связно. \square

В следующем разделе покажем, что теорема 5 может быть неверна, если $\dim X = \infty$.

3. Случай $\dim X = \infty$, $F \subset S^+$ компактно

В этом разделе продолжим рассматривать вещественное нормированное пространство X бесконечной размерности. Нас интересует следующий вопрос. Пусть задано непустое замкнутое (в $\mathbb{R} \times X$) множество $F \subset S^+$. Существует ли липшицево отображение $f: \mathbb{R} \to X$ такое, что $\mathrm{T}_f(0) \cap S^+ = F$?

В случае компактного F ответ будет утвердительным.

Возьмем последовательность $(e_n)_{n\in\mathbb{N}}$ единичных векторов в X, не содержащую сходящихся подпоследовательностей.

Пемма 9. Пусть X — вещественное нормированное пространство бесконечной размерности и $(e_n)_{n\in\mathbb{N}}$ — последовательность единичных векторов в X, не содержащая сходящихся подпоследовательностей. Пусть $(y_n)_{n\in\mathbb{N}}, y_n\in X,$ сходящаяся последовательность, $\lim_{n\to\infty}y_n=y,$ $y\in X$. Предположим, что найдутся две ограниченные последовательности вещественных чисел $(\alpha_n)_{n\in\mathbb{N}}, (\beta_n)_{n\in\mathbb{N}}$ такие, что существует $\lim (\alpha_n y_n + \beta_n e_n) = v$. Тогда

- (i) $\lim_{n\to\infty} \beta_n = 0;$ (ii) $\lim_{n\to\infty} \alpha_n y_n = v.$

Доказательство. Поскольку последовательности $(\alpha_n)_{n\in\mathbb{N}}, (\beta_n)_{n\in\mathbb{N}}$ ограничены, существуют сходящиеся подпоследовательности $(\alpha_{n_{k_i}})_{i\in\mathbb{N}}, (\beta_{n_{k_i}})_{i\in\mathbb{N}}.$ Пусть $\alpha = \lim_{i \to \infty} \alpha_{n_{k_i}}, \ \beta = \lim_{i \to \infty} \beta_{n_{k_i}}.$ Тогда

$$\lim_{i \rightarrow \infty} (\alpha_{n_{k_i}} y_{n_{k_i}} + \beta_{n_{k_i}} e_{n_{k_i}}) = \alpha y + \lim_{i \rightarrow \infty} \beta_{n_{k_i}} e_{n_{k_i}} = v,$$

откуда $\lim_{i\to\infty}\beta_{n_{k_i}}=\beta=0$, иначе последовательность $(e_{n_{k_i}})_{i\in\mathbb{N}}$ сходящаяся, что

Таким образом, все сходящиеся подпоследовательности ограниченной последовательности $(\beta_n)_{n\in\mathbb{N}}$ имеют одинаковый предел 0. Отсюда $\lim_{n\to\infty}\beta_n=0,$ т. е. получаем утверждение (i), из которого следует (ii). \square

Замечание 10. В случае $\lim_{n \to \infty} y_n = y \neq 0_X$ сразу заключаем, что $\lim_{n \to \infty} \alpha_n$ $= \alpha$ существует, значит, $v = \alpha y$. Но если $y = 0_X$, то последовательность $(\alpha_n)_{n \in \mathbb{N}}$ не должна быть сходящейся, в чем легко убедиться на простых примерах.

Аналогичное утверждение в случае $y_n = y, n \in \mathbb{N}$, доказано в лемме 2.2 из [6], существенной там, но бесполезной в данной статье.

Первый основной результат представляет следующая

Теорема 11. Пусть X — вещественное нормированное бесконечномерное пространство. Тогда для каждого компактного в $\mathbb{R} \times X$ множества $F \subset S^+$ существует липшицево отображение $f: \mathbb{R} \to X$ такое, что

$$T_f(0) \cap S^+ = F. \tag{4}$$

Доказательство. Сначала ограничимся рассмотрением бесконечного F. Случай конечного F аналогичен, но более прост и будет рассмотрен в самом конце этого раздела.

Как и в лемме 9, возьмем последовательность $(e_n)_{n\in\mathbb{N}}, e_n\in X$, единичных векторов, не содержащую сходящихся подпоследовательностей. По техническим причинам будет удобнее проводить доказательство, заменяя S^+ «вертикальной» гиперплоскостью $X_0=\{1\}\times X$. А именно, определим проекцию $H:S^+\to X_0$, полагая

$$H(t,x) = \left(1, \frac{x}{t}\right).$$

Очевидно, что H — гомеоморфизм (даже C^{∞} -диффеоморфизм) S^+ на X_0 .

Так как F компактно, оно содержит плотное счетное множество Y. Положим $Y_0=H(Y)$ и $F_0=H(F)$. Представим Y_0 в виде последовательности:

$$Y_0 = \{(1, y_1), (1, y_2), \dots, (1, y_n), \dots\},$$
 где $y_n \in X, n \in \mathbb{N}.$ (5)

Поскольку существует биекция $\mathbb{N} \times \mathbb{N} \to \mathbb{N},$ очевидно, что \mathbb{N} может быть записано в виде

$$\mathbb{N} = igcup_{k=1}^{\infty} N_k,$$

где N_k бесконечно и $N_{k'}\cap N_{k''}=\varnothing,\,k'\neq k''$. Положим $A_k=2N_k,\,k\in\mathbb{N}$. Тогда

$$2\mathbb{N} = \bigcup_{k=1}^{\infty} A_k$$
, тем самым $\mathbb{N} = (2\mathbb{N} - 1) \cup \bigcup_{k=1}^{\infty} A_k$. (6)

Построим требуемое липшицево отображение $f: \mathbb{R} \to X$. Достаточно определить f для $t \in [0, \infty)$ и положить f(t) = -f(-t) для t < 0.

Зафиксируем число c>1. Прежде всего определим f в каждой точке последовательности $(c^{-n})_{n\in\mathbb{N}}$ следующим образом:

$$f(c^{-n}) = \begin{cases} c^{-2m} y_k, & \text{если } n = 2m, \ m \in N_k, \ k \in \mathbb{N}; \\ c^{-2m+1} e_m, & \text{если } n = 2m - 1, \ m \in \mathbb{N}. \end{cases}$$
 (7)

Обратим внимание на то, что согласно (7) каждому элементу множества $A_k = 2N_k$ соответствует некоторый элемент y_k , т. е. элемент с тем же индексом k.

Положим $f(0)=0_X$ и продолжим отображение f аффинно на каждый отрезок $[c^{-n-1},c^{-n}],\,n\in\mathbb{N}$, таким образом, что продолжение f принимает значения, определенные выше в концевых точках этих интервалов. На $[c^{-1},\infty)$ положим f равным константе: $f(c^{-1})=c^{-1}e_1$. Поскольку Y_0 ограничено и $c^{-n}\to 0$, ясно, что таким образом определенное отображение f непрерывно на $[0,\infty)$. Кроме того, f липшицево. Действительно, считая, что $2m\in A_k$, согласно определению имеем

$$f(t) = \frac{ct - c^{-2m}}{c - 1} y_k + \frac{c^{-2m} - t}{c - 1} e_{m+1}, \text{ если } t \in [c^{-2m-1}, c^{-2m}],$$
 (8)

$$f(t) = \frac{c^{-2m+1} - t}{c-1} y_k + \frac{ct - c^{-2m+1}}{c-1} e_m, \quad \text{если } t \in [c^{-2m}, c^{-2m+1}]. \tag{9}$$

Вычисляя угловые коэффициенты (8) и (9), получаем, что f липшицево с постоянной

$$L = \frac{c}{c-1}(\sup\{\|y_k\|: (1,y_k) \in Y_0\} + 1) = \frac{c}{c-1}(\sup\{\|y\|: (1,y) \in F_0\} + 1) < \infty.$$

Осталось проверить, что для такого f верно (4). Пусть $(\tau, w) \in \mathrm{T}_f(0)$ и $\tau \geq 0$. В силу определения 1 существуют последовательности $(t_n)_{n \in \mathbb{N}}, \ t_n > 0,$ $t_n \to 0$, и $(\lambda_n)_{n \in \mathbb{N}}, \ \lambda_n > 0$, такие, что

$$\lim_{n \to \infty} (\lambda_n t_n, \lambda_n f(t_n)) = (\tau, w). \tag{10}$$

Ясно, что каждое t_n попадает либо в отрезок типа $[c^{-2m-1}, c^{-2m}]$, либо типа $[c^{-2m}, c^{-2m+1}]$. Рассмотрим два случая.

- (i) Существуют подпоследовательности $(n_s)_{s\in\mathbb{N}}$ и $(k_s)_{s\in\mathbb{N}}$ такие, что $2n_s\in A_{k_s}$ для любого $s\in\mathbb{N}$.
- (ii) Существуют натуральное число k_0 и подпоследовательность $(n_s)_{s\in\mathbb{N}}$ такие, что $n_s\in N_{k_0}$ для всех $s\in\mathbb{N}$.

Заметим, что случаи (i), (ii) не взаимоисключающие.

Без потери общности можем считать, что $t_{n_s} \in [c^{-2m_{n_s}-1}, c^{-2m_{n_s}}]$ для всех $s \in \mathbb{N}$ (случай отрезков второго типа разбирается аналогично), где $(m_{n_s})_{s \in \mathbb{N}}$ — некоторая строго возрастающая последовательность. Такая последовательность, очевидно, существует, поскольку $t_n \to 0$.

Начнем со случая (і). В силу (10) имеем

$$\lim_{s \to \infty} \lambda_{n_s} t_{n_s} = \tau, \tag{11}$$

$$\lim_{s \to \infty} \lambda_{n_s} f(t_{n_s}) = \lim_{s \to \infty} \left(\lambda_{n_s} \frac{ct_{n_s} - c^{-2m_{n_s}}}{c - 1} y_{k_s} + \lambda_{n_s} \frac{c^{-2m_{n_s}} - t_{n_s}}{c - 1} e_{m_{n_s} + 1} \right) = w.$$
(12)

Напомним, что F_0 — компактное множество. Следовательно, $(y_{k_s})_{s\in\mathbb{N}}$ содержит сходящуюся подпоследовательность. Без потери общности можем предположить, что $(y_{k_s})_{s\in\mathbb{N}}$ сама сходится к некоторому y такому, что $(1,y)\in F_0$. Применяя лемму 9, получим

$$\lim_{s \to \infty} \lambda_{n_s} \frac{c^{-2m_{n_s}} - t_{n_s}}{c - 1} = 0. \tag{13}$$

Тогда из (11) и (13) следует, что $\lim_{s\to\infty} \lambda_{n_s} c^{-2m_{n_s}} = \tau$. В силу (12)

$$\lim_{s \to \infty} \lambda_{n_s} \frac{ct_{n_s} - c^{-2m_{n_s}}}{c - 1} y_{k_s} = \frac{c\tau - \tau}{c - 1} \lim_{s \to \infty} y_{k_s} = \tau y = w.$$

Ввиду (10) если $(\tau, w) \in T_f(0)$ и (i) верно, то $(\tau, w) = (\tau, \tau y) = \tau(1, y)$.

Теперь рассмотрим случай (ii). Тогда вместо (12) имеем

$$\lim_{s \to \infty} \lambda_{n_s} f(t_{n_s}) = \lim_{s \to \infty} \left(\lambda_{n_s} \frac{ct_{n_s} - c^{-2m_{n_s}}}{c - 1} y_{k_0} + \lambda_{n_s} \frac{c^{-2m_{n_s}} - t_{n_s}}{c - 1} e_{m_{n_s} + 1} \right) = w,$$
(14)

где y_{k_0} соответствует N_{k_0} (см. (7)), откуда опять в силу леммы 9 получаем тот же результат: $(\tau, w) = (\tau, \tau y_{k_0}) = \tau(1, y_{k_0})$.

Таким образом, мы показали, что

$$T_f(0) \subset \bigcup_{(1,y)\in F_0} \{\tau(1,y) : \tau \in [0,\infty)\} = \overline{\mathbb{R}^+} F_0.$$

$$\tag{15}$$

Чтобы доказать обратное включение, возьмем произвольно $(1, y_k) \in Y_0$ и рассмотрим только индексы $2m \in A_k$. Положим $t_m = c^{-2m}$ и $\lambda_m = c^{2m}$ для всех $2m \in A_k$. Согласно определению f имеем $f(t_m) = c^{-2m}y_k$, что влечет

$$\lambda_m t_m = 1$$
 и $\lambda_m f(t_m) = c^{2m} c^{-2m} y_k = y_k$

для всех $m\in N_k$. Отсюда $\lambda_m(t_m,f(t_m))\to (1,y_k)\in \mathrm{T}_f(0)$. Следовательно, $Y_0\subset \mathrm{T}_f(0)$. Поскольку $\overline{Y_0}=F_0$ и $\mathrm{T}_f(0)$ замкнута, получаем $F_0\subset \mathrm{T}_f(0)$. Из того, что $\mathrm{T}_f(0)$ — конус, следует

$$\overline{\mathbb{R}^+}F_0=\bigcup_{(1,y)\in F_0}\{\tau(1,y):\tau\in[0,\infty)\}\subset \mathrm{T}_f(0).$$

Отсюда ввиду (15) $T_f(0) = \overline{\mathbb{R}^+} F_0$ и, стало быть, $T_f(0) \cap X_0 = F_0 = H(F)$. С учетом построения H и того, что $T_f(0)$ — конус, легко выводим

$$T_f(0) \cap S^+ = T_f(0) \cap H^{-1}(X_0) = H^{-1}(T_f(0) \cap X_0) = F,$$

что и требовалось показать в случае бесконечного F.

Рассмотрим случай конечного $F = \{x_1, \dots, x_p\}$. В этом случае доказательство во многом аналогично предыдущему, хотя есть некоторые технические отличия. Используем разложение (6):

$$2\mathbb{N} = igcup_{k=1}^\infty A_k, \;\; ext{тем самым} \; \mathbb{N} = (2\mathbb{N}-1) \cup igcup_{k=1}^\infty A_k.$$

Положим $Y=F,\ Y_0=H(Y)=H(F)=F_0$. Свяжем с Y_0 периодическую последовательность, напоминающую (5):

$$\{(1, y_1), (1, y_2), \dots, (1, y_n), \dots\},$$
 (16)

где для $n = sp + r, \ s \in \mathbb{N}, \ 1 \le r < p, \$ положим $^{1)}$

$$y_n = \begin{cases} x_r, & \text{если } 1 \le r < p, \\ x_p, & \text{если } r = p. \end{cases}$$
 (17)

Далее, как и в случае бесконечного F, построим требуемое липшицево отображение $f: \mathbb{R} \to X$ согласно (7), где в этот раз y_k определены соотношениями (16), (17). Дальнейшие рассуждения такие же и более простые по сравнению со случаем бесконечного F, поэтому опускаем детали, чтобы избежать повторений. \square

Замечание 12. Сравнивая теорему 11 со случаем конечной размерности (теорема 5), заметим, что если F состоит, скажем, из двух точек $F = \{a, b\}$, то $T_f(0) \cap S^+ = \{a, b\}$, очевидно, несвязно.

4. Случай, когда X — бесконечномерное евклидово пространство

Теорема 11 позволяет представить любое компактное $F \subset S^+$ в виде (4) с соответствующе выбранным липшицевым f.

Цель этого раздела — показать, что в общем случае пересечение $\mathrm{T}_f(0)\cap S^+=F$ не должно быть компактным, даже если f липшицево.

Будем рассматривать вещественное евклидово пространство $X=(X,\langle\,,\rangle)$ бесконечной размерности, где $\langle\,,\,\rangle$ — скалярное произведение.

Лемма 13. Пусть X — бесконечномерное вещественное евклидово пространство и $(e_n)_{n\in\mathbb{N}}$ — счетная ортонормированная система. Предположим, что найдутся две подпоследовательности $(e_{n_s})_{s\in\mathbb{N}}$, $(e_{k_s})_{s\in\mathbb{N}}$ и две последовательности вещественных чисел $(\alpha_s)_{s\in\mathbb{N}}$ и $(\beta_s)_{s\in\mathbb{N}}$ такие, что существует предел

$$\lim_{s \to \infty} (\alpha_s e_{n_s} + \beta_s e_{k_s}) = w. \tag{18}$$

Tогда $w=0_X$.

Доказательство. Рассмотрим два случая.

 $^{^{1)}}$ Здесь мы предполагаем p>1;случай p=1 почти тривиален по сравнению со случаем бесконечного F.

- 1. Существует возрастающая последовательность $(s_i)_{i\in\mathbb{N}}$ такая, что $n_{s_i}\neq k_{s_i}$ для всех $i\in\mathbb{N}$. Поскольку семейство $\{e_n:n\in\mathbb{N}\}$ ортонормировано, из (18) получим $\langle \alpha_{s_i}e_{n_{s_i}}+\beta_{s_i}e_{k_{s_i}},e_{n_{s_i}}\rangle=\alpha_{s_i}\to 0$. Аналогично скалярное умножение на $e_{k_{s_i}}$ дает $\beta_{s_i}\to 0$. Тем самым $w=0_X$.
- 2. Если предположения предыдущего пункта не выполнены, то $n_s = k_s$ для всех достаточно больших s. Тогда в силу (18)

$$\lim_{s\to\infty}(\alpha_se_{n_s}+\beta_se_{k_s})=\lim_{s\to\infty}(\alpha_s+\beta_s)e_{n_s}=w,$$

откуда $w=0_X$, что завершает доказательство. \square

Замечание 14. Заметим, что в предположениях леммы 13 либо $\alpha_s \to 0$, $\beta_s \to 0$, либо $\alpha_s + \beta_s \to 0$.

Теорема 15. Пусть X — вещественное евклидово бесконечномерное пространство. Тогда для каждой счетной ортонормированной системы $(e_n)_{n\in\mathbb{N}}$, содержащейся в X, существует липшицево отображение $f:\mathbb{R}\to X$ такое, что

$$T_f(0) \cap S^+ = F := \{ (1/\sqrt{2}, e_n/\sqrt{2}) : n \in \mathbb{N} \}.$$
 (19)

Доказательство. Очевидно, что множество F, определенное в (19), замкнуто, но не компактно. Построим липшицево отображение $f:[0,\infty)\to X$ таким же способом, как и в доказательстве теоремы 11, полагая $y_k=e_k$, т. е. $Y_0=\{(1,e_n):n\in\mathbb{N}\}$. Сохраним обозначения и рассуждения теоремы 11. В частности, получим следующие аналоги соотношений (8), (9), где y_k заменены на e_k при $2m\in A_k$:

$$f(t)=rac{ct-c^{-2m}}{c-1}e_k+rac{c^{-2m}-t}{c-1}e_{m+1},\;\;$$
если $t\in[c^{-2m-1},c^{-2m}],$

$$f(t) = rac{c^{-2m+1}-t}{c-1}e_k + rac{ct-c^{-2m+1}}{c-1}e_m, \;\; ext{если} \; t \in [c^{-2m},c^{-2m+1}].$$

Элементарными вычислениями получим липшицеву постоянную $L=\frac{2c}{c-1}$.

Рассмотрим вектор $(\tau,w)\in \mathrm{T}_f(0)$ и $\tau\geq 0$. В силу определения 1 существуют последовательности $(t_n)_{n\in\mathbb{N}},\ t_n>0,\ t_n\to 0,\ \mathrm{u}\ (\lambda_n)_{n\in\mathbb{N}},\ \lambda_n>0,\ \mathrm{такиe},$ что

$$\lim_{n \to \infty} (\lambda_n t_n, \lambda_n f(t_n)) = (\tau, w). \tag{20}$$

Как и при доказательстве теоремы 11, без потери общности можем предположить, что t_n принадлежит отрезкам типа $[c^{-2m-1},c^{-2m}]$ для всех $n\in\mathbb{N}$, т. е.

$$\forall n \in \mathbb{N} \,\exists m_n \in \mathbb{N} \quad t_n \in [c^{-2m_n - 1}, c^{-2m_n}]. \tag{21}$$

Надо рассмотреть два случая, совпадающих со случаями (i), (ii) из доказательства теоремы 11.

- (j) Существуют последовательности $(n_s)_{s\in\mathbb{N}}$ и $(k_s)_{s\in\mathbb{N}}$ из \mathbb{N} такие, что $2n_s\in A_{k_s}$ для всех $s\in\mathbb{N}$.
- (jj) Существуют натуральное число k_0 и последовательность $(n_s)_{s\in\mathbb{N}}$ такие, что $n_s\in N_{k_0}$ для любого $s\in\mathbb{N}$.

Поскольку $t_n \to 0$, из (21) следует, что найдется возрастающая последовательность $(m_{n_s})_{s\in\mathbb{N}}$ такая, что $t_{n_s}\in[c^{-2m_{n_s}-1},c^{-2m_{n_s}}]$ для всех $s\in\mathbb{N}$.

Сначала рассмотрим случай (j). В силу (20) имеем $\lim_{s \to \infty} \lambda_{n_s} t_{n_s} = \tau$ и

$$\lim_{s \to \infty} \lambda_{n_s} f(t_{n_s}) = \lim_{s \to \infty} \left(\lambda_{n_s} \frac{ct_{n_s} - c^{-2m_{n_s}}}{c - 1} e_{k_s} + \lambda_{n_s} \frac{c^{-2m_{n_s}} - t_{n_s}}{c - 1} e_{m_{n_s} + 1} \right) = w.$$
(22)

Применяя лемму 13, получаем $w = 0_X$. Из (22) и замечания 14 имеем

$$\lim_{s o\infty}\left(\lambda_{n_s}rac{ct_{n_s}-c^{-2m_{n_s}}}{c-1}+\lambda_{n_s}rac{c^{-2m_{n_s}}-t_{n_s}}{c-1}
ight)=0.$$

Элементарными вычислениями получим $\lim_{s\to\infty}\lambda_{n_s}t_{n_s}=0$, откуда $\tau=0$. Тем самым $(\tau,w)=(0,0_X)\in \mathrm{T}_f(0)$ (ср. со случаем (i), соответствующим случаю (j), из доказательства теоремы 11).

Рассмотрим случай (јј). Заменим (14) на

$$\lambda_{n_s} f(t_{n_s}) = \lambda_{n_s} rac{ct_{n_s} - c^{-2m_{n_s}}}{c-1} e_{k_0} + \lambda_{n_s} rac{c^{-2m_{n_s}} - t_{n_s}}{c-1} e_{m_{n_s}+1}
ightarrow w.$$

Применяя лемму 9, получаем $\lambda_{n_s} \frac{c^{-2m_{n_s}}-t_{n_s}}{c-1} \to 0$. Стало быть, $\lambda_{n_s} c^{-2m_{n_s}} \to \tau$, откуда

$$\lambda_{n_s} \frac{ct_{n_s} - c^{-2m_{n_s}}}{c - 1} \to \frac{c\tau - \tau}{c - 1} = \tau,$$

что влечет $w=\tau e_{k_0}$. Таким образом, можем заключить, что если $(\tau,w)\in \mathrm{T}_f(0),$ $\tau\geq 0$, то $(\tau,w)=\tau(1,e_{k_0}).$ Следовательно,

$$\mathcal{T}_f(0) \subset \bigcup_{(1,e_k) \in Y_0} \{\tau(1,e_k) : \tau \in [0,\infty)\}.$$

Чтобы доказать обратное включение, возьмем произвольно $(1,e_k)\in Y_0$. Рассмотрим только индексы $2m\in A_k$. Положим $t_m=c^{-2m}$ и $\lambda_m=c^{2m}$ для $2m\in A_k$. Согласно определению f имеем $f(t_m)=c^{-2m}e_k$, что влечет

$$\lambda_m t_m = 1$$
 и $\lambda_m f(t_m) = c^{2m} c^{-2m} e_k = e_k$

для всех $m \in N_k$. Отсюда $\lambda_m(t_m, f(t_m)) \to (1, e_k)$, где $(1, e_k) \in \mathcal{T}_f(0)$. Следовательно,

$$\bigcup_{(1,e_k)\in Y_0} \{\tau(1,e_k): \tau\in [0,\infty)\} \subset \mathcal{T}_f(0).$$

Это означает, что $T_f(0) \cap S^+ = F$. \square

5. Случай $\operatorname{card} F > \mathfrak{c}$

Этот короткий раздел можно рассматривать как простое дополнение к предыдущим результатам. Здесь через $\mathfrak c$ обозначим мощность континуума. В разд. 4 доказано соотношение (4) для некоторого специального замкнутого некомпактного F. В этом разделе покажем, что для произвольного замкнутого некомпактного F соотношение (4) в общем случае неверно.

Теорема 16. Пусть X — нормированное пространство. Тогда для каждого замкнутого множества $F \subset S^+$, card $F > \mathfrak{c}$, соотношение

$$T_f(0) \cap S^+ = F \tag{23}$$

не выполнено для любого липшицева $f: \mathbb{R} \to X$.

Доказательство. Сразу заметим, что ввиду предположения $\operatorname{card} F > \mathfrak{c}$ множество F не компактно.

Пусть $f: \mathbb{R} \to X$ — липпицева функция, $f(0) = 0_X$ и $\mathrm{T}_f(0) \neq \{(0,0_X)\}$, т. е. контингенция нетривиальна (если $\mathrm{T}_f(0) = \{(0,0_X)\}$, то, очевидно, (23) не выполнено, поскольку левая часть — пустое множество). Пусть $(t_n)_{n\in\mathbb{N}}$ — последовательность положительных чисел, $t_n \to 0$, такая, что существует предел

$$\lim_{n \to \infty} \frac{f(t_n)}{t_n} \in X.$$

Применяя определение 1, можем записать $(1,v)\in \mathrm{T}_f(0)\cap X_0$ (напомним, что $X_0=\{1\}\times X$), если и только если существуют последовательности положительных чисел $(t_n)_{n\in\mathbb{N}},\ t_n\to 0,\ \mathrm{u}\ (\lambda_n)_{n\in\mathbb{N}}$ такие, что $\lambda_n t_n\to 1$ и $\lambda_n f(t_n)\to v.$ Отсюда сразу следует, что если $(1,v)\in \mathrm{T}_f(0)\cap X_0$, то

$$\lim_{n \to \infty} \frac{f(t_n)}{t_n} = v. \tag{24}$$

Можно назвать всякий предел вида (24) производным значением f в 0. Обозначим через Δ множество всех таких значений. Следует заметить, что Δ может быть пустым, поскольку в общем случае пределы (24) могут не существовать даже для липшицевых отображений (в то же время контингенция $\mathbf{T}_f(0)$ всегда существует, хотя может быть тривиальна).

Поскольку $\operatorname{card} \mathbb{R}^{\mathbb{N}} = \mathfrak{c}$, нетрудно получить, что $\operatorname{card} \Delta \leq \mathfrak{c}$, откуда $\operatorname{card}(\mathrm{T}_f(0) \cap X_0) \leq \mathfrak{c}$. Следовательно,

$$T_f(0) \cap S^+ = H^{-1}(T_f(0) \cap X_0)$$
 имеет мощность $\leq \mathfrak{c}$, (25)

где отображение H определено в разд. 3.

Поскольку по предположению $\operatorname{card} F > \mathfrak{c},$ в силу (25) заключаем, что (23) не выполнено. $\ \square$

ЛИТЕРАТУРА

- ${\bf 1.}~Schwartz~L.$ Analyse mathématique. Paris: Hermann, 1967. V. 1.
- 2. Bouligand G. Introduction à la géométrie infinitésimale directe. Paris: Librairie Vuibert, 1932.
- 3. Saks S. Theory of the integral. Warszawa; Lwów; New York: Stechert, 1937.
- 4. Federer H. Geometric measure theory. Berlin; Heidelberg; New York: Springer-Verl., 1969.
- Turowska M. A geometric condition for differentiability // Tatra Mt. Math. Publ. 2004. V. 28, N 2. P. 179–186.
- Пономарев С. П., Туровска М. Липшицевы отображения, контингенции и дифференцируемость // Сиб. мат. журн. 2007. Т. 48, № 4. С. 837–847.

Статья поступила 18 ноября 2010 г.

Пономарев Станислав Петрович (Stanislav Ponomarev), Туровска Малгожата (Małgorzata Turowska) Institute of Mathematics, Pomeranian Academy in Słupsk Arciszewskiego 22b, 76-200 Słupsk, Poland stapon@apsl.edu.pl, p35st9@poczta.onet.pl, turowska@apsl.edu.pl