ФУНКЦИЯ ГРИНА ПЯТИТОЧЕЧНОЙ ДИСКРЕТИЗАЦИИ ДВУМЕРНОГО КОНЕЧНОЗОННОГО ОПЕРАТОРА ШРЁДИНГЕРА: СЛУЧАЙ ЧЕТЫРЕХ ОСОБЫХ ТОЧЕК НА СПЕКТРАЛЬНОЙ КРИВОЙ

Б. О. Василевский

Аннотация. Рассмотрим регулярную риманову поверхность конечного рода и «обобщенные спектральные данные» — специальный набор выделенных точек на ней. По ним строится дискретный аналог функции Бейкера — Ахиезера вместе с дискретным оператором, обнуляющим ее. При некоторых дополнительных условиях на обобщенные спектральные данные оператор принимает вид дискретного оператора Коши — Римана, а ее ограничение на четную подрешетку обнуляется соответствующим оператором Шрёдингера. В этой работе строится явная формула для функции Грина указанного оператора. Формула выражает функцию Грина в терминах интеграла по специальному контуру от дифференциала, построенного по волновой функции и дополнительным спектральным данным. В результате почти по каждой точке спектральной кривой можно получить функцию Грина с известной асимптотикой на бесконечности.

Ключевые слова: дискретный оператор, конечнозонный оператор, функция Грина. М-кривая.

1. Введение

В настоящее время одной из активно исследуемых задач математической физики является построение интегрируемых дискретных аналогов непрерывных интегрируемых систем. Большой прорыв в развитии последних был сделан в 1960-х гг. с применением теории солитонов.

В непрерывном случае хотелось бы упомянуть подходы С. В. Манакова и Б. А. Дубровина, И. М. Кричевера, С. П. Новикова. С. В. Манаков в своей работе [1] доказал, что для двумерных систем правильным обобщением пары Лакса является L,A,B-тройка. Б. А. Дубровин, И. М. Кричевер и С. П. Новиков [2] показали интегрируемость двумерного стационарного конечнозонного оператора Шрёдингера при фиксированной энергии, используя конечнозонный подход. Следующий важный шаг сделан в работе А. П. Веселова и С. П. Новикова [3, 4], в которой авторы нашли условие на конечнозонные спектральные данные, соответствующие нулевому магнитному полю. На операторах с нулевым магнитным полем возникает иерархия Веселова — Новикова, порождающая бесконечную алгебру симметрий для задачи рассеяния.

В дискретном случае отдельный интерес (не только чисто теоретический) вызвала задача рассеяния для двумерного оператора Шрёдингера при одной

энергии. Интегрируемая (построено обратное спектральное преобразование в периодическом случае) гиперболическая дискретизация найдена в [5]. Далее, в [6] получена эллиптическая дискретизация из специальной редукции гиперболической дискретизации. Эта редукция в терминах спектральных данных оказалась очень похожа на редукцию в [3, 4]. В частности, на спектральной кривой требуется наличие голоморфной инволюции с двумя неподвижными точками.

Случаи двух и нуля неподвижных точек у голоморфной инволюции на римановой поверхности являются наиболее интересными согласно [7]. Как показано в [8], конечнозонные решения, построенные в [6], являются решениями специального вида. Решения общего положения отвечают спектральным кривым, у которых инволюция не имеет неподвижных точек. Вслед за [6] будем рассматривать инволюцию именно с двумя неподвижными точками.

Наиболее общие потенциалы отвечают римановой поверхности, на которой особенности находятся в четырех сериях выделенных точек. Однако наиболее интересен случай, когда все точки серий совпадают или, что эквивалентно, имеется ровно четыре особые точки. Остановимся на нем.

Приведем сведения из [6], необходимые для построения пятиточечного эллиптического оператора и его волновой функции. При этом сразу будем рассматривать случай только четырех особых точек. Главная цель данной статьи — явная формула для функции Грина этого оператора.

Будем считать, что имеются:

- 1) компактная, регулярная риманова поверхность рода g;
- 2) фиксированная точка R_1 на Γ точка нормировки для волновой функции $\Psi(\gamma, m, n)$;
 - 3) g точек γ_1,\ldots,γ_g на Γ дивизор полюсов волновой функции;
 - 4) четыре выделенные точки P^+, P^-, Q^+, Q^- .

По теореме Римана — Роха для данных общего положения и для любых целых m, n существует единственная функция $\Psi(\gamma, m, n), \gamma \in \Gamma$, со следующими свойствами.

- 1. $\Psi(\gamma, m, n)$ является мероморфной функцией от γ на Γ .
- 2. Ψ имеет полюса не более первого порядка в точках $\gamma_1, \ldots, \gamma_g$, полюс не более m-го порядка в точке P^+ , полюс не более n-го порядка в точке Q^+ и не имеет никаких других особенностей.
- $3.\ \Psi$ имеет нуль по крайней мере m-го порядка в точке P^- и нуль по крайней мере n-го порядка в точке $Q^-.$

4.
$$\Psi(R_1, m, n) = 1$$
.

Из теоремы Римана — Роха также следует справедливость равенства

$$\Psi(\gamma, m+1, n+1) + \alpha_1(m, n)\Psi(\gamma, m+1, n) + \alpha_2(m, n)\Psi(\gamma, m, n+1) + \alpha_3\Psi(\gamma, m, n) = 0, \tag{1}$$

где коэффициенты $\alpha_j(m,n)$ задаются формулами

$$egin{aligned} lpha_1(m,n) &= -\lim_{\gamma o P^+} rac{\Psi(\gamma,m+1,n+1)}{\Psi(\gamma,m+1,n)},\ lpha_2(m,n) &= -\lim_{\gamma o Q^+} rac{\Psi(\gamma,m+1,n+1)}{\Psi(\gamma,m,n+1)},\ lpha_3(m,n) &= -1 - lpha_1(m,n) - lpha_2(m,n). \end{aligned}$$

Полученный гиперболический дискретный оператор Шрёдингера построен в [5].

Пусть на Γ определена голоморфная инволюция σ ровно с двумя неподвижными точками $R_+ = R_1, R_-$ и следующими свойствами:

1) на Γ существует мероморфный дифференциал Ω с двумя полюсами первого порядка в R_+, R_- и 2g нулями в $\gamma_1, \ldots, \gamma_g, \sigma \gamma_1, \ldots, \sigma \gamma_g;$

2)
$$\sigma P^+ = P^-, \ \sigma Q^+ = Q^-.$$

В таком случае по [6, лемма 16]

$$\Psi(R_-, m, n) = (-1)^{m+n}, \quad \alpha_1(m, n) + \alpha_2(m, n) = 0, \quad \alpha_3(m, n) = -1,$$
 (2)

а волновая функция Ψ удовлетворяет 4-точечному уравнению

$$\Psi(m+1,n+1) - \Psi(m,n) = if(m,n)(\Psi(m+1,n) - \Psi(m,n+1)), \tag{3}$$

$$f(m,n) = i\alpha_1(m,n) = -i\alpha_2(m,n). \tag{4}$$

Примечательно, что из существования такой инволюции с формой вытекает, что

$$\frac{1}{f(m,n)}(\Psi(m+1,n+1) - \Psi(m,n)) + f(m,n-1)(\Psi(m+1,n-1) - \Psi(m,n)) + f(m-1,n)(\Psi(m-1,n+1) - \Psi(m,n)) + \frac{1}{f(m-1,n-1)}(\Psi(m-1,n-1) - \Psi(m,n)) = 0.$$
(5)

Это следует как из теоремы Римана — Роха, так и напрямую из [6, предложение 2]. После перехода на четную подрешетку

$$m=\mu-
u, \quad n=\mu+
u, \quad \Psi_{\mu,
u}=\Psi(m,n)=\Psi(\mu-
u,\mu+
u), \ a_{\mu,
u}=rac{1}{f(m,n)}, \quad a_{\mu-1,
u}=rac{1}{f(m-1,n-1)}, \ b_{\mu,
u}=f(m-1,n), \quad b_{\mu,
u-1}=f(m,n-1), \ c_{\mu,
u}=a_{\mu,
u}+a_{\mu-1,
u}+b_{\mu,
u}+b_{\mu,
u-1}$$

пятиточечный оператор запишется в следующем виде:

$$(L\Phi)_{\mu,\nu} = a_{\mu,\nu}\Phi_{\mu+1,\nu} + a_{\mu-1,\nu}\Phi_{\mu-1,\nu} + b_{\mu,\nu}\Phi_{\mu,\nu+1} + b_{\mu,\nu-1}\Phi_{\mu,\nu-1} - c_{\mu,\nu}\Phi_{\mu,\nu}.$$
(6)

Будем считать нормировку $\Omega(\gamma)$ такой, что его вычеты в точках $R_+,\ R_-$ равны соответственно $+\frac{1}{2},\ -\frac{1}{2}.$

Двойственная волновая функция определяется как $\Psi^+(\gamma,m,n)=\Psi(\sigma\gamma,m,n)$. При ее участии строится дифференциал

$$\widetilde{\Omega}(\gamma, m, n, \tilde{m}, \tilde{n}) = \Psi(\gamma, m, n)\Psi^{+}(\gamma, \tilde{m}, \tilde{n})\Omega.$$

Такое обозначение отличается от [6] заменой $\mu \leftrightarrow \tilde{\mu}$ и $\nu \leftrightarrow \tilde{\nu}$, что позволяет избежать излишнего загромождения формул. При помощи $\widetilde{\Omega}$ будем строить функцию Грина для оператора L.

Также потребуем существование на Γ антиголоморфной инволюции τ такой, что

- 1) τ и σ коммутируют;
- 2) $\tau R_{+} = R_{-};$
- 3) P^+, P^-, Q^+, Q^- являются неподвижными точками для τ ;
- 4) дивизор $\gamma_1, \dots, \gamma_g$ инвариантен относительно τ .

В этом случае по [6, лемма 17]

$$f(m,n) \in \mathbb{R},\tag{7}$$

$$\Psi(\tau\gamma, m, n) = (-1)^{m+n} \overline{\Psi(\gamma, m, n)}.$$
 (8)

ПРИМЕР 1. Рассмотрим случай сферы Римана. Пусть $P^{\pm}=\pm 1,\,Q^{\pm}=\pm i,\,R_{+}=\infty,\,R_{-}=0.$ Волновая функция запишется как

$$\Psi(z,m,n) = \left(rac{z+1}{z-1}
ight)^m \left(rac{z+i}{z-i}
ight)^n.$$

Отсюда видно, что $f(m,n)\equiv 1,$ т. е. Ψ удовлетворяет гиперболическому уравнению

$$\varphi_{m+1,n+1}-\varphi_{mn}=i(\varphi_{m+1,n}-\varphi_{m,n+1}).$$

Определим инволюции и дифференциал Ω:

$$\sigma z=-z, \quad \Omega=-rac{dz}{2z}, \quad au z=rac{1}{\overline{z}}.$$

Из существования σ , Ω немедленно следует, что Ψ является также решением эллиптического уравнения

$$\varphi_{m+1,n+1} + \varphi_{m+1,n-1} + \varphi_{m-1,n+1} + \varphi_{m-1,n-1} - 4\varphi_{mn} = 0.$$

Заметим, что на Γ есть только один вещественный овал (множество точек, инвариантных относительно τ) |z|=1, на котором лежат все наши выделенные точки $P^\pm,\,Q^\pm.$

2. Рост волновой функции

Вопрос о том, как ведет себя $|\Psi(\gamma,m,n)|$ при фиксированном γ , очень важен для оценки роста функции Грина, построенной в работе. Для формулировки и доказательства теоремы потребуются некоторые понятия теории римановых поверхностей.

Выберем на Γ канонический базис циклов $a_1, \ldots, a_g, b_1, \ldots, b_g$ и базис голоморфных дифференциалов $\omega_1, \ldots, \omega_g$, нормированный следующим образом:

$$\oint\limits_{a_k}\omega_j=\delta_{jk}.$$

Нам понадобится тета-функция Римана поверхности Γ , которая определяется рядом

$$heta(z|B) = \sum_{N \in \mathbb{Z}^q} \exp(\pi i \langle BN, N
angle + 2\pi i \langle N, z
angle),$$

где $\langle\cdot,\cdot\rangle$ — евклидово скалярное произведение, а B — матрица b-периодов голоморфных дифференциалов

$$\oint\limits_{b_k}\omega_j=B_{jk}.$$

Зададим отображение Абеля как

$$\vec{A}(\gamma) = \left(\int\limits_{R_{\perp}}^{\gamma} \omega_1, \dots, \int\limits_{R_{\perp}}^{\gamma} \omega_g\right).$$
 (9)

Напомним, что это корректно определенное отображение $\Gamma \xrightarrow{A} J(\Gamma)$, где $J(\Gamma)$ — многообразие Якоби, $J(\Gamma) = \mathbb{C}^g/\{M+BN\}$ для $M,N \in \mathbb{Z}^g$.

Для двух различных точек P,Q римановой поверхности существует мероморфный дифференциал $\Omega(P,Q)$ с полюсами первого порядка в P,Q и вычетами -1 и 1 соответственно, не имеющий других особенностей. Добавим условие равенства нулю по всем a-циклам, благодаря которому $\Omega(P,Q)$ определяется однозначно. Он противоположен соответствующему нормированному абелеву дифференциалу третьего рода.

Для волновой функции Ψ есть формула в явном виде [6, 5.2], верная при любых целых m, n:

$$\Psi(\gamma, m, n) = \exp\left(m\int_{R_{+}}^{\gamma} \Omega(P^{+}, P^{-}) + n\int_{R_{+}}^{\gamma} \Omega(Q^{+}, Q^{-})\right) \times \frac{\theta\left(\vec{A}(\gamma) + m\vec{\Delta}_{P} + n\vec{\Delta}_{Q} - \sum_{k=1}^{g} \vec{A}(\gamma_{k}) - \vec{K}\right)}{\theta\left(\vec{A}(\gamma) - \sum_{k=1}^{g} \vec{A}(\gamma_{k}) - \vec{K}\right)} \times \frac{\theta\left(\vec{A}(R_{+}) - \sum_{k=1}^{g} \vec{A}(\gamma_{k}) - \vec{K}\right)}{\theta\left(\vec{A}(R_{+}) + m\vec{\Delta}_{P} + n\vec{\Delta}_{Q} - \sum_{k=1}^{g} \vec{A}(\gamma_{k}) - \vec{K}\right)}, \quad (10)$$

где $\vec{\Delta}_P = \vec{A}(P^-) - \vec{A}(P^+), \ \vec{\Delta}_Q = \vec{A}(Q^-) - \vec{A}(Q^+).$ Пути во всех интегралах берутся одинаковыми. Проверим, что (10) задает однозначную на Γ функцию. Если путь до фиксированного γ изменяется на некоторый цикл, гомологичный $\sum\limits_{j=1}^g (N_j a_j + M_j b_j), \ \vec{N}, \vec{M} \in \mathbb{Z}^g,$ то отношение θ -функций умножится на $t = \exp(-2\pi i \langle \vec{M}, m \vec{\Delta}_P + n \vec{\Delta}_Q \rangle).$ Из теории римановых поверхностей известно,

$$\oint_{b_k} \Omega(P^+, P^-) = 2\pi i \int_{P^+}^{P^-} \omega_k, \quad \oint_{b_k} \Omega(Q^+, Q^-) = 2\pi i \int_{Q^+}^{Q^-} \omega_k, \tag{11}$$

а следовательно, экспонента умножится на t^{-1} .

Пусть Γ является М-кривой, т. е. инволюция τ имеет g+1 неподвижных овалов a_1,a_2,\ldots,a_g,c .

Теорема 1. Пусть Γ является М-кривой, выделенные точки P^{\pm} , Q^{\pm} попадают на овал c, на остальные овалы попадает по одной точке γ -дивизора: $\gamma_j \in a_j, \ j=1,\ldots,g$. Тогда канонический базис циклов и пути интегрирования на Γ можно выбрать таким образом, что для любого фиксированного $\gamma \in \Gamma \setminus (a_1 \cup \cdots \cup a_g \cup c)$ выполняется неравенство при всех целых m, n:

$$|\Psi(\gamma, m, n)| \le R(\gamma) \left| \exp \left(m \int_{R_{+}}^{\gamma} \Omega(P^{+}, P^{-}) + n \int_{R_{+}}^{\gamma} \Omega(Q^{+}, Q^{-}) \right) \right|, \tag{12}$$

где $R:\Gamma o \mathbb{R}$ — гладкая на $\Gamma \setminus (a_1 \cup \dots \cup a_g \cup c)$ функция.

Другими словами, для почти всех $\gamma \in \Gamma$ рост абсолютной величины $\Psi(m,n)$ зависит только от $\Omega(P^+,P^-),\,\Omega(Q^+,Q^-).$

Доказательство. Благодаря расположению γ_j все нули $\Psi(\gamma,m,n)$ при любых m,n располагаются только на неподвижных овалах a_1,\ldots,a_g,c . Действительно, на каждом из $a_j,\,j=1,\ldots,g$, функция $\Psi(\gamma,m,n)$ вещественная или чисто мнимая (8) и имеет полюс первого порядка. Тогда на a_j найдется и нуль по крайней мере первого порядка. Степень дивизора $(mP^--mP^++nQ^--nQ^+-\gamma_1-\cdots-\gamma_g)$ равна (-g), и по построению у $\Psi(\gamma,m,n)$ нет полюсов вне точек этого дивизора. Следовательно, все нули на a_j имеют первый порядок, и более на Γ нулей у $\Psi(\gamma,m,n)$ нет.

Рассмотрим явную формулу (10). Пусть $\gamma \in \Gamma \setminus (a_1 \cup \dots \cup a_g \cup c)$, тогда ни одна из θ -функций не обращается в нуль. Докажем существование гладких $R_{\min}(\gamma) > 0$ и $R_{\max}(\gamma) > 0$ таких, что для любых m, n выполняется

$$R_{\min}(\gamma) \leq \left| hetaigg(ec{A}(\gamma) + mec{\Delta}_P + nec{\Delta}_Q - \sum_{k=1}^g ec{A}(\gamma_k) - ec{K}
ight)
ight| \leq R_{\max}(\gamma).$$

Искомая оценка будет выполняться при

$$R(\gamma) = rac{R_{ ext{max}}(\gamma)}{R_{ ext{min}}(\gamma)} rac{\left| hetaigg(ec{A}(R_+) - \sum\limits_{k=1}^g ec{A}(\gamma_k) - ec{K} igg)
ight|}{\left| hetaigg(ec{A}(\gamma) - \sum\limits_{k=1}^g ec{A}(\gamma_k) - ec{K} igg)
ight|}.$$

Возьмем в качестве a-циклов канонического базиса неподвижные овалы τ с точками γ -дивизора a_1,\dots,a_g . Благодаря такому выбору получаем целый ряд свойств.

Для каждого $j=1,\ldots,g$ дифференциал $\overline{\tau\omega_j}$ голоморфен и имеет ту же нормировку, что и ω_j . Следовательно, $\tau\omega_j=\overline{\omega}_j$ и ω_j принимает вещественные значения на неподвижных овалах τ .

Вещественной частью многообразия Якоби $\mathrm{Re}\,J(\Gamma)$ назовем подмножество $J(\Gamma)$ классов эквивалентности с вещественными представителями $\vec{x}+B\vec{M},$ где $\vec{x}\in\mathbb{R}^g,\,\vec{M}\in\mathbb{Z}^g.$

Вспомним, что при изменении m, n аргументы θ -функций изменяются на $\vec{\Delta}_P = \vec{A}(P^-) - \vec{A}(P^+), \ \vec{\Delta}_Q = \vec{A}(Q^-) - \vec{A}(Q^+)$ соответственно. Тогда из вещественности ω_i на неподвижных овалах и определения

$$(ec{\Delta}_P)_j = \int\limits_{P^+}^{P^-} \omega_j, \quad (ec{\Delta}_Q)_j = \int\limits_{Q^+}^{Q^-} \omega_j$$

следует, что $\vec{\Delta}_P \in \operatorname{Re} J(\Gamma)$, $\vec{\Delta}_Q \in \operatorname{Re} J(\Gamma)$, так как от вещественного вектора они могут отличаться только на периоды многообразия Якоби.

Фиксируем $\lambda \in \Gamma \setminus (a_1 \cup \cdots \cup a_g \cup c)$ и рассмотрим множество всех значений аргументов рассматриваемой θ -функции при различных m, n:

$$V(\lambda) = igg\{ ec{A}(\lambda) + m ec{\Delta}_P + n ec{\Delta}_Q - \sum_{k=1}^g ec{A}(\gamma_k) - ec{K} \mid m,n \in \mathbb{Z} igg\}.$$

Докажем, что замыкание $V(\lambda)$ в $J(\Gamma)$ не содержит нулей θ -функции. Пусть такой нуль $z\in J(\Gamma)$ все-таки нашелся. Тогда разность $z-\left(\vec{A}(\lambda)-\sum\limits_{k=1}^g\vec{A}(\gamma_k)-\vec{K}\right)$ сколь угодно приближается суммой $m\vec{\Delta}_P+n\vec{\Delta}_Q\in \mathrm{Re}\,J(\Gamma)$ и по замкнутости

сама принадлежит $\operatorname{Re} J(\Gamma)$. Следовательно, найдется такая $\lambda_0 \in \Gamma$, $\tau \lambda_0 = \lambda_0$, что на $J(\Gamma)$ выполняется равенство $z = \vec{A}(\lambda_0) - \sum_{k=1}^g \vec{A}(\gamma_k) - \vec{K}$, откуда вытекает, что $\vec{A}(\lambda_0) - \vec{A}(\lambda) \in \operatorname{Re} J(\Gamma)$.

Воспользуемся возможностью выбрать пути интегрирования и добьемся вещественности последней разности: $\vec{A}(\lambda_0) - \vec{A}(\lambda) \in \mathbb{R}^g$. Из $\tau \omega_i = \overline{\omega}_i$ вытекает

$$ec{A}(\lambda_0) - ec{A}(au\lambda) = \overline{ec{A}(\lambda_0) - ec{A}(\lambda)},$$

а из вещественности правой части — $\vec{A}(\lambda) = \vec{A}(\tau\lambda)$. Поскольку $\tau\lambda \neq \lambda$, такое может быть только на сфере g=0, где доказываемая оценка тривиальна.

Из отсутствия нулей в замыкании $V(\lambda) \subset J(\Gamma)$ и компактности последнего следует существование искомых $R_{\min}(\lambda)$, $R_{\max}(\lambda)$ для всех $\lambda \notin (a_1 \cup \cdots \cup a_h \cup c)$, этим и завершается доказательство.

Замечание 1. Выбор путей интегрирования в точности соответствует случаю $\vec{\Delta}_P \in \mathbb{R}^g$, $\vec{\Delta}_Q \in \mathbb{R}^g$, поэтому по (11) интегралы от $\Omega(P^+, P^-)$, $\Omega(Q^+, Q^-)$ по любому циклу вещественны.

Замечание 2. По всей видимости, оценка (12) выполняется почти всюду и в более общем случае, когда Γ не является М-кривой. Но строгое доказательство требует более серьезной техники. Эта задача — тема для дальнейших исследований.

3. Квазиимпульсы

Дифференциалы квазиимпульсов dp_m , dp_n определяются по аналогии с [9]. А именно, это мероморфные дифференциалы третьего рода; dp_m имеет вычеты i, -i в точках P^+, P^- соответственно, dp_n — такие же вычеты в точках Q^+, Q^- соответственно. Дифференциалы квазиимпульсов однозначно определяются условием вещественности интегралов по всем контурам. Сами квазиимпульсы определяются как

$$p_m(\gamma) = \int_{R_+}^{\gamma} dp_m, \quad p_n(\gamma) = \int_{R_+}^{\gamma} dp_n$$
 (13)

и многозначны на Γ , однако их мнимые части $\operatorname{Im} p_m(\gamma)$, $\operatorname{Im} p_n(\gamma)$ уже однозначны на Γ .

Из замечания 1 и единственности дифференциалов квазиимпульсов следует, что при выборе канонического базиса циклов и путей интегрирования, как в теореме 1, выполняется $\Omega(P^+,P^-)=-idp_m,\ \Omega(Q^+,Q^-)=-idp_n.$ Поэтому оценка (12) может быть переписана в терминах квазиимпульсов:

$$|\Psi(\gamma, m, n)| \le R(\gamma)e^{m\operatorname{Im} p_m(\gamma)}e^{n\operatorname{Im} p_n(\gamma)}.$$
(14)

Отметим, что поскольку и левая часть, и квазиимпульсы уже не зависят от выбора базиса или путей интегралов, то функция $R(\gamma)$ также не зависит от них.

Оценка абсолютной величины двойственной волновой функции получается заменой γ на $\sigma\gamma$:

$$|\Psi^{+}(\gamma, m, n)| \le R(\sigma \gamma) e^{m \operatorname{Im} p_m(\sigma \gamma)} e^{n \operatorname{Im} p_n(\sigma \gamma)}.$$

Дифференциал $-dp_m(\sigma\gamma)$ имеет полюса в P^+ , P^- с вычетами соответственно +i, -i, а также интеграл от него по любому контуру вещественный. Следовательно, $dp_m(\sigma\gamma) = -dp_m$. Рассуждая аналогично, получим $dp_n(\sigma\gamma) = -dp_n$. Поэтому последнее неравенство можно переписать в виде

$$|\Psi^{+}(\gamma, m, n)| \le R(\sigma \gamma) e^{-m \operatorname{Im} p_{m}(\gamma)} e^{-n \operatorname{Im} p_{n}(\gamma)}. \tag{15}$$

Для контроля роста Ψ будем рассматривать множества вида

$$C_{\lambda} = \{ \gamma : \operatorname{Im} p_n(\gamma) = \operatorname{Im} p_n(\lambda) \}, \quad \lambda \in \Gamma.$$

Такого рода контуры возникли еще в [10].

ПРИМЕР 2. Продолжим рассмотрение случая g=0. В качестве дифференциалов квазиимпульсов подходят

$$dp_m = rac{idz}{z-1} - rac{idz}{z+1}, \quad dp_n = rac{idz}{z-i} - rac{idz}{z+i}.$$

Действительно, мнимые части квазиимпульсов получаются однозначными:

$$p_m = i \ln igg(rac{z-1}{z+1}igg), \quad p_n = i \ln igg(rac{z-i}{z+i}igg),$$

$$\operatorname{Im} p_m = \ln \left| rac{z-1}{z+1}
ight|, \quad \operatorname{Im} p_n = \ln \left| rac{z-i}{z+i}
ight|.$$

На сфере Римана контуры $\operatorname{Im} p_m = \operatorname{const}$, $\operatorname{Im} p_n = \operatorname{const}$ представляют собой окружности с центрами в P^{\pm} , Q^{\pm} соответственно. Заметим, что точки P^{\pm} , R_{\pm} лежат на одном контуре $\operatorname{Im} p_n = 0$.

Оценки (14) и (15) в случае сферы обращаются в равенства при $R \equiv 1$.

Перечислим важные для нас в будущем свойства контура C_{λ} . Для начала заметим, что при $\lambda = Q^{\pm}$ он вырождается в точку.

Лемма 1. Почти для всех $\lambda \in \Gamma \setminus \{Q^+, Q^-\}$ верны следующие свойства:

- 1) C_{λ} является объединением некоторого количества кусочно гладких замкнутых кривых,
 - 2) C_{λ} гомологичен точке,
- 3) точки R_+, R_- лежат по одну сторону относительно C_λ , точки Q^+, Q^- по разные.

Доказательство. 1. Дифференциал dp_n имеет 2g нулей на Γ с учетом кратностей. Если C_{λ} через них не проходит, то по теореме о неявной функции в окрестности каждой своей точки C_{λ} представляет собой гладкую неособую кривую. При прохождении через нули кривая может потерять гладкость, но остается непрерывной. Из компактности Γ следует замкнутость каждого пути.

- 2. Гомологичность точке C_{λ} вытекает из того, что он является границей подмногообразия с краем $\{\gamma: \operatorname{Im} p_n(\gamma) \leq \operatorname{Im} p_n(\lambda)\}$, гладкого почти для всех λ .
 - 3. Утверждение о Q^+, Q^- гарантируют равенства

$$\operatorname{Im} p_n(Q^+) = -\infty, \quad \operatorname{Im} p_n(Q^-) = +\infty.$$

В силу предыдущих пунктов достаточно показать, что

$$\operatorname{Im} p_n(R_-) = \operatorname{Im} p_n(R_+) = 0.$$

Для начала заметим, что дифференциал $-\tau(dp_n)$ мероморфен, имеет простые полюса в Q^+, Q^- с вычетами i и -i соответственно, а также интеграл от него по любому контуру веществен. Тогда ввиду единственности $\tau(dp_n) = -\overline{dp_n}$. Используя $\tau R_+ = R_-$ и вещественность интегралов по контурам, получаем

$$\operatorname{Im} \int\limits_{R_{+}}^{R_{-}} dp_{n} = -\operatorname{Im} \int\limits_{R_{+}}^{R_{-}} \overline{ au(dp_{n})} = -\operatorname{Im} \int\limits_{R_{-}}^{R_{+}} \overline{dp_{n}} = \operatorname{Im} \int\limits_{R_{+}}^{R_{-}} \overline{dp_{n}} \quad \Rightarrow \quad \operatorname{Im} \int\limits_{R_{+}}^{R_{-}} dp_{n} = 0,$$

что и требовалось.

4. Функция Грина оператора L

Нас интересует такая функция $G(\lambda,\mu,\nu,\tilde{\mu},\tilde{\nu}),$ что для любого фиксированного $\lambda\in\Gamma$

$$LG = \begin{cases} 1, & \text{если } \mu = \tilde{\mu} \text{ и } \nu = \tilde{\nu}, \\ 0 & \text{иначе,} \end{cases}$$
 (16)

где

$$LG = a_{\mu,\nu}G(\lambda, \mu + 1, \nu, \tilde{\mu}, \tilde{\nu}) + a_{\mu-1,\nu}G(\lambda, \mu - 1, \nu, \tilde{\mu}, \tilde{\nu}) + b_{\mu,\nu}G(\lambda, \mu, \nu + 1, \tilde{\mu}, \tilde{\nu}) + b_{\mu,\nu-1}G(\lambda, \mu, \nu - 1, \tilde{\mu}, \tilde{\nu}) - c_{\mu,\nu}G(\lambda, \mu, \nu, \tilde{\mu}, \tilde{\nu}).$$
(17)

Забегая вперед, заметим, что почти при всех λ для найденной функции выполнено

$$|G(\lambda, \mu, \nu, \tilde{\mu}, \tilde{\nu})| \le R_1(\lambda) e^{(\mu - \tilde{\mu}) \operatorname{Im} p_{\mu}(\lambda)} e^{(\nu - \tilde{\nu}) \operatorname{Im} p_{\nu}(\lambda)}, \tag{18}$$

где

$$p_{\mu} = p_n + p_m, \quad p_{\nu} = p_n - p_m$$
 (19)

и $R_1:\Gamma \to \mathbb{R}$ — гладкая в точках выполнения неравенства. Другими словами, почти всюду рост абсолютной величины G такой же, как и Ψ .

Предположение П. Г. Гриневича заключалось в том, что функцию Грина можно найти примерно в таком же виде, как в непрерывном случае [11]. Здесь покажем справедливость предположения. Искомую G будет строить в два шага: сначала построим ненормализованную функцию G_0 , удовлетворяющую (16), а затем подправим ее, чтобы обеспечить нужный рост (18).

4.1. Ненормализованная функция Грина по С-контуру. Прежде чем формулировать основную теорему раздела, докажем несколько лемм.

Лемма 2. При
$$\mu - \nu = \tilde{\mu} - \tilde{\nu}$$
 выполняется

$$\operatorname{res}_{P^{+}} a_{\mu,\nu} \Psi_{\mu+1,\nu}(\gamma) \Psi_{\tilde{\mu},\tilde{\nu}}^{+}(\gamma) \Omega(\gamma) = -\operatorname{res}_{P^{+}} b_{\mu,\nu-1} \Psi_{\mu,\nu-1} \Psi_{\tilde{\mu},\tilde{\nu}}^{+}(\gamma) \Omega(\gamma). \tag{20}$$

Доказательство. Посчитаем порядок полюса в P^+ у левого дифференциала. Функция $\Psi_{\mu+1,\nu}(\gamma)$ имеет в P^+ полюс порядка не более чем $\mu-\nu+1$, $\Psi_{\tilde{\mu},\tilde{\nu}}^+(\gamma)$ имеет в P^+ нуль порядка не менее чем $\tilde{\mu}-\tilde{\nu}$; в сочетании с условием леммы это означает, что левый дифференциал имеет в P^+ полюс порядка не более чем 1. Аналогично получаем, что и у правого дифференциала в P^+ полюс порядка не более чем 1. Следовательно, при вычислении вычетов можно использовать $\operatorname{res}_{\gamma_0}\omega(\gamma)=\lim_{\gamma\to\gamma_0}(\gamma-\gamma_0)\omega(\gamma)$. Перейдем к обозначениям $m=\mu-\nu$, $n=\mu+\nu$:

$$a_{\mu,
u} = rac{1}{f(m,n)} = i \lim_{\gamma
ightarrow P^+} rac{\Psi(\gamma,m+1,n)}{\Psi(\gamma,m+1,n+1)},$$

$$b_{\mu,
u-1}=f(m,n-1)=-i\lim_{\gamma
ightarrow P^+}rac{\Psi(\gamma,m+1,n)}{\Psi(\gamma,m+1,n-1)}.$$

По условию $\tilde{m}=m$, тогда левая часть (20) равна

$$\lim_{\gamma \to P^+} (\gamma - P^+) i \frac{\Psi(\gamma, m+1, n)}{\Psi(\gamma, m+1, n+1)} \Psi(\gamma, m+1, n+1) \Psi^+(\gamma, m, \tilde{n}) \Omega(\gamma).$$

Расписав таким же образом правую часть, получим после сокращений утверждение леммы.

Напомним, что $\widetilde{\Omega}(\gamma,\mu,\nu,\tilde{\mu},\tilde{\nu})$ — дифференциал $\Psi_{\mu,\nu}(\gamma)\Psi_{\tilde{\mu},\tilde{\nu}}^+(\gamma)$ $\Omega(\gamma)$.

Лемма 3. Для любых μ , ν выполняется

$$\operatorname{res}_{Q^{+}} a_{\mu,\nu} \widetilde{\Omega}(\gamma, \mu + 1, \nu, \mu, \nu) = i. \tag{21}$$

ДОКАЗАТЕЛЬСТВО. Это утверждение возникло еще в [6, 5.2]. Поскольку $a_{\mu,\nu}=1/f(m,n)$, в обозначениях m,n оно выглядит как

$$\operatorname{res}_{\mathcal{O}^+} \Psi(m+1,n+1) \Psi^+(m,n) \Omega(\gamma) = i f(m,n).$$

Для доказательства рассмотрим 4-точечное равенство (3), домножим его на $\Psi^+(m,n)\Omega(\gamma)$ и возьмем вычеты в точке Q^+ :

$$egin{aligned} \operatorname{res}_{Q^+}(\Psi(m+1,n+1) - \Psi(m,n))\Psi^+(m,n)\Omega(\gamma) \ &= if(m,n)\operatorname{res}_{Q^+}(\Psi(m+1,n) - \Psi(m,n+1))\Psi^+(m,n)\Omega(\gamma), \end{aligned}$$

$$\operatorname{res}_{Q^+} \Psi(m+1,n+1) \Psi^+(m,n) \Omega(\gamma) = -i f(m,n) \operatorname{res}_{Q^+} \Psi(m,n+1) \Psi^+(m,n) \Omega(\gamma).$$

Дифференциал $\Psi(m, n+1)\Psi^+(m, n)\Omega(\gamma)$ имеет полюса в точках R_+, R_-, Q^+ . По (2) оба вычета в R_+, R_- равны $\frac{1}{2}$, поэтому $\operatorname{res}_{Q^+}\Psi(m, n+1)\Psi^+(m, n)\Omega(\gamma) = -1$. Подставив этот результат в формулу выше, получим утверждение леммы.

Определение 1. Объединение α некоторого количества замкнутых кусочно-гладких кривых на Γ будем называть С-контуром, если

- α гомологичен тривиальному пути, т. е. разбивает Γ на две части и интеграл по α равен сумме вычетов;
- точки R_+ и R_- лежат по одну сторону относительно него, точки Q^+ и Q^- лежат по разные стороны относительно него, точки P^\pm не лежат на нем;
 - ориентация кривых фиксируется следующим условием:

$$\oint\limits_{\alpha}dp_n=+2\pi. \tag{22}$$

По лемме 1 контур C_{λ} с правильно выбранной ориентацией почти при всех $\lambda \in \Gamma$ является С-контуром.

Лемма 4. Пусть α является С-контуром. Тогда функция

$$K(\mu,\nu,\tilde{\mu},\tilde{\nu}) = \oint_{\alpha} \Psi_{\mu,\nu}(\gamma) \Psi_{\tilde{\mu},\tilde{\nu}}^{+}(\gamma) \Omega(\gamma) = \oint_{\alpha} \widetilde{\Omega}(\gamma,\mu,\nu,\tilde{\mu},\tilde{\nu})$$
(23)

обнуляется оператором L по переменным $\mu, \nu.$ Кроме того, $K(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = 0$ при $\mu - \nu = \tilde{\mu} - \tilde{\nu}.$

Доказательство. Первое утверждение легко следует из $L\Psi_{\mu,\nu}(\gamma) \equiv 0$.

У подынтегрального дифференциала $\widetilde{\Omega}(\gamma,\mu,\nu,\widetilde{\mu},\widetilde{\nu})$ при $\mu-\nu=\widetilde{\mu}-\widetilde{\nu}$ имеются только три полюса: R_+ , R_- и либо Q^+ , либо Q^- в зависимости от знака $\widetilde{\mu}+\widetilde{\nu}-\mu-\nu=\widetilde{n}-n$. Из определений и (2) следует, что вычеты в R_+ и R_- у $\widetilde{\Omega}$ равны соответственно $+\frac{1}{2}$ и $-\frac{1}{2}$, как у Ω . Поэтому вычет в третьем полюсе равен нулю. Поскольку R_+ и R_- лежат по одну сторону относительно α и α гомологичен точке, то $\oint \widetilde{\Omega}(\gamma,\mu,\nu,\widetilde{\mu},\widetilde{\nu})=0$, что и требовалось.

Теорема 2 (ненормализованная функция Грина по С-контуру). Функция

$$G_0(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = \frac{1}{4\pi} \operatorname{sgn}(\mu - \nu + \tilde{\nu} - \tilde{\mu}) K(\mu, \nu, \tilde{\mu}, \tilde{\nu})$$
 (24)

удовлетворяет условию (16).

ДОКАЗАТЕЛЬСТВО. Пусть сначала $\mu - \nu \neq \tilde{\mu} - \tilde{\nu}$. Обозначим $\delta_m = (\mu - \nu) - (\tilde{\mu} - \tilde{\nu}), \ \delta_m \neq 0$, и $K(\mu, \nu) = K(\mu, \nu, \tilde{\mu}, \tilde{\nu})$. Тогда

$$4\pi (LG_0)_{\mu,\nu} = \operatorname{sgn}(\delta_m + 1)a_{\mu,\nu}K(\mu + 1,\nu) + \operatorname{sgn}(\delta_m - 1)b_{\mu,\nu-1}K(\mu,\nu-1) + \operatorname{sgn}(\delta_m - 1)a_{\mu-1,\nu}K(\mu-1,\nu) + \operatorname{sgn}(\delta_m - 1)b_{\mu,\nu}K(\mu,\nu+1) - \operatorname{sgn}(\delta_m)c_{\mu,\nu}K(\mu,\nu).$$

Равенство нулю правой части следует из леммы 4. Действительно, если sgn при каком-либо слагаемом обращается в нуль, то по лемме K=0. Поэтому sgn можно вынести за оператор L, т. е. $4\pi LG_0 = \text{sgn}(\delta_m)(LK)_{\mu,\nu} \equiv 0$.

Пусть $\mu - \nu = \tilde{\mu} - \tilde{\nu}$. Из леммы 4 следует $K(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = 0$. Имеем

$$LG_0 = \frac{1}{4\pi} (a_{\mu,\nu} K(\mu+1,\nu) + b_{\mu,\nu-1} K(\mu,\nu-1) - a_{\mu-1,\nu} K(\mu-1,\nu) - b_{\mu,\nu} K(\mu,\nu+1)).$$
(25)

Прибавим к правой части $LK\equiv 0,$ слагаемые с минусами сократятся, а с плюсами умножатся на 2:

$$LG_0 = \frac{1}{2\pi} \oint_{\alpha} a_{\mu,\nu} \widetilde{\Omega}(\gamma, \mu + 1, \nu, \widetilde{\mu}, \widetilde{\nu}) + b_{\mu,\nu-1} \widetilde{\Omega}(\gamma, \mu, \nu - 1, \widetilde{\mu}, \widetilde{\nu}). \tag{26}$$

Данный интеграл равен сумме вычетов ввиду гомологичности нулю С-контура α . Дифференциалы $\widetilde{\Omega}(\gamma,\mu+1,\nu,\widetilde{\mu},\widetilde{\nu}),\,\widetilde{\Omega}(\gamma,\mu,\nu-1,\widetilde{\mu},\widetilde{\nu})$ имеют полюса в точках $R_+,\,R_-,\,P^+,\,$ и каждый из них может иметь полюс в Q^+ или Q^- в зависимости от $\mu+\mu-\widetilde{\mu}-\widetilde{\nu}=n-\widetilde{n}.$ В точках $R_+,\,R_-$ вычеты равны $+\frac{1}{2}$ и $-\frac{1}{2}.$ Следовательно, сумма вычетов во всех остальных полюсах равна 0.

Поскольку R_{\pm} лежат по одну сторону относительно α , вместе они дают нулевой вклад. По лемме 2 вычет в точке P^+ суммы $\omega = a_{\mu,\nu}\widetilde{\Omega}(\gamma,\mu+1,\nu,\tilde{\mu},\tilde{\nu}) + b_{\mu,\nu-1}\widetilde{\Omega}(\gamma,\mu,\nu-1,\tilde{\mu},\tilde{\nu})$ равен нулю, поэтому P^+ также не влияет на итоговую сумму.

Если $\mu + \mu \neq \tilde{\mu} + \tilde{\nu}$, то у ω ровно четыре полюса. Следовательно, и в четвертом полюсе у этой суммы вычет равен нулю, что доказывает $LG_0 = 0$.

Итак, остался случай, когда $\mu=\tilde{\mu},\ \nu=\tilde{\nu}$. Перейдем от интегралов к вычетам. По сказанному выше полюса $R_\pm,\ P^+$ дают нулевой вклад. В точках $Q^+,\ Q^-$ у ω полюса первого порядка. Поскольку они лежат по разные стороны относительно α , в результат нужно включить любой из них. Из ориентации контура (22) множитель для вычета в Q^+ равен $-2\pi i$. Используя лемму 3, имеем

$$LG_0 = -i \operatorname{res}_{Q^+} \omega = -i \operatorname{res}_{Q^+} a_{\mu,\nu} \widetilde{\Omega}(\mu + 1, \nu, \mu, \nu) = -i^2 = 1.$$
 (27)

Получили, что G_0 удовлетворяет (16), что и требовалось.

ПРИМЕР 3. В случае сферы из предыдущих примеров в качестве C-контура можно взять малую окружность O_{ε} с центром в $Q^+=i$, ориентированную по часовой стрелке. Для краткости будем использовать обозначения $m=\mu-\nu$, $\nu=\mu+\nu$, (m+n) четное. Функция G_0 имеет вид

$$G_0(m,n, ilde{m}, ilde{n}) = rac{1}{4\pi}\int\limits_{\Omega_z} ext{sgn}(m- ilde{m})igg(rac{z+1}{z-1}igg)^{m- ilde{m}}igg(rac{z+i}{z-i}igg)^{n- ilde{n}}igg(-rac{dz}{2z}igg).$$

Предположим, что $\tilde{m} = \tilde{n} = 0$. Согласно ориентации O_{ε} вычет в точке i входит в правую часть со знаком минус:

$$G_0(m,n,0,0) = rac{i}{2}\operatorname{sgn}(m)\operatorname{res}_{z=i}igg[igg(rac{z+1}{z-1}igg)^migg(rac{z+i}{z-i}igg)^nrac{dz}{2z}igg].$$

Очевидно, что $G_0(m, n, 0, 0) = 0$ при $n \ge 0$. Прямым вычислением получается

$$G_0(m,-1,0,0) = -\frac{1}{2}\operatorname{sgn}(m)(-i)^{m+1}, \quad G_0(m,-2,0,0) = -\operatorname{sgn}(m)m(-i)^m.$$

Из формулы для $G_0(m, n, 0, 0)$ видно, что рост G_0 не ограничен экспонентой и условие (18) не выполняется.

4.2. Нормализованная функция Грина. Рассмотрим уже упоминавшееся семейство $C_{\lambda} = \{ \gamma : \operatorname{Im} p_n(\gamma) = \operatorname{Im} p_n(\lambda) \}$. Как отмечено выше, C_{λ} регулярно почти при всех $\lambda \in \Gamma$. Следовательно, при $\alpha = C_{\lambda}$ функция G_0 из теоремы 2 удовлетворяет (16).

Рассмотрим функцию

$$Z(\lambda, \mu, \nu, \tilde{\mu}, \tilde{\nu}) = \frac{1}{4\pi} \oint_{C_{\lambda}} \operatorname{sgn}(\operatorname{Im} p_{m}(\lambda) - \operatorname{Im} p_{m}(\gamma)) \Psi_{\mu, \nu}(\gamma) \Psi_{\tilde{\mu}, \tilde{\nu}}^{+}(\gamma) \Omega(\gamma).$$

Поскольку путь интегрирования не зависит от дискретных параметров, LZ = 0. Прибавим Z к построенной G_0 . Следующая теорема утверждает, что полученная функция искомая. Чтобы не загромождать выкладки, формулируем ее с использованием обеих координатных систем μ , ν и $m = \mu - \nu$, $n = \mu + \nu$.

Теорема 3. Пусть выполнены условия теоремы 1. Тогда функция

$$G(\lambda,\mu,
u, ilde{\mu}, ilde{
u}) = rac{1}{4\pi} \oint\limits_{C_{\lambda}} (ext{sgn}(m- ilde{m}) + ext{sgn}(ext{Im}\,p_m(\lambda))$$

$$-\operatorname{Im} p_m(\gamma))\Psi_{\mu,\nu}(\gamma)\Psi_{\tilde{\mu},\tilde{\nu}}^+(\gamma)\Omega(\gamma) \quad (28)$$

является функцией Грина оператора L и почти при всех $\lambda \in \Gamma$ для нее выполняется условие на рост (18).

Доказательство. Фиксируем λ . Как отмечено выше, $G=G_0+Z$, где в качестве α взят контур C_λ . Поэтому G очевидным образом удовлетворяет условию (16).

Обозначим через C'_{λ} множество C_{λ} без неподвижных точек инволюции τ . Поскольку последнее имеет в C_{λ} меру нуль, от замены C_{λ} на C'_{λ} интеграл (28) не изменится. Для точек C'_{λ} уже справедлива теорема 1. Оценим интеграл (28) стандартным способом:

$$\begin{split} |G(\lambda,\mu,\nu,\tilde{\mu},\tilde{\nu})| &\leq \frac{1}{4\pi} \oint\limits_{C_{\lambda}} |\Omega(\gamma)| \\ &\times \sup_{\gamma \in C_{\lambda}'} |(\operatorname{sgn}(m-\tilde{m}) + \operatorname{sgn}(\operatorname{Im} p_{m}(\lambda) - \operatorname{Im} p_{m}(\gamma)))\Psi_{\mu,\nu}(\gamma)\Psi_{\tilde{\mu},\tilde{\nu}}^{+}(\gamma)\Omega(\gamma)|. \end{split}$$

Вспомним условия на рост волновой функции (14) и двойственной к ней (15):

$$|\Psi_{\mu,\nu}(\gamma)| \le R(\gamma) e^{m \operatorname{Im} p_n(\gamma) + n \operatorname{Im} p_n(\gamma)},$$

$$|\Psi_{\tilde{n},\tilde{\nu}}^+(\gamma)| \le R(\sigma\gamma) e^{-\tilde{m} \operatorname{Im} p_m(\gamma) - \tilde{n} \operatorname{Im} p_n(\gamma)}.$$

Из $\gamma \in C_{\lambda}$ имеем $\operatorname{Im} p_n(\gamma) = \operatorname{Im} p_n(\lambda)$. Пусть $m > \tilde{m}$, тогда нетривиален случай $\operatorname{Im} p_m(\gamma) \leq \operatorname{Im} p_m(\lambda)$, в котором $\exp((m-\tilde{m})\operatorname{Im} p_m(\gamma)) \leq \exp((m-\tilde{m})\operatorname{Im} p_m(\lambda))$. Пусть $m < \tilde{m}$, тогда $\operatorname{Im} p_m(\gamma) \geq \operatorname{Im} p_n(\lambda)$ и это же неравенство снова справедливо.

Из проведенных рассуждений вытекает, что искомое неравенство (18) выполняется при

$$R_1(\lambda) = \frac{1}{4\pi} \oint_{C_{\lambda}} |\Omega(\gamma)| \sup_{\gamma \in C_{\lambda}'} (2R(\gamma)R(\sigma\gamma)). \tag{29}$$

Выражаю большую благодарность П. Г. Гриневичу за постановку задачи и ценные советы по поводу ее решения.

ЛИТЕРАТУРА

- Манаков С. В. Метод обратной задачи рассеяния и двумерные эволюционные уравнения // Успехи мат. наук. 1976. Т. 31, № 5. С. 245–246.
- Дубровин Б. А., Кричевер И. М., Новиков С. П. Уравнение Шрёдингера в периодическом поле и римановы поверхности // Докл. АН СССР. 1976. Т. 229. С. 15–18.
- 3. Веселов А. П., Новиков С. П. Конечнозонные двумерные потенциальные операторы Шрёдингера. Явные формулы и эволюционные уравнения // Докл. АН СССР. 1984. Т. 279, № 1. С. 20–24.
- 4. *Веселов А. П., Новиков С. П.* Конечнозонные двумерные операторы Шрёдингера. Потенциальные операторы // Докл. АН СССР. 1984. Т. 279, № 4. С. 784–788.
- 5. *Кричевер И. М.* Двумерные периодические разностные операторы и алгебраическая геометрия // Докл. АН СССР. 1985. Т. 285, № 1. С. 31–36.
- Doliwa A., Grinevich P., Nieszporski M., Santini P. M. Integrable lattices and their sublattices: from the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the selfadjoint 5-point scheme // J. Math. Phys. 2007. V. 48, N 1.
- Fay J. Theta functions on Riemann surfaces. Berlin; Heidelberg; New York: Springer-Verl., 1973. (Lect. Notes Math.; V. 352).
- Grushevsky S., Krichever I. Integrable discrete Schrödinger equations and a characterization of Prym varieties by a pair of quadrisecants // Duke Math. J. 2010. V. 152, N 2. P. 317–371.
- Дубровин Б. А., Матвеев В. Б., Новиков С. П. Нелинейные уравнения типа Кортевега де Фриза, конечнозонные линейные операторы и абелевы многообразия // Успехи мат. наук. 1976. Т. 31, № 1. С. 55–136.
- 10. Кричевер И. М., Новиков С. П. Алгебры типа Вирасоро, римановы поверхности и структуры теории солитонов // Функцион. анализ и его прил. 1987. Т. 21, № 2. С. 46–63.
- Гриневич П. Г. Быстроубывающие потенциалы на фоне конечнозонных и ∂-проблема на римановых поверхностях // Функцион. анализ и его прил. 1989. Т. 23, № 4. С. 79–80.

Статья поступила 4 февраля 2013 г.

Василевский Борис Олегович

Московский гос. университет им. М. В. Ломоносова, Москва 119234;

Лаборатория геометрических методов математической физики

имени Н. Н. Боголюбова,

механико-математический факультет.

Ленинские горы, главное здание МГУ, Москва 119991

vasilevskiy.boris@gmail.com