О КОНГРУЭНЦИЯХ m–ГРУПП

А. В. Зенков

Аннотация. Указывается способ построения m-конгруэнции произвольного m-транзитивного представления. Вводятся понятия m-2-транзитивного и m-примитивного представления. Получено описание m-транзитивных примитивных представлений в терминах стабилизаторов. Указаны необходимые и достаточные условия m-2-транзитивности и изучены некоторые свойства таких представлений.

Ключевые слова: *т*-группа, представление, *т*-блок.

1. Введение

Напомним, что m-группой называется алгебраическая система G сигнатуры $m=\langle\cdot,e,^{-1},\vee,\wedge,-*\rangle$, где $\langle G,\cdot,e,^{-1},\vee,\wedge\rangle-\ell$ -группа и одноместная операция * – автоморфизм второго порядка группы $\langle G,\cdot,e,^{-1}\rangle$ и антиизоморфизм решетки $\langle G,\vee,\wedge\rangle$, т. е. для любых $x,y\in G$ верны соотношения

$$(xy)_* = x_*y_*, \quad (x_*)_* = x, \quad (x \vee y)_* = x_* \wedge y_*, \quad (x \wedge y)_* = x_* \vee y_*.$$

В дальнейшем m-группу G с фиксированным автоморфизмом * записываем $\kappa a\kappa$ napy (G,*). Будем говорить [1], что m-группа (G,*) допускает (mочное) npeд-cтавление порядковыми подстановками линейно упорядоченного множества Ω , если $G\subseteq \operatorname{Aut}(\Omega)$ и $(g)_*=aga$ для любого $g\in G$, где a— реверсивный автоморфизм 2-го порядка Ω . Этот факт записываем в виде (G,Ω,a) . Отметим [2], что всякая m-группа допускает точное представление порядковыми подстановками подходящего линейно упорядоченного множества.

В данной работе указывается способ построения *m*-конгруэнции произвольного *m*-транзитивного представления (теорема 2.2), вводится понятие *m*-примитивного представления и получено описание таких представлений в терминах стабилизаторов точек (теорема 2.4). Исследовано строение *m*-групп, допускающих собственно *m*-транзитивное представление (предложение 2.5). Вводится понятие *m*-2-транзитивного представления и указаны необходимые и достаточные условия *m*-2-транзитивности (теорема 3.5). Изучены некоторые свойства *m*-2-транзитивных представлений. В частности, такие представления *m*-транзитивны и *m*-примитивны (предложения 3.1 и 3.2).

Все необходимые сведения по теории групп и решеточно упорядоченных групп можно найти в [3,4] соответственно.

2. Конгруэнции представлений т-групп

Рассмотрим представление (G,Ω,a) . Пусть $L=\{w\in\Omega\mid (w)a>w\},$ $R=\{(\ell)a\mid \ell\in L\}$ и o — неподвижная относительно a точка Ω . Отметим, что существуют представления, как содержащие неподвижную точку, так и

не содержащие таковой. Множество Ω представимо в виде $\Omega = L \cup \{o\}^{\varepsilon} \cup R$, где $\varepsilon = 1$, если неподвижная точка существует, и $\varepsilon = 0$ в противном случае. Представление (G,Ω,a) назовем m-транзитивным, если для всех $w,w'\in\Omega$, быть может, за исключением точки o, существует такой $x\in G_*=\operatorname{gr.}(G,a)$, что (w)x=w'. Здесь и далее фраза «быть может, за исключением точки o» означает, что o исключается из рассмотрения, если она «глобально неподвижна», т. е. ее стабилизатор $\operatorname{St}_G(o)$ равен G. Отметим, что m-транзитивная группа транзитивна тогда и только тогда, когда найдутся такие $w\neq o\in\Omega$ и $g\in G$, что (w)g=wa.

Напомним, что m-блоком является непустое выпуклое подмножество Δ множества Ω такое, что $(\Delta)x \cap \Delta = \varnothing$ либо $(\Delta)x = \Delta$ для любого $x \in G_*$. Стандартно отношение эквивалентности Θ , определенное на Ω , будем называть отношением m-эквивалентности, если оно выпукло и $w\Theta w' \Leftrightarrow (w)x\Theta(w')x$ для любого $x \in G_*$. Ясно, что всякий класс m-эквивалентности является m-блоком. Обратно, если $\Delta - m$ -блок, то отношение Θ , определенное на Ω по правилу w = w' либо $w, w' \in (\Delta)x$ для подходящего $x \in G_*$, будет отношением m-эквивалентности.

Лемма 2.1. Пусть $g \in G$ и $(\triangle)g \cap \triangle \neq \emptyset$. Тогда $g \in H$ и, следовательно, $(\triangle)g = \triangle$.

ДОКАЗАТЕЛЬСТВО. Утверждение тривиально, если $g \in \operatorname{St}_G((\ell)h)$ для некоторого $h \in H$. Пусть $w \in (\triangle)g \cap \triangle$. Тогда $w = (\delta)g$ для некоторого $\delta \in \triangle$ и $(\ell)h_1 \leq \delta \leq (\ell)h_2$, $(\ell)h_3 \leq w \leq (\ell)h_4$ для подходящих $h_i \in H$, $i = 1, \ldots, 4$. Следовательно, $(\ell)h_1g \leq (\ell)h_4$, $(\ell)h_3 \leq (\ell)h_2g$. Предположим, что g > e. Тогда $(\ell)h_1 < (\ell)h_1g \leq (\ell)h_4$. Элемент $h = h_1 \lor (h_1g \land h_4)$ принадлежит H, и, очевидно, $(\ell)h = (\ell)h_1g$. Стало быть, $h_1gh^{-1} \in \operatorname{St}_G(\ell)$, поэтому $g \in H$. Случай g < e аналогичен рассмотренному выше, если использовать $(\ell)h_3 \leq (\ell)h_2g < (\ell)h_2$. Пусть $g = g^+g^-$ не сравним с e и, например, $(\ell)g > \ell$. В этом случае $g^- = g \land e \in \operatorname{St}_G(\ell)$, поэтому $(\ell)h_1 \leq (\ell)h_1g^+ \leq (\ell)h'_4$, где $h'_4 = h_4(g^-)^{-1}$, $g^+ = g \lor e$. Тогда $g^+ \in H$ и, следовательно, $g \in H$. \square

Пусть $\delta \in \Delta$. Тогда $(\ell)h_1 \leq \delta \leq (\ell)h_2$ для подходящих $h_1,h_2 \in H$. В силу m-транзитивности найдется $t \in G$ такой, что $\delta = (\ell)a^{\varepsilon}t$, где $\varepsilon = 1$ либо $\varepsilon = 0$. Если $\varepsilon = 0$, то $(\ell)t = (\ell)h$, где $h = h_1 \vee (t \wedge h_2) \in H$. Поэтому $t \in H$ и $\delta \in (\ell)H$. Пусть $\varepsilon = 1$. Тогда

$$(\ell)h_1 \le (\ell)at \le (\ell)h_2. \tag{*}$$

Покажем, что $\triangle - m$ -блок. Возможны два случая: 1) для любого $t \in G$ верно $(\ell)at \notin \triangle$; 2) существует $t \in G$ такой, что $(\ell)at \in \triangle$.

Пусть имеет место случай 1. Из сказанного выше следует, что \triangle равен $(\ell)H$ и, более того, является m-блоком.

Рассмотрим случай 2. Можно считать $t_* = t^{-1}$. Тогда at — реверсивный автоморфизм 2-го порядка Ω , поэтому $H = H^{at} \Leftrightarrow H \subseteq H^{at}$. Докажем последнее включение. Пусть $h \in H$. Можно считать, что h > e. Возможны ситуации: (a) $(\ell) \leq (\ell)(h^{-1})^{at} \leq (\ell)h$, (b) $(\ell) \leq (\ell)h \leq (\ell)(h^{-1})^{at}$.

В случае (а) имеем $(\ell)(h^{-1})^{at} = (\ell)h'$, где $h' = e \lor (h \land (h^{-1})^{at}) \in H$. Следовательно, $h'h^{at} \in \operatorname{St}_G(\ell)$, поэтому $h \in H^{at}$. В случае (b), учитывая (*), получаем $(\ell)h_1h^{-1} \le (\ell)ath^{-1} \le (\ell)ath^{at} \le (\ell)h_2h^{at} \le (\ell)h_2$.

Тем самым $(\ell)h_2h^{at} = (\ell)\hat{h}$, где $\hat{h} = h_1h^{-1} \vee (h_2h^{at} \wedge h_2) \in H$. Тогда $h_2h^{at}(\hat{h})^{-1} \in \operatorname{St}_G(\ell)$, поэтому $h \in H^{at}$. Таким образом, $H = H^{at}$, и, следовательно, \triangle устойчиво относительно действия at. Тогда $(\triangle)ag = (\triangle)att^{-1}g = (\triangle)t^{-1}g$ для всякого $g \in G$. Если $(\triangle)ag \cap \triangle \neq \emptyset$, то с учетом леммы 2.1 $(\triangle)ag = \triangle$. Стало быть, \triangle и в случае 2 является m-блоком.

Пусть m-блок \triangle определяется, как выше, т. е. \triangle — выпуклое замыкание орбиты $(\ell)H$. Предположим, что существует $t\in G$ такое, что 1) $t_*=t^{-1}$ и $\triangle<(\triangle)at$ либо $\triangle>(\triangle)at$, 2) $H^{at}=H$, 3) $\triangle \cup (\triangle)at$ либо $(\triangle)at \cup \triangle$ выпукло, 4) не существует $g\in G$ такого, что $(\triangle)g=(\triangle)at$. Тогда $\nabla=\triangle \cup (\triangle)at$ (либо $(\triangle)at \cup \triangle$) является m-блоком. Очевидно, что ∇ устойчиво относительно действия at. Условие 2 гарантирует устойчивость ∇ относительно действия элементов H. Если $(\nabla)g\cap \nabla\neq\varnothing$ для некоторого $g\in G$, то в силу условия 4 выполнено $(\triangle)g=\triangle$, поэтому $g\in H$, что означает $(\nabla)g=\nabla$. Так как $(\nabla)ag=((\nabla)at)t^{-1}g=(\nabla)t^{-1}g$, то $(\nabla)ag\cap \nabla\neq\varnothing$ влечет $(\nabla)ag=\nabla$. Следующий пример иллюстрирует существование m-блоков последнего типа.

ПРИМЕР. Пусть G — группа четных (целых) трансляций естественно линейно упорядоченного множества $\mathbb Z$ целых чисел. Таким образом, если $g \in G$, то (x)g = x + 2n для подходящего $n \in \mathbb Z$, где $x \in \mathbb Z$. Определим (x)a = -x + 1. Несложно заметить, что представление $(G, \mathbb Z, a)$ m-транзитивно. Отметим, что m-блоком является всякое одноэлементное множество. Для каждого $i \in \mathbb Z$ определим $\Delta_i = \{i, i+1\}$. Тогда $(\Delta_i)ag = \Delta_{-i+2n}$, $(\Delta_i)g = \Delta_{i+2n}$, и это доказывает, что $\Delta_i - m$ -блок. Ясно, что не существует $g \in G$ такого, что (i)g = i+1, но (i)ag' = i+1, где (x)g' = x+2i.

Пусть на $\Omega = L \ \overline{\cup} \{o\}^{\varepsilon} \ \overline{\cup} R$ определена m-конгруэнция Θ и Δ — класс эквивалентности, содержащий точку $\ell \in L$. Тогда $H = \operatorname{St}_G(\Delta)$ — выпуклая ℓ -подгруппа G, содержащая $\operatorname{St}_G(\ell)$. Тем самым доказана

Следующие т-эквивалентности назовем тривиальными:

- (А) эквивалентность, когда все классы эквивалентности одноэлементны;
- (В) эквивалентность, когда все классы эквивалентности двухэлементны;
- (C) эквивалентность, имеющая три (либо два) класса эквивалентности L, $\{o\},\,R(L,R);$
 - (D) эквивалентность, имеющая единственный класс эквивалентности Ω .

Представление (G, Ω, a) m-примитивно, если оно не допускает нетривиальной m-эквивалентности.

Доказательство. Если $\triangle = L$ либо $\triangle = \Omega$, то для любого $g \in G$ верно $(\triangle)g \cap \triangle \neq \varnothing$. Тогда $g \in H$ в силу леммы 2.1. Обратно, пусть H = G. Предположим, что $(\ell)g \in L$ для любого $g \in H$. В этом случае $\triangle \subseteq L < R$. Пусть

 $\ell' \in L \setminus \Delta$. Тогда $(\ell')g' = (\ell)a$ для некоторого $g' \in H$, что противоречит нашему предположению. Пусть $(\ell)g \in R$ для некоторого $g \in H$. Тогда $(\ell)g = (\ell')a$ для подходящего $\ell' \in L$. Так как $L \subseteq \Delta$, то $(\Delta)a \cap \Delta \neq \varnothing$. Следовательно, $(\Delta)a = \Delta = \Omega$. \square

Теперь может быть доказана

Теорема 2.4. Произвольное m-транзитивное представление (G,Ω,a) , где $\Omega = L \ \overline{\bigcup} \ \{o\}^{\varepsilon} \ \overline{\bigcup} \ R$, m-примитивно тогда и только тогда, когда для любой точки $w \in \Omega$, быть может, за исключением точки o, стабилизатор $\operatorname{St}_G(w)$ есть максимальная выпуклая ℓ -подгруппа G.

Доказательство. Пусть представление (G,Ω,a) m-примитивно и $w\in L$. Рассмотрим произвольную выпуклую ℓ -подгруппу $H\supsetneq \operatorname{St}_G(w)$. Через \triangle обозначим m-блок — выпуклое замыкание орбиты (w)H. Тогда $|\triangle|>2$, поэтому $\triangle=L$ либо $\triangle=\Omega$, что в силу леммы 2.3 влечет H=G.

Обратно, пусть $\operatorname{St}_G(w)$ максимален. Тогда максимален $\operatorname{St}_G(w)$ для любого $t \in G$. Если представление не примитивно, то найдется m-блок \triangle , содержащий w, такой, что $|\triangle| > 2$. Но тогда $H = \operatorname{St}_G(\triangle) \supsetneq \operatorname{St}_G(w)$ либо $H \supsetneq \operatorname{St}_G((w)at)$ для подходящего $t \in G$, поэтому H = G, что, в свою очередь, влечет $\triangle = L$ либо $\triangle = \Omega$; противоречие. \square

Произвольное m-транзитивное представление $(G,\Omega,a), \Omega = L \overline{\cup} \{o\}^{\varepsilon} \overline{\cup} R$, m-группы $(G_{,*})$ будем называть cofcmeenhым, если (L)g = L для любого $g \in G$. По элементу $g \in G$ определим $g_L \in \operatorname{Aut}(\Omega)$ следующим образом: $(\ell)g_L = (\ell)g$ для $\ell \leq o$ и $(r)g_L = r$ для $r \in R$. Пусть $g \geq e$. Тогда $e \leq g_L \leq g$, поэтому $g_L \in G$. Если $g = g^+g^-$, где $g^+ = g \lor e, g^- = g \land e$, то $g_L = (g^+)_L(g^-)_L$. По доказанному выше $(g^+)_L, (g^-)_L \in G$ и, следовательно, $g_L \in G$. Непосредственная проверка показывает, что для всех $g, f \in G$ имеют место равенства $(gf)_L = g_L f_L, (g \vee f)_L =$ $g_L \vee f_L, \ (g \wedge f)_L = g_L \wedge f_L$ и неравенство $f_L \leq h \leq g_L$ влечет $h = h_L$. Следовательно, $G_L = \{: g_L : | : g \in G : \}$ — выпуклая ℓ -подгруппа G. Отметим, что G_L можно рассматривать как группу порядковых подстановок линейно упорядоченного множества L, действующую на нем транзитивно. Двойственно определяются g_R и G_R . Пусть $\ell \leq o$ и $g, f \in G$. Тогда $(\ell)(g \vee f) = \max((\ell)g_L, (\ell)f_L)$. C другой стороны, $(\ell)(g_L \vee f_L)(g_R \vee f_R) = (\ell)(g_L \vee f_L) = \max((\ell)g_L, (\ell)f_L)$. Аналогичные рассуждения имеют место и для точек $r \in R$. Тем самым доказано, что $g_Lg_R\vee f_Lf_R=(g_L\vee f_L)(g_R\vee f_R)$. Поэтому $G_L\times G_R$ является ℓ -группой относительно координатного порядка. Определим Exch : $G_L \leftrightarrow G_R$ по правилу (g_L) Exch $= (g_*)_R, (g_R)$ Exch $= (g_*)_L$. Пусть $g_L, f_L \in G_L$ и $g_L \neq f_L$. Тогда найдется $\ell \in L$ такой, что $(\ell)g \neq (\ell)f$. Следовательно, $((\ell)a)g_* \neq ((\ell)a)f_*$, что доказывает взаимную однозначность Exch. Далее,

$$(g_L f_L)$$
 Exch = $((gf)_L)$ Exch = $((gf)_*)_R = (g_*)_R (f_*)_R = (g_L)$ Exch (f_L) Exch,

$$(g_L \vee f_L) \operatorname{Exch} = ((g \vee f)_L) \operatorname{Exch} = ((g \vee f)_*)_R$$

= $(g_*)_R \wedge (f_*)_R = (g_L) \operatorname{Exch} \wedge (f_L) \operatorname{Exch}$.

Тем самым G_R изоморфна G_L^* , где G_L^* получена из G_L путем обращения порядка. Отображение $\tau:G\to G_L\times G_L^*$, определяемое по правилу $(g)\tau=g_Lg_R$, устанавливает изоморфизм m-группы $(G_{,*})$ с $(G_L\times G_L^*)$ Exch).

Обратно, пусть G_L — транзитивная группа порядковых подстановок линейно упорядоченного множества L. Через $G_L^*(L^*)$ обозначим ℓ -группу (линейно

упорядоченное множество), полученную из $G_L(L)$ путем обращения порядка. Относительно координатного порядка прямое произведение $G_L \times G_L^*$ является ℓ -группой. Определим отображение Exch : $G_L \times G_L^* \to G_L \times G_L^*$ по правилу (x,y) Exch = (y,x), где $(x,y) \in G_L \times G_L^*$. Тогда пара $(G_L \times G_L^*, \operatorname{Exch})$ будет m-группой. Рассмотрим линейно упорядоченное множество $\Omega = L \cup \{o\}^\varepsilon \cup L^*$. Через $(w)_1$ $((w)_2)$ обозначим элемент Ω , строго меньший (больший) $\{o\}^\varepsilon$, и определим Exch : $\Omega \to \Omega$ по правилу $(w)_1$ Exch = $(w)_2$, $(w)_2$ Exch = $(w)_1$ и $\{o\}^\varepsilon$ Exch = $\{o\}^\varepsilon$. Ясно, что Exch — реверсивный автоморфизм второго порядка Ω . Пусть $(x,y) \in G_L \times G_L^*$, $(w)_1$, $(w)_2 \in \Omega$. Определим действие $G_L \times G_L^*$ на Ω следующим образом: $(w)_1(x,y) = ((w)x)_1$, $(w)_2(x,y) = ((w)y)_2$, $\{o\}^\varepsilon(x,y) = \{o\}^\varepsilon$. Так определенное действие является точным и порядковым. Более того, например, $(w)_1$ Exch(x,y) Exch = $(w)_2(x,y)$ Exch = $((w)y)_1 = (w)_1(y,x) = (w)_1(x,y)$ Exch. Следовательно, можно рассмотреть представление $(G_L \times G_L^*, \Omega, \operatorname{Exch})$, которое собственно m-транзитивно. Тем самым доказано

Предложение 2.5. Всякое m-транзитивное представление (G,Ω,a) собственно m-транзитивно тогда и только тогда, когда G изоморфна прямому произведению $G_L \times G_L^*$ для подходящей транзитивной ℓ -группы подстановок G_L подходящего линейно упорядоченного множества L и $\Omega = L \cup \{o\}^{\varepsilon} \cup L^*$.

Следствие 2.6. Всякая m-группа $(G_{,*})$, допускающая собственно m-транзитивное представление $(G_L \times G_L^*, \Omega, a)$, не упорядочена.

ДОКАЗАТЕЛЬСТВО. Действительно, элемент $g = g_L(g_*)_R \neq e$ неподвижен относительно действия $_*$, поэтому $g \not \mid e$. \square

Следствие 2.7. Собственно m-транзитивное представление ($G_L \times G_L^*, \Omega, a$) собственно m-примитивно тогда и только тогда, когда транзитивное представление (G_L , : L) примитивно.

Доказательство вытекает из теоремы 2.4 и того факта, что $\mathrm{St}_G(\ell)=\mathrm{St}_{G_L}(\ell)G_L^*$ для $\ell\in L$. \square

Замечание. Описание транзитивных и примитивных представлений дает классификационная теорема Макклири (см., например, [4, теорема 2]).

Предложение 2.8. Пусть m-группа $(G,_*)$ допускает m-транзитивное и m-примитивное представление (G,Ω,a) такое, что $\operatorname{St}_G(w)=\{e\}$ для некоторого $w\neq o\in\Omega$. Тогда G будет архимедовой линейно упорядоченной группой.

Доказательство. В силу m-транзитивности стабилизаторы всех точек, быть может, за исключением точки o, сопряжены (элементами группы G_*) и, следовательно, единичны. Предположим, что в группе G найдется $g \not \mid e$. Тогда для некоторой точки $w \in \Omega$ верно (w)g < w. Стало быть, $(w)(g \lor e) = w$, поэтому $g \lor e = g^+ \neq e \in \operatorname{St}_G(w)$; противоречие. Известно [5], что всякая упорядоченная m-группа абелева и, более того, принадлежит многообразию \mathscr{I} , определяемому тождеством $x_* = x^{-1}$. Тем самым всякая выпуклая m-подгруппа будет выпуклой ℓ -подгруппой. Тогда в силу теоремы 2.4 ℓ -группа G не имеет собственных выпуклых ℓ -подгрупп и, следовательно, архимедова. \square

3. *m*-2-Транзитивные представления

Будем говорить, что представление (G,Ω,a) m-2-mранзитивно, если для любых $\ell_1<\ell_2\leq o< r_3< r_4\in\Omega$, быть может, за исключением точки o, существует $g\in G$ такой, что

- $1)\;(\ell_1)g=r_3,\,(\ell_2)g=r_4$ либо
 - 2) $(\ell_1)ag = r_4$, $(\ell_2)ag = r_3$.

Предложение 3.1. Если представление (G,Ω,a) m-2-транзитивно, то оно m-транзитивно.

Доказательство. Пусть $w,w'\in\Omega$. Можно считать, что $w'\neq(w)a$ и, например, w< w'. Возможны следующие случаи: 1) w< o< w', 2) o< w< w', 3) w< w'< o. Рассмотрим случай 1. Ясно, что $(w')a\in L$ и $(w')a\neq w$. Пусть, например, (w')a< w< o< w'. Найдется $h\in G$ такой, что (w')a< w< o< w'< (w')h. Тогда существует $g\in G$ такой, что $(w')hg^{-1}=w$ либо $(w')g^{-1}=(w)a$. Оставшиеся случаи разбираются аналогично. \square

Предложение 3.2. Если представление (G,Ω,a) m-2-транзитивно, то оно m-примитивно.

ДОКАЗАТЕЛЬСТВО. Предположим противное. Тогда существуют (не одноэлементные) классы эквивалентности $\Delta_1 < \Delta_2 < \Delta_3$ такие, что $\Delta_1 \subset L$ и Δ_2, Δ_3 содержат точки R. Пусть $\ell_1 < \ell_2 \in \Delta_1$ и $r_1 \in \Delta_2, r_2 \in \Delta_3$, где $r_1, r_2 \in R$. Найдется $g \in G$ такой, что $(\ell_1)g = r_1, (\ell_2)g = r_2$ либо $(\ell_1)ag = r_2, (\ell_2)ag = r_1$. Оба случая влекут $\Delta_2 = \Delta_3$; противоречие. \square

Лемма 3.3. Если представление (G,Ω,a) m-транзитивно и m-полутранзитивно, то G действует транзитивно на L.

ДОКАЗАТЕЛЬСТВО. Пусть $\ell_1 < \ell \in L$. Если существует $\ell' \in L$ такой, что $\ell_1 < \ell < \ell'$, то $(\ell_1)g = \ell$ для некоторого $g \in \operatorname{St}_G(\ell')$. Поэтому можно считать ℓ наибольшим элементом L. Тогда $(\ell)a$ — наименьший элемент R. Если найдется $g \in G$ такой, что $\ell < (\ell)a < (\ell)g$, то, очевидно, $(\ell)g^{-1} < (\ell)ag^{-1} < \ell$. Следовательно, $(\ell)g^{-1}f = (\ell)ag^{-1}$ для некоторого $f \in \operatorname{St}_G(\ell)$, что, как отмечалось выше, влечет транзитивность представления. Пусть $(\ell)g < (\ell)a$ для каждого $g \in G$. Но тогда $\operatorname{St}_G(\ell) = \operatorname{St}_G((\ell)a) = G$, откуда в силу m-транзитивности представления следует тривиальность группы; противоречие. \square

Лемма 3.4. Если представление (G,Ω,a) m-транзитивно и m-полутранзитивно, то G действует 2-транзитивно на L.

ДОКАЗАТЕЛЬСТВО. Пусть $\ell_1 < \ell_2, \ \ell_3 < \ell_4$ — произвольные пары точек L. Рассмотрим следующий случай их взаимного расположения: $\ell_1 < \ell_2 \le \ell_3 < \ell_4$. Ввиду m-полутранзитивности найдутся $g,h \in \operatorname{St}_G(\ell_4)$ такие, что $(\ell_1)g = \ell_3, \ (\ell_2)h = \ell_3$. В силу леммы 3.3 существует $f \in G$ такой, что $(\ell_3)f = \ell_4$. Тогда $(\ell_1)(g \vee hf) = \max(\ell_3, (\ell_1)hf), \ (\ell_2)(g \vee hf) = \max(\ell_4, (\ell_2)g)$. Так как $\ell_2 < \ell_4$, то $(\ell_2)g < (\ell_4)g = \ell_4$. Следовательно, $(\ell_2)(g \vee hf) = \ell_4$. Если $\ell_3 \ge (\ell_1)hf$, то $g \vee hf$ — требуемый элемент. Отметим, что неравенство $\ell_1 < \ell_2$ влечет $(\ell_1)hf < (\ell_2)hf = \ell_4$.

Итак, пусть $\ell_3 < (\ell_1)hf < \ell_4$. Существует $t \in \operatorname{St}_G(\ell_4)$ такой, что $(\ell_1)hft = \ell_3$. Рассуждения, аналогичные проведенным выше, показывают, что $g \vee hft$ — искомый элемент.

Оставшиеся случаи сводятся к рассмотренному выше. Например, пусть $\ell_1 < \ell_3 < \ell_2 < \ell_4$. Существует $\ell' < \ell_1$. По лемме 3.3 найдется $f \in G$ такой, что $\ell_1 f < \ell_2 f = \ell' < \ell_3 < \ell_4$. В силу рассмотренного выше случая $(\ell_1) f g = \ell_3$ и $(\ell_2) f g = \ell_4$ для подходящего $g \in G$. \square

Теорема 3.5. Представление (G, Ω, a) m-2-транзитивно тогда и только тогда, когда оно m-транзитивно и m-полутранзитивно.

ДОКАЗАТЕЛЬСТВО. Пусть (G,Ω,a) m-2-транзитивно и $\ell_1<\ell_2<\ell\in L$. Рассмотрим следующие пары точек: $\ell_1<\ell$ и $(\ell)a<(\ell_2)a$. Найдется $g\in G$ такой, что $(\ell_1)g=(\ell)a$, $(\ell)g=(\ell_2)a$ либо $(\ell_1)ag=(\ell_2)a$, $(\ell)ag=(\ell)a$. Во втором случае элемент $g_*=aga$ искомый. Пусть имеет место первый случай. Тогда $(\ell_1)gg_*=\ell_2$. Предположим, что $\ell<(\ell)gg_*$. Следовательно, $(\ell)a>(\ell_2)g$, поэтому $(\ell_1)g>(\ell_2)g$, что противоречит условию $\ell_1<\ell_2$. Таким образом, $\ell\ge(\ell)gg_*$. Теперь $gg_*^+=gg_*\vee e$ и $(\ell)gg_*^+=\max((\ell)gg_*,\ell)=\ell$, $(\ell_1)gg_*^+=\max((\ell_1)gg_*,\ell_1)=\max(\ell_2,\ell_1)=\ell_2$.

Обратное утверждение следует из свойств автоморфизма a и леммы 3.4. \square

Следствие 3.6. Если представление (G, Ω, a) m-2-транзитивно, то оно 2-транзитивно либо собственно m-примитивно.

Доказательство. Пусть существуют $\ell \in L$ и $g \in G$ такие, что $(\ell)g \in R$. Тогда по лемме 3.3 найдется $f \in G$ такой, что $(\ell)a = (\ell)gf$, а это влечет транзитивность. Рассмотрим произвольные $w_1 < w_2 < w$ из Ω . В силу транзитивности найдется $t \in G$ такой, что $(w)t = \ell$, поэтому $(w_1)t < (w_2)t < (w)t$. По m-полутранзитивности существует $s \in \operatorname{St}_G((w)t)$ такой, что $(w_1)ts = (w_2)t$. Следовательно, $tst^{-1} \in \operatorname{St}_G(w)$, поэтому рассматриваемое транзитивное представление имеет полутранзитивные стабилизаторы точек. По теореме Холланда (см., например, [4, теорема 1]) такие представления 2-транзитивны.

Если $(\ell)g \in L$ для любой $\ell \in L$ и любого $g \in G$, то, очевидно, представление собственное и по предложению 3.2 m-примитивное. \square

ЛИТЕРАТУРА

- Giraudet M., Rachunek J. Varieties of half lattice-ordered groups of monotonic permutations of chains // Czech. Math. J. 1999. V. 49, N 124. P. 743-766.
- 2. Giraudet M., Lukas F. Groupes á motié ordonnés // Fund. Math. 1991. V. 139, N 2. P. 75–89.
- **3.** *Курош А. Г.* Теория групп. М.: Наука, 1967.
- 4. Kopytov V. M., Medvedev N. Ya. The theory of lattice-ordered groups. Dordrecht; Boston; London: Kluwer Acad. Publ., 1994.
- Баянова Н. В., Никонова О. В. Реверсивные автоморфизмы решеточно упорядоченных групп // Сиб. мат. журн. 1995. Т. 36, № 4. С. 763–768.

Статья поступила 27 декабря 2012 г.

Зенков Алексей Владимирович Алтайский гос. аграрный университет, пр. Красноармейский, 98, Барнаул 656049 alexey_zenkov@yahoo.com