СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
SIBIRSKII MATEMATICHESKII ZHURNAL


Том 55 (2014), Номер 6, с. 1345-1352

Лыткина Д. В., Мазуров В. Д.
О {2,3}-группах, в которых нет элементов порядка 6

Изучаются {2, 3}-группы без элементов порядка 6.

Lytkina D. V., Mazurov V. D.
On {2, 3}-groups without elements of order 6

We study {2, 3}-groups without elements of order 6. The history of research on this topic began with Neumann [1], who gave a classification of groups of period 6 without elements of order 6. The local finiteness of groups of period 12 without elements of order 6 was later proved by Sanov [2], and Lytkina described the exact structure of these groups in [3]. Mazurov in [4] proved local finiteness of nonprimary groups of period 24 without elements of order 6. Soon a similar result was obtained by Jabara and Lytkina for groups of period 36 in [5], and later by Jabara, Lytkina, and Mazurov for groups of period 72 in [6].

Полный текст статьи / Full texts:

Адрес редакции:
пр. Коптюга, 4,
Новосибирск 630090
Телефон: (383-2) 333-493
E-mail: smz@math.nsc.ru