СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
SIBIRSKII MATEMATICHESKII ZHURNAL


Том 57 (2016), Номер 1, с. 157-170

Семенко Е. В.
Представление дифференциалов Прима как решений краевых задач на римановых поверхностях

Построение мультипликативных функций и дифференциалов Прима, в том числе для характеров с точками ветвления, сводится к решению однородной краевой задачи на римановой поверхности. Использование хорошо развитой теории краевых задач создает дополнительные возможности для исследования дифференциалов Прима и связанных с ними расслоений. Здесь на основе теории краевых задач полностью описан класс дивизоров дифференциалов Прима и для дифференциалов Прима получены новые интегральные представления, позволяющие изучать их непосредственно, в частности, исследовать зависимость от точек пространства Тейхмюллера и от характеров. На этой основе новым методом получены и несколько обобщены некоторые известные результаты о дифференциалах Прима.

E. V. Semenko
Prym differentials as solutions to boundary value problems on Riemann surfaces

Construction of multiplicative functions and Prym differentials, including the case of characters with branch points, reduces to solving a homogeneous boundary value problem on the Riemann surface. The use of the well-established theory of boundary value problems creates additional possibilities for studying Prym differentials and related bundles. Basing on the theory of boundary value problems, we fully describe the class of divisors of Prym differentials and obtain new integral expressions for Prym differentials, which enable us to study them directly and, in particular, to study their dependence on the point of the Teichmüller space and characters. Relying on this, we obtain and generalize certain available results on Prym differentials by a new method.

DOI 10.17377/smzh.2016.57.112
Ключевые слова: риманова поверхность, мультипликативная функция, дифференциал Прима, однородная краевая задача

Полный текст статьи / Full texts:

Адрес редакции:
пр. Коптюга, 4,
Новосибирск 630090
Телефон: (383-2) 333-493
E-mail: smz@math.nsc.ru