|
Том
57 (2016), Номер 1, с. 199-221 |
Шарафутдинов В. А.
Киллинговы тензорные поля на 2-торе
Симметричное тензорное поле на римановом многообразии называется киллинговым, если симметричная часть его ковариантной производной равна нулю. Имеется взаимно однозначное соответствие между киллинговыми тензорными полями и первыми интегралами геодезического потока, полиномиально зависящими от скорости. Поэтому киллинговы тензорные поля тесно связаны с задачей интегрируемости геодезического потока. В частности, остается открытым вопрос: существует ли на двумерном торе риманова метрика, допускающая неприводимое киллингово тензорное поле валентности $\ge 3$? Мы приводим два необходимых условия на риманову метрику на 2-торе для существования неприводимого киллингова тензорного поля. Первое условие относится к киллинговым тензорным полям произвольной валентности и связано с замкнутыми геодезическими. Второе условие получено для киллинговых тензорных полей валентности 3 и связано с изолиниями гауссовой кривизны.
|
V. A. Sharafutdinov
Killing tensor fields on the 2-torus
A symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative equals zero. There is a one-to-one correspondence between Killing tensor fields and first integrals of the geodesic flow which depend polynomially on the velocity. Therefore Killing tensor fields relate closely to the problem of integrability of geodesic flows. In particular, the following question is still open: does there exist a Riemannian metric on the 2-torus which admits an irreducible Killing tensor field of rank $\ge 3$? We obtain two necessary conditions on a Riemannian metric on the 2-torus for the existence of Killing tensor fields. The first condition is valid for Killing tensor fields of arbitrary rank and relates to closed geodesics. The second condition is obtained for rank 3 Killing tensor fields and pertains to isolines of the Gaussian curvature.
|
DOI 10.17377/smzh.2016.57.115
Ключевые слова: киллингово поле, интегрируемость геодезическогоо потока, тензорный анализ, метод сферических гармоник
Полный текст статьи / Full texts:
|
Адрес
редакции:
пр. Коптюга,
4,
Новосибирск 630090
Телефон: (383-2) 333-493
E-mail: smz@math.nsc.ru
|