ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ТРЕТЬЕГО РОДА С НЕОГРАНИЧЕННЫМИ ОПЕРАТОРАМИ

В. Б. Коротков

Аннотация. Рассматриваются линейные функциональные уравнения 3-го рода в L_2 с произвольными измеримыми коэффициентами и неограниченными интегральными операторами с ядрами, удовлетворяющими широким условиям. Предлагаются методы редукции этих уравнений линейными непрерывными обратимыми преобразованиями либо к эквивалентным интегральным уравнениям 1-го рода с ядерными операторами, либо к эквивалентным интегральным уравнениям 2-го рода с квазивырожденными карлемановскими ядрами. К получающимся после редукции интегральным уравнениям применимы различные точные и приближенные методы решения, в частности, два приближенных метода, разработанных в этой статье.

 $DOI\,10.17377/smzh.2017.58.207$

Ключевые слова: линейные интегральные уравнения 1-го, 2-го, 3-го родов, коэффициент, интегральный оператор, карлемановский интегральный оператор, квазивырожденное карлемановское ядро, ядерный оператор, приближенные методы решения интегральных уравнений.

Пусть (X,μ) — пространство с σ -конечной положительной мерой μ . Атомом меры μ называется измеримое множество положительной меры, не представимое в виде объединения двух непересекающихся множеств с положительными мерами. Будем говорить, что мера μ не является чисто атомической, если в X имеется множество положительной меры, не содержащее атомов меры μ .

Обозначим через $L_0(\mu):=L_0(X,\mu)$ совокупность всех измеримых почти всюду конечных функций на X с обычным отождествлением функций, отличающихся одна от другой лишь на множестве меры 0. Через $L_2(\mu):=L_2(X,\mu)$ обозначим пространство всех элементов f из $L_0(\mu)$ с конечной нормой

$$\|f\|=igg(\int\limits_{Y}|f(t)|^{2}\,d\mu(t)igg)^{rac{1}{2}}.$$

Интеграл здесь и всюду далее понимается в лебеговом смысле. Через (\cdot,\cdot) будем обозначать скалярное произведение в $L_2(\mu)$. Меру μ будем называть сепарабельной, если $L_2(\mu)$ — сепарабельное пространство. Через $B(L_2(\mu))$ обозначим совокупность всех линейных непрерывных операторов, действующих из $L_2(\mu)$ в $L_2(\mu)$, через χ_e — характеристическую функцию множества e, через P_e — оператор умножения на χ_e : $P_e f = \chi_e f$.

Линейный оператор $L:D_L\subset L_2(\mu)\to L_0(\mu)$ называется интегральным, если существует функция $K(s,t)\in L_0(X\times X,\mu\times \mu)$ такая, что для всех $f\in D_L$

$$Lf(s) = \int_{X} K(s,t)f(t) d\mu(t)$$
 (1)

для почти всех $s \in X$. Функция K(s,t) называется ядром интегрального оператора L. Будем говорить, что ядро K порождает интегральный оператор L по формуле (1).

Интегральный оператор называется *карлемановским*, если его ядро K(s,t) удовлетворяет условию Карлемана

$$\int\limits_{X} |K(s,t)|^2 \, d\mu(t) < \infty$$

для почти всех $s \in X$.

Интегральный оператор $M\in B(L_2(\mu))$ называется оператором Гильбер-ma- Шмидma, если его ядро M(s,t) удовлетворяет условию Гильберта — Шмидта

$$\int\limits_X\int\limits_X|M(s,t)|^2\,d\mu(t)d\mu(s)<\infty.$$

Каждый интегральный оператор Γ ильберта — Шмидта — компактный карлемановский интегральный оператор.

Оператор $J \in B(L_2(\mu))$ называется *ядерным*, если он представим в виде произведения двух интегральных операторов Гильберта — Шмидта из $B(L_2(\mu))$.

Ядерный оператор является интегральным оператором Гильберта — Шмидта, и его ядро J(s,t) удовлетворяет условию $|J(s,t)| \leq \Lambda(s)\Lambda(t)$ для $(\mu \times \mu)$ -почти всех $(s,t) \in X \times X$, где $\Lambda \in L_2(\mu)$. Оператор $J \in B(L_2(\mu))$ ядерный тогда и только тогда, когда найдутся последовательности $\{w_n\}$, $\{v_n\}$ из $L_2(\mu)$ такие, что

$$\sum_{n=1}^{\infty} \|w_n\| \|v_n\| < \infty \tag{2}$$

и для всех $f \in L_2(\mu)$

$$Jf = \sum_{n=1}^{\infty} (f, w_n) v_n. \tag{3}$$

Число inf $\sum_{n=1}^{\infty} \|w_n\| \|v_n\|$, где инфимум берется по всем $\{w_n\}$, $\{v_n\}$, удовлетворяющим (2), (3), называется *ядерной нормой* оператора J и обозначается через $\|J\|_1$. Ясно, что $\|J\| \leq \|J\|_1$, где $\|J\|$ — операторная норма.

Пусть H, H_1 — гильбертовы пространства с нормами $\|\cdot\|_H, \|\cdot\|_{H_1}$. Линейный оператор $V: H \to H_1$ называется унитарным, если $VH = H_1$ и $\|Vh\|_{H_1} = \|h\|_H$ для любого $h \in H$.

Оператор $T:D_T\subset H\to H$ называется замыкаемым, если из $\{f_n\}\subset D_T$, $f_n\to 0$ и $Tf_n\to f$ следует f=0. Оператор $S:D_S\subset H\to H$ называется замкнутым, если из того, что $\{f_n\}\subset D_S,\, f_n\to u,\, Sf_n\to v,\,$ вытекает, что $u\in D_S$ и v=Su. Известно [1, теорема VIII.1], что оператор, сопряженный к плотно определенному замыкаемому линейному оператору, плотно определен и замкнут.

Лемма. Пусть мера μ сепарабельна и не является чисто атомической, H — сепарабельное гильбертово пространство с нормой $\|\cdot\|_H$, $\{T_\delta:D_{T_\delta}\subset H\to H,\ \delta\in\Delta\}$ — семейство плотно определенных в H замыкаемых линейных операторов и существует ортонормированный базис $\{h_n\}$ в H, удовлетворяющий условиям

$$\{h_n\} \subset \bigcap_{\delta \in \Delta} D_{T_\delta^*},$$
 (4)

$$\underline{\lim_{n \to \infty}} \sup_{\delta \in \Delta} \|T_{\delta}^* h_n\|_H = 0, \tag{5}$$

где T_{δ}^* — сопряженный к T_{δ} оператор c областью определения $D_{T_{\delta}^*}$. Пусть $\{e_n\}$ — произвольная последовательность попарно не пересекающихся множеств из X c конечными положительными мерами. Тогда для любого $\varepsilon>0$ можно построить единый для всего семейства унитарный оператор $U:H\to L_2(\mu)$ такой, что $UT_{\delta}U^{-1}=N_{\delta}+C_{\delta}$ для каждого $\delta\in\Delta$, где $N_{\delta}\in B(L_2(\mu))$ — ядерный интегральный оператор c ядерной нормой, меньшей чем ε ,

$$C_{\delta}f(s) = \int_{V} \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\varphi_{n,\delta}(t)} f(t) d\mu(t), \quad f \in UD_{T_{\delta}}, \ \{\varphi_{n,\delta}\} \subset L_2(\mu).$$
 (6)

Доказатель
ство. В силу (5) найдется подпоследовательность $\{h_{n_k}\}$ такая, что

$$\lim_{k\to\infty}\sup_{\delta\in\Delta}\|T_\delta^*h_{n_k}\|_H=0.$$

Зафиксируем $\varepsilon > 0$ и выберем подпоследовательность $\{u_n\} \subset \{h_{n_k}\}$, удовлетворяющую условию

$$\sum_{n=1}^{\infty} \sup_{\delta \in \Delta} \|T_{\delta}^* u_n\|_H < \varepsilon. \tag{7}$$

Пусть $\{u_n^\perp\}$ — ортонормированный базис в ортогональном дополнении к замкнутой линейной оболочке $[u_{2n}]$ ортонормированной последовательности $\{u_{2n}\}$, состоящий из элементов последовательности $\{h_n\}\setminus\{u_{2n}\}$. Обозначим через $\{e_n^\perp\}$ ортонормированный базис в ортогональном дополнении к замкнутой линейной оболочке ортонормированной последовательности $\{\frac{\chi_{e_n}}{\sqrt{\mu e_n}}\}$. Определим унитарный оператор $U: H \to L_2(\mu)$ равенствами

$$Uu_n^{\perp} = \frac{\chi_{e_n}}{\sqrt{\mu e_n}}, \quad Uu_{2n} = e_n^{\perp}, \quad n = 1, 2, \dots$$

Зафиксируем $\delta \in \Delta$. Для любой функции $f \in UD_{T_{\delta}}$ имеем

$$egin{aligned} UT_{\delta}U^{-1}f &= \sum_{n=1}^{\infty} \left(UT_{\delta}U^{-1}f, e_n^{\perp}
ight)e_n^{\perp} + \sum_{n=1}^{\infty} \left(UT_{\delta}U^{-1}f, rac{\chi_{e_n}}{\sqrt{\mu e_n}}
ight)rac{\chi_{e_n}}{\sqrt{\mu e_n}} \ &= \sum_{n=1}^{\infty} (f, UT_{\delta}^*u_{2n})e_n^{\perp} + \sum_{n=1}^{\infty} \left(f, UT_{\delta}^*u_n^{\perp}
ight)rac{\chi_{e_n}}{\sqrt{\mu e_n}} = N_{\delta}f + C_{\delta}f, \end{aligned}$$

где $N_{\delta}f=\sum_{n=1}^{\infty}(f,UT_{\delta}^{*}u_{2n})e_{n}^{\perp}$ — ядерный интегральный оператор, ядерная норма которого в силу (7) меньше чем ε ,

$$C_{\delta}f = \int\limits_{V} \sum_{n=1}^{\infty} rac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{U} T_{\delta}^* u_n^{\perp}(t) f(t) \, d\mu(t). \quad \Box$$

Пусть (Y,ν) — пространство с σ -конечной положительной мерой ν . Рассмотрим в $L_2(\nu):=L_2(Y,\nu)$ линейное интегральное уравнение 3-го рода

$$a(\xi)x(\xi) - \lambda \int_{Y} K(\xi, \eta)x(\eta) \, d\nu(\eta) = f(\xi), \tag{8}$$

где правая часть f принадлежит $L_2(\nu)$, интегральный оператор T с ядром $K(\xi,\eta)$ плотно определен в $L_2(\nu)$ и действует в $L_2(\nu)$, λ — спектральный параметр, функция $a(\xi)$, называемая коэффициентом, принадлежит $L_0(\nu):=L_0(Y,\nu)$, решение $x(\xi)$ ищется в пересечении области определения D_T оператора T и области определения D_A максимального оператора умножения на функцию $a:=a(\xi)$:

$$Ah = ah, h \in D_A := \{v \mid v \in L_2(\nu), av \in L_2(\nu)\}.$$

Определение. Число β называется существенным значением функции $a(\xi)$, если для любого $\varepsilon > 0$

$$\nu\{\xi \mid \xi \in Y, |a(\xi) - \beta| < \varepsilon\} > 0.$$

Теорема 1. Пусть меры μ , ν сепарабельны, σ -конечны ν не являются чисто атомическими, $\alpha \in L_0(\nu)$, $T: D_T \subset L_2(\nu) \to L_2(\nu)$ — плотно определенный замыкаемый интегральный оператор ε ядром $K(\xi, \eta)$, удовлетворяющим условию: существует всюду положительная функция ε 0 такая, что

$$\int_{Y} |K(\xi, \eta)| b(\xi) \, d\nu(\xi) \in L_2(\nu). \tag{9}$$

Тогда для любого $\varepsilon > 0$ найдется не зависящий от λ и f унитарный оператор $U: L_2(\nu) \to L_2(\mu)$ такой, что замена y = Ux, g = Uf приводит уравнение (8) к эквивалентному интегральному уравнению

$$\alpha y(s) + \int_{X} \left[B(s,t) + \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\varphi_n(t)} \right] y(t) \, d\mu(t)$$
$$-\lambda \int_{Y} \left[N(s,t) + \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\psi_n(t)} \right] y(t) \, d\mu(t) = g(s), \quad (10)$$

где α — не зависящее от ε существенное значение функции a(s), ядра B(s,t), N(s,t) порождают ядерные операторы из $B(L_2(\mu))$ с ядерной нормой, меньшей чем ε , $\{e_n\}$ — произвольная последовательность попарно не пересекающихся множеств из X с конечными положительными мерами, $\{\varphi_n\} \subset L_2(\mu)$, $\{\psi_n\} \subset L_2(\mu)$.

ДОКАЗАТЕЛЬСТВО. Покажем, что в силу условия (9) интегральный оператор $T: D_T \subset L_2(\nu) \to L_2(\nu)$ продолжается до интегрального оператора \widetilde{T} с тем же ядром $K(\xi,\eta)$, определенного на всем $L_2(\nu)$, со значениями в $L_0(\nu)$. Действительно,

$$\int\limits_{Y}\int\limits_{Y}|K(\xi,\eta)|\,|h(\eta)|\,d\nu(\eta)b(\xi)\,d\nu(\xi)=\int\limits_{Y}|h(\eta)|\int\limits_{Y}|K(\xi,\eta)|b(\xi)\,d\nu(\xi)d\nu(\eta)<\infty$$

для любой функции $h \in L_2(\nu)$. Следовательно, для почти всех $\xi \in Y$ имеем

$$\int\limits_{Y} |K(\xi,\eta)| |h(\eta)| d\nu(\eta) < \infty.$$

По теореме I.6.2 из [2] существует разбиение $\{Y_n\}$ множества Y на попарно не пересекающиеся множества с положительными мерами такое, что $P_{Y_n}\widetilde{T}:L_2(\nu)\to$

 $L_2(\nu)$ — компактные операторы для любого n; здесь $P_{Y_n}h = \chi_{Y_n}h$, $h \in L_2(\nu)$. Обозначим через $\{Z_n\}$ разбиение множества Y на попарно не пересекающиеся множества с положительными мерами такое, что все функции $\chi_{Z_n}a$ принадлежат $L_\infty(\nu)$. Тогда найдется общее разбиение $\{F_n\}$ множества Y на попарно не пересекающиеся множества с положительными мерами такое, что $\chi_{F_n}a \in L_\infty(\nu)$ и $P_n\widetilde{T}: L_2(\nu) \to L_2(\nu)$ — компактные операторы, $n=1,2,\ldots$; здесь $P_nh=\chi_{F_n}h$, $h \in L_2(\nu)$. Кроме того, так как мера ν не является чисто атомической, можно считать без ограничения общности, что F_1 не содержит атомов меры ν .

Пусть α — какое-нибудь существенное значение сужения функции $a(\xi)$ на F_1 . Тогда найдутся монотонно убывающая к 0 последовательность чисел ε_n и разбиение множества F_1 на попарно не пересекающиеся множества F_{1n} , $n=1,2,\ldots$, с положительными мерами такие, что

$$|a(\xi) - \alpha| < \varepsilon_n$$
 для почти всех $\xi \in F_{1n}, \ n = 1, 2, \dots$ (11)

Положим $Q_n=P_{F_{1n}}$, где $P_{F_{1n}}h=\chi_{F_{1n}}h$, $h\in L_2(\nu)$, и рассмотрим операторы $Q_n\widetilde{T}:L_2(\nu)\to L_2(\nu)$. Так как $Q_n\widetilde{T}=Q_nP_1\widetilde{T}$, где $P_1h=\chi_{F_1}h$, $h\in L_2(\nu)$, и оператор $P_1\widetilde{T}$ компактен, все операторы $Q_n\widetilde{T}:L_2(\nu)\to L_2(\nu)$ компактны. Следовательно, $(Q_n\widetilde{T})^*:L_2(\nu)\to L_2(\nu)$ — компактные операторы. Пусть $\{\tilde{p}_{nk}\}_{k=1}^\infty$ — произвольный ортонормированный базис в $L_2(F_{1n},\nu)$. Введя функции $p_{nk}=\chi_{F_{1n}}\widetilde{p}_{nk}$, получим ортонормированную последовательность $\{p_{nk}\}_{k=1}^\infty\subset L_2(\nu)$ функций с носителями в F_{1n} . Пусть T_1 , T_2 — линейные операторы в $L_2(\nu)$ с областями определения D_{T_1} , D_{T_2} . Будем писать $T_1\subseteq T_2$, если $D_{T_1}\subseteq D_{T_2}$ и для любого $h\in D_{T_1}$ имеет место равенство $T_1h=T_2h$. Так как $Q_nT\subseteq Q_n\widetilde{T}$, то $(Q_n\widetilde{T})^*\subseteq (Q_nT)^*=T^*Q_n$. Но оператор $(Q_n\widetilde{T})^*$ определен на всем $L_2(\nu)$. Следовательно, $T^*Q_n=(Q_n\widetilde{T})^*$. Отсюда вытекает, что $p_{nk}=Q_np_{nk}\in D_{T^*}$ для всех k, n. Кроме того, $T^*p_{nk}=T^*Q_np_{nk}=(Q_n\widetilde{T})^*p_{nk}\to 0$ при $k\to\infty$, поскольку $(Q_n\widetilde{T})^*$ — компактный оператор. Выберем k_n так, что

$$|||T^*p_{nk_n}||| < \varepsilon_n, \quad n = 1, 2, \dots,$$
 (12)

где $\|\cdot\|$ — норма в $L_2(\nu)$. Тогда в силу (11)

$$\|(A^* - \bar{\alpha}1)p_{nk_n}\| < \varepsilon_n, \quad n = 1, 2, \dots,$$
 (13)

где A — введенный выше максимальный оператор умножения на функцию $a(\xi)$. Пусть $\{\tilde{q}_{mj}\}$ — произвольный ортонормированный базис в $L_2(F_m,\nu),\ m=2,\ldots$ Введем функции $q_{mj}=\chi_{F_m}\tilde{q}_{mj}$. Покажем, что все q_{mj} принадлежат D_{T^*} . Действительно, подобно предыдущему $T^*q_{mj}=T^*P_mq_{mj}=(P_m\tilde{T})^*q_{mj},$ где $P_mh=\chi_{F_m}h,\ h\in L_2(\nu),\ m=2,\ldots$ Рассмотрим семейство

$$\left(\bigcup_{n=1}^{\infty} \{p_{nk}\}\right) \cup \left(\bigcup_{m=2}^{\infty} \{q_{mj}\}\right).$$

В силу того, что множества F_{1n} , F_m , $n=1,2,\ldots,$ $m=2,3,\ldots$, попарно не пересекаются, это семейство ортонормированное. Записав его в виде последовательности $\{h_n\}$, получим ортонормированный базис в $L_2(\nu)$, принадлежащий пересечению областей определения операторов $A^* - \bar{\alpha}1$ и T^* . При этом базис $\{h_n\}$ содержит подпоследовательность $\{p_{nk_n}\}$, удовлетворяющую (12), (13). Отсюда по лемме, примененной к семейству из двух операторов $A - \alpha 1$ и T, получим, что найдется не зависящий от λ и f унитарный оператор $U: L_2(\nu) \to L_2(\mu)$ такой, что

$$U(A - \alpha 1)U^{-1} = B + C, \quad UTU^{-1} = N + D,$$
 (14)

где B, N — ядерные интегральные операторы из $B(L_2(\mu))$ с ядрами B(s,t), N(s,t) и ядерной нормой, меньшей чем ε ,

$$Ch(s) = \int_{X} \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\varphi_n(t)} h(t) d\mu(t),$$

$$Dh(s) = \int_{X} \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\psi_n(t)} h(t) d\mu(t),$$
(15)

 $\{\varphi_n\}\subset L_2(\mu),\ \{\psi_n\}\subset L_2(\mu).$ Записав (8) в виде $\alpha x+(A-\alpha 1)x-\lambda Tx=f$ и сделав замену y=Ux, получим

$$\alpha U^{-1}y + (A - \alpha 1)U^{-1}y - \lambda TU^{-1}y = f.$$

Применив к обеим частям этого уравнения оператор U, придем к уравнению

$$\alpha y + U(A - \alpha 1)U^{-1}y - \lambda UTU^{-1}y = Uf = g.$$

Отсюда, пользуясь (14), (15), получим уравнение (10), эквивалентное интегральному уравнению (8). \square

Замечание. Условие (9) выполняется, если ядро K(s,t) удовлетворяет условию Карлемана

$$\Lambda(\xi) := \left(\int\limits_V |K(\xi,\eta)|^2 \, d
u(\eta)
ight)^{rac{1}{2}} < \infty$$

для почти всех $\xi \in Y$. В этом случае в качестве разбиения $\{Y_n\}$ в доказательстве теоремы можно выбрать любое разбиение со свойством $\chi_{Y_n}\Lambda \in L_2(\nu)$, $n=1,2,\ldots$

Теорема 2. Пусть меры μ , ν сепарабельны, σ -конечны и не являются чисто атомическими, коэффициент $a(\xi)$ в уравнении (8) принадлежит $L_{\infty}(\nu)$, ядро $K(\xi,\eta)$ в (8) порождает плотно определенный замыкаемый интегральный оператор T в $L_2(\nu)$ и удовлетворяет более слабому, чем (9), условию: существует не содержащее атомов меры ν множество E, $\nu E > 0$, такое, что

$$\int_{E} |K(\xi, \eta)| \, d\nu(\xi) \in L_2(\nu).$$

Тогда справедливо утверждение теоремы 1.

Доказательство. Ядро $\chi_E(\xi)K(\xi,\eta)$ удовлетворяет условию типа условия (9) с $b(\xi)=\chi_Y(\xi)$, поэтому, как в доказательстве теоремы 1, оператор P_ET продолжается до интегрального оператора $\tau:L_2(\nu)\to L_0(\nu)$. По теореме I.6.2 из [2] найдется множество $E_1\subset E,\, \nu E_1>0$, такое, что $P_{E_1}\tau:L_2(\nu)\to L_2(\nu)-$ компактный оператор. Подобно предыдущему $T^*P_{E_1}=(P_{E_1}T)^*=(P_{E_1}\tau)^*.$ Значит, $T^*P_{E_1}:L_2(\nu)\to L_2(\nu)-$ компактный оператор.

Пусть α — какое-нибудь существенное значение сужения функции $a(\xi)$ на E_1 . Выберем последовательность попарно не пересекающихся множеств $E_{1n} \subset E_1$ с положительными мерами такую, что

$$|a(\xi) - \alpha| < \varepsilon_n$$
 для почти всех $\xi \in E_{1n}, \ n = 1, 2, \dots,$ (16)

где $\varepsilon_n \to 0$ при $n \to \infty$. Пользуясь компактностью оператора $T^*P_{E_1}$, выберем для любого n функцию y_n , $||y_n|| = 1$, с носителем в E_{1n} так, что $||T^*y_n|| = ||T^*P_{E_1}y_n|| < \varepsilon_n$. Отсюда и из (16) имеем

$$||T^*y_n|| < \varepsilon_n, \quad ||(A^* - \bar{\alpha}1)y_n|| < \varepsilon_n, \quad n = 1, 2, \dots$$
 (17)

Выберем подпоследовательность $\{w_n\}\subset\{y_n\}$ так, что $\sum\limits_{n=1}^{\infty}\|T^*w_n\|<\infty$. Обозначим через $\langle\cdot\,,\cdot\rangle$ скалярное произведение в $L_2(\nu)$ и рассмотрим ограниченный оператор

$$\Gamma h = \sum_{n=1}^{\infty} \langle h, w_n \rangle T^* w_n, \quad h \in L_2(
u),$$

и замкнутый оператор $Q=T^*-\Gamma$ с областью определения $D_Q=D_{T^*}$. Тогда $Qw_n=0,\ n=1,2,\ldots$ Пусть W^\perp — ортогональное дополнение к замкнутой линейной оболочке W последовательности $\{w_n\}$ и P^\perp — ортопроектор на W^\perp . В силу замкнутости Q имеем $W\subset D_Q$, поэтому $P^\perp D_Q\subset D_Q$. Обозначив через \overline{F} замыкание множества $F\subset L_2(\nu)$ по норме, получим $W^\perp\supseteq\overline{W^\perp\cap D_Q}\supseteq\overline{P^\perp D_Q}=\overline{P^\perp D_{T^*}}=W^\perp$, так как $\overline{D_{T^*}}=L_2(\nu)$. Таким образом, $\overline{W^\perp\cap D_Q}=W^\perp$, т. е. множество $W^\perp\cap D_Q$ плотно в W^\perp . Пусть $\{w_n^\perp\}$ — любой ортонормированный базис подпространства W^\perp , состоящий из элементов D_Q . Рассмотрим ортонормированный базис $\{h_n\}$ пространства $L_2(\nu)$, являющийся объединением $\{w_n^\perp\}$ и $\{w_n\}$. Имеем $\{h_n\}\subset D_Q=D_{T^*}$, и $\{h_n\}$ принадлежит области определения оператора $A^*-\bar{\alpha}1$, совпадающей с $L_2(\nu)$ в силу того, что $a\in L_\infty(\nu)$. Кроме того, $\{w_n\}\subset \{h_n\}$ и из $\{w_n\}\subset \{y_n\}$ и (17) следует, что $T^*w_n\to 0$, $(A^*-\bar{\alpha}1)w_n\to 0$ при $n\to\infty$. Отсюда, как в доказательстве теоремы 1, по лемме получим справедливость теоремы 2. \square

Назовем квазивырожденным карлемановским ядром функцию

$$\sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{b_n(t)},$$

где $\{e_n\}$ — последовательность попарно не пересекающихся множеств из X с конечными положительными мерами, $\{b_n\}\subset L_2(\mu)$.

Теорема 3. Пусть выполнены условия теоремы 1 или теоремы 2. Тогда интегральное уравнение 3-го рода (8) эквивалентно либо интегральному уравнению Фредгольма 1-го рода с ядерным оператором, либо интегральному уравнению 2-го рода с квазивырожденным карлемановским ядром.

Доказательство. При выполнении условий теоремы 1 или теоремы 2 уравнение (8) эквивалентно уравнению (10). Если α в (10) равно 0, то, умножив обе части (10) на функцию

$$\chi_{e_0}(s) + \sum_{n=1}^{\infty} 2^{-n} (\|\varphi_n\| + \|\psi_n\| + 1)^{-1} \chi_{e_n}(s),$$

где $e_0 = X \setminus \bigcup_{n=1}^\infty e_n$, получим эквивалентное интегральное уравнение 1-го рода с ядерным оператором.

Пусть α в (10) не равно 0. Зафиксируем λ и выберем $\varepsilon < |\alpha|/(1+|\lambda|)$. Запишем уравнение (10) в виде

$$\alpha \left(1 + \frac{1}{\alpha} B_{\lambda}\right) y(s) + \int_{Y} \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\varphi_{n,\lambda}(t)} y(t) \, d\mu(t) = g(s), \tag{18}$$

где $\varphi_{n,\lambda}=\varphi_n-\bar{\lambda}\psi_n,\,B_\lambda=B-\lambda N,\,B$ — интегральный оператор с ядром B(s,t) и ядерной нормой, меньшей чем $\varepsilon,\,N$ — интегральный оператор с ядром N(s,t) и ядерной нормой, меньшей чем $\varepsilon.$ Тогда $\left\|\frac{1}{\alpha}B_\lambda\right\|\leq \frac{1}{|\alpha|}(\varepsilon+|\lambda|\varepsilon)<1.$ Отсюда следует, что оператор $F_\lambda=1+\frac{1}{\alpha}B_\lambda$ имеет обратный оператор F_λ^{-1} , принадлежащий $B(L_2(\mu)).$ Сделав в (18) замену $z=F_\lambda y$, получим эквивалентное интегральное уравнение 2-го рода

$$lpha z(s) + \int\limits_X \sum_{n=1}^\infty rac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{\psi_{n,\lambda}(t)} z(t) \, d\mu(t) = g(s),$$

где
$$\psi_{n,\lambda} = \left(F_{\lambda}^{-1}\right)^* \varphi_{n,\lambda}$$
. \square

Интегральное уравнение 1-го рода с ядерным оператором может быть решено с помощью теоремы Э. Пикара (см. [3, гл. 3, § 7, п. 1]) или приближенных методов, например, метода А. Н. Тихонова (см. [4, гл. 4, п. 4.3]). Для решения интегрального уравнения 2-го рода с квазивырожденным карлемановским ядром ниже предлагаются два приближенных метода.

Рассмотрим уравнение

$$z(s) - \lambda \int_{X} \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{b_n(t)} z(t) d\mu(t) = g(s) \in L_2(\mu),$$
(19)

где $\{b_n\}\subset L_2(\mu)$, к которому приводятся изучавшиеся в статье интегральные уравнения 3-го рода. Решение уравнения (19) будем искать в линейном многообразии

$$D_K := \left\{ h \mid h \in L_2(\mu), \ \sum_{n=1}^{\infty} |(h, b_n)|^2 < \infty \right\}$$
 (20)

— максимальной области определения интегрального оператора K с квазивырожденным карлемановским ядром

$$\sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{b_n(t)}.$$

Введем интегральные уравнения с вырожденными ядрами

$$z(s) - \lambda_m \int_X \sum_{n=1}^m \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{b_n(t)} z(t) d\mu(t) = g(s), \tag{21}$$

 $m=1,2,\ldots$ Как известно [5, II.2.3], решение интегрального уравнения с вырожденным ядром сводится к решению конечной системы линейных алгебраических уравнений. Выберем $\lambda_m \to \lambda$ так, чтобы уравнения (21) имели решения $z_m \in L_2(\mu)$. Тогда в силу (21) для всех m и почти всех $s \in X$

$$z_m(s) = \lambda_m \sum_{n=1}^m \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} (z_m, b_n) + g(s).$$
 (22)

Без ограничения общности будем считать, что равенства (22) выполняются для всех $s \in X$.

Пусть $\{z_m\}$ — ограниченная в $L_2(\mu)$ последовательность, $\zeta_i:=z_{m_i},\ i=1,2,\ldots,$ — любая слабо сходящаяся в $L_2(\mu)$ ее подпоследовательность. Обозначим через z предел подпоследовательности $\{\zeta_i\}$. Отметим, что $z\in D_K$. Функции $\zeta_i(s)$ равны g(s) для каждой точки $s\in e_0:=X\setminus\bigcup\limits_{n=1}^\infty e_n$, и для любой точки $s\in e_n,\ n=1,2,\ldots$, выполняется равенство

$$\zeta_i(s) = \lambda_{m_i} rac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} (\zeta_i, b_n) + g(s).$$

Кроме того, при $i\to\infty$ имеем $(\zeta_i,b_n)\to(z,b_n)$ для всех n. Таким образом, для любого $s\in X$ при $i\to\infty$

$$\zeta_i(s) \to \zeta(s) := \lambda \sum_{n=1}^{\infty} \frac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} (z, b_n) + g(s).$$
(23)

Так как $\{\chi_{e_n}\zeta_i\}$ для каждого $n=0,1,2,\ldots$ сходится при $i\to\infty$ к $\chi_{e_n}\zeta$ по норме $L_2(\mu)$, то $\{\chi_{e_n}\zeta_i\}$ слабо сходится к $\chi_{e_n}\zeta$ при $i\to\infty$. Но $\{\chi_{e_n}\zeta_i\}$ слабо сходится к $\chi_{e_n}z$ при $i\to\infty$ для любого $n=0,1,2,\ldots$ Отсюда $\chi_{e_n}z=\chi_{e_n}\zeta$ и из произвольности $n=0,1,2,\ldots$ получаем, что $\zeta(s)=z(s)$ для почти всех $s\in X$. Следовательно, $\zeta\in D_K$, и в силу (23) для всех $s\in X$ имеем

$$\zeta(s) - \lambda \int\limits_{\mathcal{K}} \sum_{n=1}^{\infty} rac{\chi_{e_n}(s)}{\sqrt{\mu e_n}} \overline{b_n(t)} \zeta(t) \, d\mu(t) = g(s).$$

Таким образом, ζ является решением уравнения (19).

Отметим, что функции $z_{m_i}(s) = \zeta_i(s)$ сходятся к решению $\zeta(s)$ не только слабо в $L_2(\mu)$, но и в каждой точке $s \in X$, причем поточечная сходимость на любом множестве $e_n, n = 0, 1, 2, \ldots$, равномерна.

Отметим еще, что аналогичные построения можно провести и в случае, когда ограничена не вся последовательность $\{z_m\}$, а лишь некоторая ее подпоследовательность.

Итак, если последовательность $\{z_m\}$ (или ее подпоследовательность) ограничена в $L_2(\mu)$, то любая слабо сходящаяся их подпоследовательность сходится слабо и поточечно к решению уравнения (19). Покажем, что ограниченность последовательности норм резольвент интегральных операторов, порожденных ядрами уравнений (21), обеспечивает сходимость всей последовательности $\{z_m\}$ к решению уравнения (19) по норме $L_2(\mu)$ и с регулятором (последовательность $\{f_m(s)\}$ сходится на X к функции f(s) с регулятором r(s) [6], если для всех m и $s \in X$ выполняется неравенство $|f_m(s) - f(s)| \le r(s)\varepsilon_m$, где $\varepsilon_m \to 0$ при $m \to \infty$).

Пусть K — интегральный оператор с областью определения (20), порожденный ядром уравнения (19), K_m — интегральные операторы в $L_2(\mu)$, порожденные ядрами уравнений (21). Выберем $\lambda_m \to \lambda$ так, чтобы λ_m^{-1} не являлась точкой спектра конечномерного оператора K_m , $m=1,2,\ldots$ Предположим, что

$$\|(1 - \lambda_m K_m)^{-1}\| \le C, \quad m = 1, 2, \dots$$
 (24)

Пусть $S:=1-\lambda K,\ S_m:=1-\lambda_m K_m,\ z_m=S_m^{-1}g,\ m=1,2,\dots$. Тогда $\|z_m\|\le\|S_m^{-1}\|\,\|g\|\le C\|g\|$ для всех m. Отсюда по доказанному выше следует, что

уравнение (19) имеет решение $z \in L_2(\mu)$. Покажем, что $||z - z_m|| \to 0$. В силу (24) имеем

$$||z - z_m|| = ||z - S_m^{-1}g|| = ||S_m^{-1}(S_m z - g)|| \le C||S_m z - g|| = C||z - \lambda_m K_m z - g||$$

$$= C||\lambda K z - \lambda_m K_m z|| \le C(|\lambda| ||(K - K_m)z|| + |\lambda - \lambda_m| ||K_m z||)$$

$$\le C(|\lambda| ||\chi_{E_m} K z|| + |\lambda - \lambda_m| ||K z||),$$

где $E_m=\bigcup_{n=m+1}^\infty e_n$. Из этой оценки $E_m\downarrow\varnothing$ и $|\lambda_m-\lambda|\to 0$ при $m\to\infty$ следует $\|z-z_m\|\to 0;$ здесь \varnothing — пустое множество.

Покажем, что при выполнении условия (24) последовательность $\{z_m(s)\}$ сходится с регулятором

$$r(s) = \sum_{n=1}^{\infty} rac{\chi_{e_n}(s)}{\sqrt{\mu e_n}}$$

к определяемому равенством (23) решению $\zeta(s)$, отличающемуся от решения z(s) лишь на множестве меры 0. При этом, как раньше, считаем, что равенства (22) выполнены для всех m и $s \in X$. Тогда для любого $s \in e_n, n = 1, 2, \ldots$,

$$|\zeta(s) - z_m(s)| = \frac{1}{\sqrt{\mu e_n}} \|\chi_{e_n}(z - z_m)\| \le \frac{1}{\sqrt{\mu e_n}} \|z - z_m\|.$$

Кроме того, $|\zeta(s)-z_m(s)|=0$ для всех $s\in X\setminus\bigcup_{n=1}^\infty e_n$. Таким образом,

$$|\zeta(s) - z_m(s)| < r(s)||z - z_m||$$
 для всех s, m .

Если $\mu X=\infty$ и $\mu e_n\geq \gamma>0,\, n=1,2,\ldots,$ то сходимость $z_m(s)$ к $\zeta(s)$ на X будет равномерной.

Второй метод (с очевидными изменениями) применим, когда вместо условия (24) имеет место ограниченность какой-нибудь последовательности $\{\|(1-\lambda_{m_k}K_{m_k})^{-1}\|\}$.

При выполнении указанных выше условий оба метода работают при любом λ , в том числе, когда λ^{-1} принадлежит спектру оператора K, при этом K может быть как ограниченным, так и неограниченным оператором.

Замечания. 1. Все результаты статьи справедливы и в случае, когда H, $L_2(X,\mu),\,L_2(Y,\nu)$ — вещественные сепарабельные пространства.

- 2. Отметим три важных частных случая условий теорем 1–3: 1) Y=X, $\nu=\mu;$ 2) X измеримое по Лебегу множество евклидова пространства, μ мера Лебега; 3) X=(a,b) конечный или бесконечный интервал, в этом случае в качестве $\{e_n\}$ удобно выбрать последовательность попарно не пересекающихся конечных интервалов (длины 1, если (a,b) бесконечный интервал).
- 3. Результаты статьи дополняют и развивают результаты работ [7;8;2, гл. IV, \S 7] об интегральных уравнениях 3-го рода в L_2 с неограниченными интегральными операторами.
- 4. Интегральные уравнения 3-го рода в L_2 с произвольными ограниченными измеримыми коэффициентами и произвольными ограниченными интегральными операторами, а также системы таких уравнений изучались в [9; 10; 3, гл. I, \S 1, гл. III, \S 7]. В связи с этими результатами отметим очень интересную работу И. М. Новицкого [11].

ЛИТЕРАТУРА

- Рид М., Саймон Б. Методы современной математической физики. Т. 1. Функциональный анализ. М.: Мир, 1977.
- **2.** Коротков В. Б. Интегральные операторы. Новосибирск: Наука, 1983.
- **3.** *Коротков В. Б.* Некоторые вопросы теории интегральных операторов. Новосибирск: Интматематики СО АН СССР, 1988.
- **4.** Верлань А. Ф., Сизиков В. С. Интегральные уравнения: методы, алгоритмы, программы. Справочное пособие. Киев: Наук. думка, 1986.
- 5. Трикоми Ф. Интегральные уравнения. М.: Изд-во иностр. лит., 1960.
- 6. Вулих Б. З. Введение в теорию полуупорядоченных пространств. М.: Физматлит, 1961.
- Коротков В. Б. Об интегральных уравнениях первого и третьего рода // Математический анализ и смежные вопросы математики. Новосибирск: Наука, 1978. С. 61–68.
- 8. Коротков В. Б. Об общих интегральных уравнениях третьего рода // Дифференц. уравнения. 1979. Т. 15, \mathbb{N} 6. С. 1097–1105.
- 9. Коротков В. Б. О линейных функциональных уравнениях 1-го, 2-го и 3-го родов в L_2 // Сиб. мат. журн. 2013. Т. 54, № 6. С. 1294—1303.
- **10.** Коротков В. Б. О системах линейных функциональных уравнений третьего рода в L_2 // Сиб. мат. журн. 2015. Т. 56, N2 3. С. 549–556.
- 11. Новицкий И. М. A kernel smoothing method for general integral equations // Дальневост. мат. журн. 2012. Т. 12, № 2. С. 255–261.

Статья поступила 19 апреля 2016 г.

Коротков Виталий Борисович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090