3-ЛОКАЛЬНАЯ ХАРАКТЕРИЗАЦИЯ M(24)

М. Р. Саларьян

Аннотация. Группа M(24) распознается по строению нормализатора 3-центрального элемента. Как следствие, группа M(24) распознается по двум своим 3-локальным подгруппам.

 $DOI\,10.17377/smzh.2017.58.213$

Ключевые слова: конечная группа, конечная простая группа.

1. Введение

Группа M(24) является группой Фишера и характеризуется своей 2-локальной информацией в [1]. Производная подгруппа этой группы проста и характеризуется своей 3-локальной информацией в [2] и своей 2-локальной информацией в [3]. В настоящей работе M(24) распознается по своей 3-локальной информации. Для формулировки основного результата потребуется

Определение 1.1. Пусть X — конечная группа. Будем говорить, что X подобна 3-нормализатору в M(24), если

- і) $O_3(X)$ экстраспециальная группа порядка 3^{11} и периода 3,
- ii) $X/O_3(X) \cong 2 \times U_5(2) : 2$ и $C_X(O_3(X)) = Z(O_3(X))$,
- ііі) если h инволюция и $hO_3(X) \in Z(X/O_3(X))$, то h централизует $Z(O_3(X))$.

В настоящей работе доказывается

- **Теорема 1.2.** Пусть G конечная группа и $\tau \in G$ элемент порядка 3. Положим $H_1 = N_G(\langle \tau \rangle)$ и допустим, что H_1 подобна 3-нормализатору в M(24). Пусть $U \leq O^2(H_1)$ элементарная абелева группа порядка 16 такая, что $N_{O^2(H_1)}(U)O_3(H_1)/O_3(H_1)$ является расширением специальной группы порядка 2^8 посредством $3 \times A_5$. Пусть A подгруппа порядка 4 в U и никакая инволюция из A не является 2-центральной инволюцией в H_1 . Тогда
- (i) Существует единственная подгруппа $B \leq \langle r, U \rangle$ порядка 8, содержащая A такая, что $C_{H_1}(B) = C_{H_1}(A)$, где $r \in H_1$ инволюция такая, что $rO_3(H_1) \in Z(H_1/O_3(H_1))$.
- (ii) Пусть B из (i). Если $\langle \tau \rangle$ не слабо замкнута в $C_{H_1}(B)$ по отношению к $C_G(B)$, то G изоморфна M(24).

Все рассматриваемые в настоящей работе группы конечны. Будем использовать обозначения из [1] для групп Фишера и обозначения атласа из [4] для расширений групп и других простых групп, за исключением симплектических. Вместо обозначения $S_n(q)$ из [4] будем использовать обозначение $PSp_n(q)$. В остальном используются обозначения из [5]. Для конечной группы G через O(G) обозначаем наибольшую нормальную подгруппу G нечетного порядка. Пусть p

Теорема 1.2 может найти применение в текущем проекте Майерфранкенфельда, Штельмахера и Штрота по классификации групп локальной характеристики p (см. [6,7]).

Статья организована следующим образом: с учетом обозначений теоремы 1.2 в разд. 2 выбирается подходящая инволюция m из H_1 и доказывается, что $C_G(m)\cong 2\times M(23)$. В разд. 3 доказывается существование элементарной абелевой подгруппы M порядка 2^{12} в $C_G(m)$ такой, что $N_G(M)/M\cong M_{24}$. Наконец, с помощью леммы Томпсона о трансфере [2, теорема 1.1] доказывается, что G содержит подгруппу H индекса 2, изоморфную M(24)'. Отсюда следует, что $G\cong M(24)$, и теорема 1.2 доказана.

2. Распознавание M(23)

Пусть G — конечная группа и $\tau \in G$ — элемент порядка 3 такой, что $N_G(\langle \tau \rangle)$ подобна 3-нормализатору в M(24). В этом разделе будет определено строение централизатора не 2-центральной инволюции группы G. Выберем подходящую инволюцию $m \in G$ и докажем, что $C_G(m) \cong 2 \times M(23)$. Положим $H_1 = N_G(\langle \tau \rangle)$ и $R = O_3(H_1)$. Пусть $r \in H_1$ — инволюция такая, что $rO_3(H_1) \in Z(H_1/O_3(H_1))$.

Лемма 2.1. (i) $C_{H_1}(r) \cong (6 \times U_5(2)) : 2,$ (ii) r действует без неподвижных точек на $O_3(H_1)/Z(O_3(H_1)).$

Доказательство. Заметим, что 11 не делит порядок $PSp_8(3)$. Поскольку 11 делит порядок $U_5(2)$, $C_{H_1}(O_3(H_1)) = Z(O_3(H_1))$ и $rO_3(H_1) \in Z(H_1/O_3(H_1))$, то r действует без неподвижных точек на $O_3(H_1)/Z(O_3(H_1))$. По [4, с. 73] мультипликатор Шура группы $U_5(2)$ тривиален. Таким образом, $C_{H_1}(r)' \cong U_5(2)$, и лемма доказана. \square

По лемме 2.1(i) и [2, лемма 2.2] существует элементарная абелева подгруппа U порядка 16 в H_1' такая, что $N_{C_{H_1}(\tau)'}(U)$ — расширение специальной группы порядка 2^8 с центром U посредством $(3\times A_5)$. Пусть a и d — две различные инволюции из U такие, что d и a — это две 2-центральные инволюции из $C_G(\tau)$. Положим z=ad, тогда z — не 2-центральная инволюция из $C_G(\tau)$. По [2, лемма 2.2] существует элементарная абелева подгруппа $A\leq U$ порядка 4, содержащая z, такая, что все инволюции из A сопряжены в $N_{H_1}(U)$ и $A=\langle z,ab\rangle$, где b сопряжена с d в $N_{H_1}(U)$. Зафиксируем обозначение A для такой подгруппы U. Положим $t=ab,\ m=rd$ и $B=\langle m,A\rangle$.

Лемма 2.2. (i) $C_R(z)$ — экстраспециальная группа порядка 3^7 , $C_R(m,z)=C_R(z)$, $C_{H_1}(m,z)$ имеет вид $3^{1+6}.2.2^{4+4}.3^2.2$ и $z\in C_{H_1}(m,z)'$, $O_3(C_{H_1}(z))=C_R(z)$, $O_2(C_{H_1}(z)/C_R(z)\langle r\rangle)$ — специальная группа порядка 2^8 ,

$$Z(O_2(C_{H_1}(z)\langle r\rangle/C_R(z)\langle r\rangle)) = UC_R(z)\langle r\rangle/C_R(z)\langle r\rangle,$$

- $C_{H_1}(z)/O_{3,2}(C_{H_1}(z))$ расширение элементарной абелевой группы порядка 9 посредством группы порядка 4. Далее, $C_{H_1}(z)$ содержит силовскую 3-подгруппу $C_G(z)$ и $O_{3'}(C_{H_1}(z)) = \langle z, m \rangle$.
- (ii) $C_R(d)$ экстраспециальная группа порядка 27, $O_{3'}(C_{H_1}(m,z)) = \langle m,z \rangle$ и $C_{H_1}(m,z)$ содержит силовскую 3-подгруппу $C_G(m,z)$, $O_3(C_G(\tau,d)) = C_R(d)$ экстраспециальная группа порядка 3^3 , $O_{3,2}(C_G(\tau,d))/C_R(d)$ прямое произведение группы порядка 2 и экстраспециальной группы порядка 2^7 и $C_G(d,\tau)/O_{3,2}(C_G(\tau,d))$ расширение экстраспециальной группы порядка 27 посредством $SL_2(3)$.
- (iii) $C_{H_1}(m)$ имеет вид $3^{1+8}.2.2^{1+6}.3^{1+2}.GL_2(3)$ и содержит силовскую 3-подгруппу $C_G(m)$.
- (iv) $C_{H_1}(rz)$ имеет вид $3^{1+4}.2.2^{4+4}.3^2.4$ и содержит силовскую 3-подгруппу $C_G(rz)$.
- (v) $N_{H_1}(\langle m,z\rangle)$ имеет вид $3^{1+6}.2.2^{4+4}.3^2.4$ и содержит силовскую 3-подгруппу $N_G(\langle m,z\rangle)$.
 - (vi) $C_R(U) = Z(R)$.
- ДОКАЗАТЕЛЬСТВО. Лемма следует из [2, лемма 3.2]. Заметим, что $C_R(r)=Z(R),\,C_{H_1}(m)R/R=C_{H_1}(d)R/R$ и $C_{H_1}(rz)R/R=C_{H_1}(z)R/R$. \square
- **Лемма 2.3.** (i) $C_R(B)$ экстраспециальная группа порядка 3^5 , $C_R(B) = C_R(A)$ и $O_3(C_{H_1}(B)) = C_R(B)$.
- (ii) $O_2(C_{H_1}(B)/\langle C_R(B),B\rangle)\cong Q_8\times Q_8,\ Z(O_2(C_{H_1}(B)/\langle C_R(B),B\rangle))=U\langle C_R(B),B\rangle/\langle C_R(B),B\rangle$ и $C_{H_1}(B)/O_{3,2}(C_{H_1}(B))\cong S_3.$
- (iii) $O_2(C_{H_1}(B))=B$ и $\langle \tau \rangle$ является центром каждой силовской 3-подгруппы $C_{H_1}(B)$. В частности, $C_{H_1}(B)$ содержит силовскую 3-подгруппу $C_G(B)$.
- (iv) $C_{H_1}(B) = C_{H_1}(A)$. Более того, если $C \leq \langle r, U \rangle$ подгруппа порядка 8, содержащая A, такая, что $C_{H_1}(A) = C_{H_1}(C)$, то B = C.
 - (v) инволюции d и a действуют без неподвижных точек на $C_R(z)/Z(R)$.

Доказательство. Имеем $C_R(B) \leq C_R(A) \leq C_R(z)$. По [2, лемма 3.3] $C_R(A)$ — экстраспециальная группа порядка 3^5 и $O_3(C_{H_1}(A)) = C_R(A)$. По лемме 2.2(ii) $C_R(a)$ и $C_R(b)$ — экстраспециальные группы порядка 2^7 . Поскольку z=ad и aR и bR сопряжены с dR в H_1/R , то d и a действуют свободно на $C_R(z)/Z(R)$, и (v) доказано. Так как r и d действуют свободно на $C_R(A) = C_R(B)$. Пп. (i), (ii) и (iii) следуют из [2, лемма 3.3]. Чтобы завершить доказательство, достаточно доказать, что если $C \leq \langle r, U \rangle$ — подгруппа порядка 8, содержащая A, такая, что $C_{H_1}(A) = C_{H_1}(C)$, то B = C.

Поскольку $C_R(C)$ — экстраспециальная группа порядка 3^5 , по леммам 2.1 и 2.2(ii) получаем $r \notin C$ и C не содержит инволюций, сопряженных c d в H_1 . По [2, лемма 2.2] C не содержится в U. Следовательно, найдется элемент $y=rx\in C$ такой, что $1\neq x\in U\setminus A$. Все инволюции из A не 2-центральны в H_1 , поэтому по [2, лемма 2.2] можно считать, что x-2-центральная инволюция из H_1 . Если x равно a или b, или d, то C=B, и лемма доказана. Поэтому будем считать, что $x\neq a, x\neq b$ и $x\neq d$. Тогда по [2, лемма 2.2] элементы zx, ztx и tx сопряжены c z в H_1 . По лемме 2.2(ii) $C_R(x)$ — экстраспециальная группа порядка 27. Если $C_R(x)\cap C_R(z)=Z(R)$, то $|C_R(zx)|\leq 3^4$, что противоречит лемме 2.2(i). Таким образом, $C_R(x)\leq C_R(z)$. Аналогично $C_R(x)\leq C_R(z)$ и, следовательно, $C_R(x)\leq C_R(A)=C_R(C)$. Но по лемме 2.1(i) имеем $C_R(rx,x)=Z(R)$; противоречие. Полученное противоречие доказывает лемму. \square

Лемма 2.3(iv) доказывает п. (i) теоремы 1.2. Докажем п. (ii) теоремы 1.2.

По [2, лемма 2.2] каждая подгруппа U порядка 4, все инволюции которой не 2-центральны в H_1 , сопряжена с A в H_1 . Поэтому можно считать, что τ не слабо замкнута в $C_{H_1}(B)$ по отношению к $C_G(B)$.

Лемма 2.4. (i) $C_G(B)/B \cong U_6(2)$ и $A \leq C_G(B)'$.

- (ii) $C_G(m,z)/\langle m \rangle$ изоморфна квазипростой группе 2M(22).
- (iii) $C_G(m) \cong 2 \times M(23)$.

Доказательство. По лемме 2.2(i),(iii) имеем $C_G(m) \neq C_G(m,z)$. Таким образом, (iii) следует из (ii) и [1, теорема 32.1]. Аргументы для (i) и (ii) такие же, как в [2, лемма 3.4], поэтому их опускаем. \square

3. Доказательство теоремы 1.2

В этом разделе доказывается теорема 1.2. Используя лемму Томпсона о трансфере и [2, теорема 1.1], докажем, что $G' \cong M(24)'$. Тогда теорема 1.2 будет доказана. Прежде всего понадобится

Лемма 3.1. Пусть $X \cong U_6(2)$ и $x \in X - 3$ -центральный элемент в X.

- (i) $C_X(x)$ имеет вид $3^{1+4}.(Q_8 \times Q_8).3.2.$
- (ii) Пусть $Y \leq C_X(x) 2$ -группа такая, что

$$YO_3(C_X(x)) = O_2(C_X(x)/O_3(C_X(x))).$$

Тогда в X найдется элементарная абелева подгруппа M порядка 2^9 , содержащая Z(Y), такая, что $N_X(M)/M\cong L_3(4)$. Далее, для $T\in \mathrm{Syl}_2(N_X(M))$ выполнено M = J(T).

Доказательство. Пусть $x \in X - 3$ -центральный элемент, тогда строение $C_X(x)$ полностью описано в [8]. Таким образом, (i) следует из [8, теорема 1]. Пусть $Y \leq C_X(x) - 2$ -группа такая, что $YO_3(C_X(x)) = O_2(C_X(x)/O_3(C_X(x)))$. Пусть $Z(Y) = \langle z_1, t_1 \rangle$, где z_1 и t_1 сопряжены в $C_X(x)$. Тогда по [8, лемма 25; 4, с. 115] имеем $C_X(z_1) = O_2(C_X(z_1))K$, где $K \cong U_4(2)$ и $t_1 \in K$. Пусть $T \in \mathrm{Syl}_2(C_X(z_1))$. Тогда $T \in \mathrm{Syl}_2(X)$ и по [1, теорема 30.1] в T найдется элементарная абелева подгруппа M порядка 2^9 , содержащая z_1 , такая, что $N_X(M)/M\cong L_3(4)$. По [1, лемма 30.3] M=J(T), и по [1, лемма 30.5] z_1 слабо замкнута в $O_2(C_X(z_1))$. По [1, лемма 30.3] $M \cap K$ — элементарная абелева порядка 2^4 . Далее, $N_X(M) \cap K$ является расширением $M \cap K$ посредством A_5 . По [4, с. 26] каждая инволюция из K сопряжена с инволюцией из $M \cap K$ в K. Таким образом, можно считать, что $t_1 \in M$, и лемма доказана.

По леммам 2.4(i) и 3.1 обозначим через M элементарную абелеву подгруппу порядка 2^{12} из $C_G(B)$, содержащую U и m такую, что $N_{C_G(B)}(M)/M\cong L_3(4)$ и $C_G(B,M)=M$. По лемме 2.4(iii) и [1, лемма 25.7] имеем $N_{C_G(m)}(M)/M\cong M_{23}$.

Лемма 3.2. Пусть $\overline{X} = N_{C_G(m)}(M)/M \cong M_{23}$. Тогда \overline{X} имеет 7 орбит L_i , $i = 1, \dots, 7$, на P(M) таких, что

- (i) $L_1=\{\langle m
 angle\},\ |L_2|=|L_7|=23,\ \langle z
 angle\in L_2,\ L_7=\langle mz
 angle^{\overline{X}}$ и \overline{X} действует 3-транзитивно на L_2 и L_7 .
 - (ii) $|L_3|=|L_6|=253,\ \langle t \rangle \in L_3\$ и $L_6=\langle mt \rangle^{\overline{X}}.$
 - (iii) $|L_4| = |L_5| = 1771$, $\langle a \rangle \in L_4$ и $L_5 = \langle ma \rangle^{\overline{X}}$. В частности, $\langle rz \rangle \in L_5$. (iv) Пусть $S \in \mathrm{Syl}_2(N_{C_G(m)}(M))$. Тогда M = J(S).

 - (v) $C_{\overline{X}}(z) \cong M_{22}$.

- (vi) Пусть $Y = M \cap O^2(C_G(m))$. Тогда $U \leq Y$, $m \notin Y$, $Y = \langle L_2 \cup L_3 \cup L_4 \rangle$, $|Y| = 2^{11}$ и Y нормальна в $N_{C_G(m)}(M)$.
 - (vii) Всякая инволюция из $C_G(m)$ сопряжена с инволюцией из M.

Доказательство. П. (v) следует из леммы 2.4(ii) и [1, лемма 25.7], а п. (vii) вытекает из [1, лемма 37.4]. По [1, лемма 25.7] $C_G(m)$ содержит элементарную абелеву подгруппу M порядка 2^{12} такую, что $N_{C_G(m)}(M)/M \cong M_{23}$. По лемме 2.4(ii) имеем $C_G(z,m)\cong 2M(22)$. Конечно, $C_G(z,m)$ содержит силовскую 2-подгруппу $G_G(m)$. Пусть $T\in \mathrm{Syl}_2(N_{C_G(m)}(M))$. Можно считать, что $T\in \mathrm{Syl}_2(C_G(z,m))$), поэтому $z\in M$. По [2, лемма 2.6] M=J(T), и (iv) доказано.

Пусть $\overline{X} = N_{C_G(m)}(M)/M$ и $Y = M \cap O^2(C_G(m))$. Тогда $|Y| = 2^{11}$ и по [4, с. 177] получаем $N_{O^2(C_G(m))}(Y)/Y\cong M_{23}$. Далее, $\overline{X}\cong N_{O^2(C_G(m))}(Y)/Y$. По [1, лемма 22.4] \overline{X} имеет 7 орбит $L_i,\ i=1,\ldots,7,$ на P(M) таких, что $L_1=\{\langle m \rangle\},$ $|L_2|=|L_7|=23,\;\langle z
angle\in L_2,\;L_7=\langle mz
angle^{\overline{X}},\;$ и \overline{X} действует 3-транзитивно на L_2 и L_7 . Имеем $|L_3|=|L_6|=253,\ L_3=\langle xy
angle^{\overline{X}},$ где $\langle x
angle$ и $\langle y
angle$ — два различных элемента из L_2 , и $L_6=\langle mx\rangle^{\overline{X}}$, где $\langle x\rangle\in L_3$. Далее, $|L_4|=|L_5|=1771,\ L_4=$ $\{\langle xyk \rangle$, где $\langle x \rangle$, $\langle k \rangle$ и $\langle y \rangle$ — три различных элемента из $L_2\}$, и $L_5 = \langle mx \rangle^X$, где $\langle x \rangle \in L_4$. Наконец, $\langle L_2 \cup L_3 \cup L_4 \rangle = Y$. По (vii) всякая инволюция из $C_G(m)$ сопряжена с инволюцией из L_i для некоторого $i=1,\ldots,7$. Также по [8, лемма 3] никакой элемент из L_i не сопряжен с элементом из L_i в $C_G(m)$ при $i \neq j$ для $i,j = 1, \dots, 7$. Заметим, что для $T \in \mathrm{Syl}_2(C_{H_1}(U))$ выполнено $T \leq C_{H_1}(m)$. Поскольку $U \leq T'$, имеем $U \leq M \cap C_G(m)' = Y$. Положим u=bd. Тогда по [2, лемма 2.2] u сопряжен с z в $C_{C_{H_1}(r)'}(m)=C_{C_{H_1}(r)'}(d)$. Следовательно, u сопряжен с z в $N_{C_G(m)}(M)$, поэтому $\langle u \rangle \in L_2$. Поскольку zu=adbd=ab=t, получаем, что $\langle t \rangle$ содержится в L_3 , и тогда $\langle mt \rangle$ содержится в L_6 . По [2, лемма 2.2] найдется инволюция $c \in U$ такая, что $c \notin \{a,b,d\}$, aи c сопряжены в $C_{C_{H_1}(r)'}(d)$ и z сопряжена с abc в $C_{H_1}(m)$. Следовательно, $\langle abc \rangle \in L_2$ и $\langle a \rangle \in L_4$, откуда $\langle abczu \rangle = \langle c \rangle \in L_4$. Поскольку ma = rda = rz, то $\langle rz \rangle \in L_5$, и лемма доказана. \square

По лемме $3.2\ N_{C_G(m)}(M)/M$ имеет 7 орбит на P(M). Будем использовать обозначение $L_i,\ i=1,\ldots,7,$ из леммы 3.2 для орбит $N_{C_G(m)}(M)/M$ на P(M). Положим $M_1=\langle L_2\cup L_3\cup L_4\rangle$. Тогда по лемме $3.2(\mathrm{vi})\ |M_1|=2^{11}$ и $M_1=M\cap O^2(C_G(m))$.

Лемма 3.3. (i) $N_G(M)/M \cong M_{24}$.

- (ii) Пусть $S \in \text{Syl}_2(N_G(M))$. Тогда M = J(S).
- (iii) $N_G(M)$ содержит силовскую 2-подгруппу из G.
- (iv) $N_G(M)/M$ имеет четыре орбиты на P(M) длин 24, 276, 2024 и 1771. Далее, при действии $N_G(M)/M$ на P(M) имеем: $L_2 \cup L_3$ является орбитой, содержащей $\langle z \rangle$ и $\langle t \rangle$, $L_7 \cup \{\langle m \rangle\}$ является орбитой, содержащей $\langle m \rangle$, и L_4 является орбитой, содержащей $\langle a \rangle$.
- (v) $O_2(N_G(M)')=M_1$, $N_G(M)'/M_1\cong M_{24}$ и $N_G(M)'/M_1\cong M_{24}$ имеет две орбиты на инволюциях из M_1 длин 1776 и 276. Кроме того, $m\notin M_1$ и $M_1\leq C_G(m)'$.
 - (vi) $N_G(M)$ контролирует слияние элементов в M.
 - (vii) Существует инволюция $x \in M$ такая, что $x^G \cap N_G(M)' = \emptyset$.

ДОКАЗАТЕЛЬСТВО. Имеем $C_G(m,M)=C_G(M)=1$, так что $N_G(M)/M$ изоморфна подгруппе $GL_{12}(2)$. Далее, $N_{C_G(m)}(M)/M\cong M_{23}$. Положим $\overline{X}=$

 $N_{C_G(m)}(M)/M$ и $\overline{Y}=N_G(M)/M$. Так как t и z сопряжены в H_1 , по леммам 3.2(iv),(i),(ii) и 3.1 получаем, что $\overline{Y} \neq \overline{X}$. По лемме 2.2~m не сопряжен с zили d в G. Поэтому m также не сопряжен с a или t в G. По лемме 2.2(iii),(iv) mне сопряжен с rz в G. Поскольку mt = rdab и $rR \in Z(H_1/R)$, по [2, лемма 2.2] получаем, что mt сопряжен с rz в G. Следовательно, m также не сопряжен с mt в G. Таким образом, m не сопряжен с z, t, mt, a и rz в G. Так как $\langle z \rangle \in L_2$, $\langle t \rangle \in L_3, \; \langle mt \rangle \in L_6, \; \langle a \rangle \in L_4, \; \overline{X} \neq \overline{Y}$ и $\langle rz \rangle \in L_5, \;$ получаем, что $L_7 \cup L_1$ является орбитой \overline{Y} на P(M), содержащей $\langle m \rangle$. Тем самым \overline{Y} имеет на P(M)орбиту I длины 24 такую, что \overline{Y} действует 4-транзитивно на I и стабилизатор каждого элемента из I в \overline{Y} изоморфен M_{23} . Следовательно, $\overline{Y}\cong M_{24}$, и (i) выполнено. Так как \overline{Y} 4-транзитивна на I, то \overline{Y} имеет орбиты длины $\binom{24}{2}=276$ и $\binom{24}{3} = 2024$. Таким образом, оставшиеся 1771 элементов лежат в одной орбите. Положим $G_1 = O^2(C_G(m))$. По лемме $3.2({
m vi})$ $m \notin M_1, M_1$ имеет порядок 2^{11} и $M\cap G_1=M_1$. Пусть $x\in G_1\cap N_G(M)$ — элемент порядка 23. Тогда $M=\langle m \rangle \oplus [x,M]$ и [M,x] — точный неприводимый $N_{G_1}(M)/M_1$ -модуль. Отсюда, так как мультипликатор Шура M_{24} тривиален (см. [4, c. 96]), заключаем, что $O_2(N_G(M)')=M_1$ и $N_G(M)'/M_1\cong M_{24}$. Это и [3, лемма 2.4] доказывают (v). Положим $G_2=(N_G(M))'$. Заметим, что $\langle m,G_2 \rangle/M=Y/M$ и, следовательно, орбиты G_2/M_1 на $P(M_1)$ также являются орбитами Y/M на $P(M_1)$. По длинам орбит Y/M на P(M) замечаем, что $L_2 \cup L_3$ — орбита G_2/M_1 , содержащая $\langle z \rangle$, $\langle t \rangle$, L_4 — орбита G_2/M_1 , содержащая $\langle a \rangle$, и выполнено (iv). Теперь группы G_2 и M_1 удовлетворяют условиям теоремы В из [9]. Таким образом, по [9, лемма 3] получаем, что $M_1 = J(T_1)$ для $T_1 \in \mathrm{Syl}_2(G_2)$. Следовательно, M = J(T) для $T \in Syl_2(N_G(M))$, и выполнены (ii) и (vi).

Пусть $\langle x \rangle \in L_1 \cup L_7 \cup_5 \cup L_6$. Тогда $x \notin G_2$. По (vi) и лемме 3.2 (vii) $x^G \cap C_G(m)' = \varnothing$. Отсюда по (vi) и ввиду того, что в $G_2 \setminus (C_G(m)' \cap N_G(M))$ всего один класс инволюций, заключаем, что найдется инволюция $k \in M \setminus G_2$ такая, что $k^G \cap G_2 = \varnothing$, и выполнено (vii). П. (iii) следует из (ii), и лемма доказана \square

Доказательство теоремы 1.2. П. (i) следует из леммы 2.3(iv). Пусть $T \in \operatorname{Syl}_2(N_G(M))$. По лемме 3.3 $T \in \operatorname{Syl}_2(G)$ и найдутся подгруппа S индекса 2 в T и инволюция $x \in M \setminus S$ такие, что $x^G \cap S = \varnothing$. Отсюда по лемме Томпсона о трансфере G имеет подгруппу H индекса 2 такую, что $x \notin H$. По лемме 3.3(v) имеем $m \notin H$. Отсюда в силу того, что $U \subseteq H_1' \subseteq G' \subseteq H$, заключаем, что $r \notin H$. Положим $K = H \cap H_1$. Тогда K и H удовлетворяют условиям теоремы 1.1 из [2], откуда $H \cong M(24)'$. Следовательно, $G \cong M(24)$, и теорема 1.2 доказана. \square

Благодарность. Автор благодарит профессора Гернота Штрота и профессора Майерфранкенфельда за полезные замечания. Также выражает признательность за финансовую поддержку от IMP. Во время выполнения данного проекта автор находился с визитом в Пекинском транспортном университете и благодарен всем сотрудникам математического факультета, особенно профессору Яньцюань Фэну, за гостеприимство и финансовую поддержку.

ЛИТЕРАТУРА

- 1. Aschbacher M. 3-Transposition groups. Cambridge: Cambridge Univ. Press, 1997.
- 2. Salarian M. R. A 3-local characterization of Fi_{24}^\prime // J. Algebra. 2010. V. 324. P. 2804–2813.
- Salarian M. R. A 2-local characterization for M(24)' // Monatsch. Math. 2012. V. 167, N 3. P. 583–588.

- **4.** Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. Oxford: Clarendon Press, 1985.
- 5. Aschbacher M. Finite group theory. Cambridge: Cambridge Univ. Press, 1986.
- **6.** Meierfrankenfeld U., $Stroth\ G$. Groups of local characteristic p. The H-structure theorem. (Preprint). http://conway1.mathematik.uni-halle.de/stroth/.
- Meierfrankenfeld U., Stellmacher B., Stroth G. Finite groups of local characteristic p: An overview // Proc. Durham Conf. Finite Groups. River Edge, NJ: World Sci. Publ., 2003.
- 8. Parker Ch. A 3-local characterization of $U_6(2)$ and Fi_{22} // J. Algebra. 2006. V. 300, N 2. P. 707–728.
- 9. Reifart A. Some simple groups related to M_{24} // J. Algebra. 1977. V. 45, N 1. P. 199–209.

Статья поступила 9 декабря 2014 г.

Mohammed Reza Salarian (Саларьян Мохаммед Реза) Department of Mathematics, Kharazmi University, Karaj/Tehran, Iran salarian@khu.ac.ir