ИНТЕГРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ И ТЕОРЕМЫ ВЛОЖЕНИЯ ДЛЯ n-МЕРНЫХ МУЛЬТИАНИЗОТРОПНЫХ ПРОСТРАНСТВ С ОДНОЙ ВЕРШИНОЙ АНИЗОТРОПНОСТИ

Г. А. Карапетян

Аннотация. Доказываются теоремы вложения для мультианизотропных пространств С. Л. Соболева, порождаемых вполне правильным многогранником Ньютона. Изучается случай, когда многогранник имеет одну вершину анизотропности. Получено специальное интегральное представление функций через набор мульти-индексов многогранника Ньютона.

 $DOI\,10.17377/smzh.2017.58.308$

Ключевые слова: теоремы вложения, мультианизотропное пространство, вполне правильный многогранник, интегральное представление.

Введение

Теоремы вложения для изотропных функциональных пространств впервые получены в работах С. Л. Соболева [1, 2]. В дальнейшем эти результаты были обобщены в многочисленных работах разных авторов. Отметим работы [3–7], где с помощью интегральных представлений доказаны теоремы вложения для анизотропных пространств. Практически все результаты по теоремам вложения, вплоть до 70-х гг. прошлого столетия, можно найти в [8]. В данной работе получено интегральное представление и доказаны теоремы вложения для nмерного пространства в случае, когда вполне правильный многогранник имеет одну вершину анизотропности. Работа является продолжением [9, 10], где доказаны теоремы вложения для плоскости. Полученные теоремы вложения обобщают известные теоремы из вышеуказанных работ для мультианизотропных пространств, а в случае анизотропных пространств совпадают с ними, несмотря на то, что здесь применяется другой подход к интегральному представлению функций через моном мультииндексов. При получении представления функции использованы методы из [11], где интегральное представление С. В. Успенского через квазиэллиптический оператор (см. [12]) обобщено для регулярных гипоэллиптических операторов. Необходимость изучения таких теорем вложения обусловлена тем, что в общем случае характеристический многогранник гипоэллиптического оператора (см. определение в [13]), как показано в [14], вполне правильный.

Работа выполнена при финансовой поддержке тематического финансирования Комитета науки при министерстве образования и науки РА (код проекта SCS № 15Т–1А197).

1. Мультианизотропные ядра и их свойства

Пусть \mathbb{R}^n-n -мерное пространство и \mathbb{Z}^n_+ — множество мультииндексов, т. е. $\alpha\in\mathbb{Z}^n_+$, если $\alpha_i,\ i=1,2,\ldots,n,$ — целые неотрицательные числа. Для $\xi,\eta\in\mathbb{R}^n,\ \alpha\in\mathbb{Z}^n_+$ и t>0 введем следующие обозначения: $|\alpha|=\alpha_1+\cdots+\alpha_n,$ $\xi^\alpha=\xi_1^{\alpha_1}\ldots\xi_n^{\alpha_n},\ t^\eta=(t^{\eta_1},\ldots,t^{\eta_n}),\ D_k=\frac{1}{i}\frac{\partial}{\partial x_k},\ k=1,\ldots,n;\ D^\alpha=D_1^{\alpha_1}\ldots D_n^{\alpha_n}$ — обобщенная производная по С. Л. Соболеву порядка α . Для некоторого набора мультииндексов обозначим через $\mathfrak N$ наименьший выпуклый многогранник, содержащий все точки данного набора. Многогранник $\mathfrak N$ называется вполне правильным, если он имеет вершину в начале координат и на всех координатных осях, а внешние нормали всех (n-1)-мерных некоординатных граней имеют положительные компоненты.

Пусть \mathfrak{N} — вполне правильный многогранник в \mathbb{R}^n . Через \mathfrak{N}_i^{n-1} , $i=1,\ldots,M$, обозначим (n-1)-мерные некоординатные грани многогранника \mathfrak{N} . Далее, пусть μ^i , $i=1,\ldots,M$, есть такая внешняя нормаль грани \mathfrak{N}_i^{n-1} , при которой уравнение гиперплоскости, содержащей данную грань, задается формулой $(\alpha,\mu^i)=1,\ i=1,\ldots,M$. В данной работе изучается случай, когда вершинами вполне правильного многогранника \mathfrak{N} являются точки $(l_1,0,\ldots,0)$, $(0,l_2,0,\ldots,0),\ldots,(0,0,\ldots,0,l_n),\ (\alpha_1,\alpha_2,\ldots,\alpha_n)$, т. е. \mathfrak{N} имеет одну вершину мультианизотропности. В дальнейшем эти вершины будем обозначать через $\{\alpha^1,\alpha^2,\ldots,\alpha^n,\alpha^{n+1}\}$. Зададим следующую нумерацию внешних нормалей $\mu^i,\ i=1,\ldots,n$: μ^i соответствует гиперплоскости, проходящей через точки $\{\alpha^1,\alpha^2,\ldots,\alpha^i,\alpha^{i+1},\ldots,\alpha^{n+1}\}$ $(i=1,2,\ldots,n)$.

Для произвольного параметра $\nu>0$ и натурального числа k введем следующие обозначения:

$$P(\nu,\xi) = (\nu\xi^{\alpha^1})^{2k} + \dots + (\nu\xi^{\alpha^n})^{2k} + (\nu\xi^{\alpha^{n+1}})^{2k}, \tag{1.1}$$

$$G_0(\nu;\xi) = e^{-P(\nu,\xi)},$$
 (1.2)

$$G_{1,j}(\nu,\xi) = 2k(\nu\xi^{\alpha^j})^{2k-1}e^{-P(\nu,\xi)}, \quad j=1,\ldots,n+1.$$
 (1.3)

Для любого значения параметра $\nu>0$, очевидно, $G_0,G_{1,j}\in S$, где $S=S(\mathbb{R}^n)$ — множество быстро убывающих на бесконечности бесконечно дифференцируемых функций. Пусть $\widehat{G}_0(t,\nu),\,\widehat{G}_{1,j}(t,\nu),\,j=1,\ldots,n+1$, суть соответствующие преобразования Фурье функций, т. е.

$$\widehat{G}_{1,j}(t,
u) = rac{1}{(2\pi)^{rac{n}{2}}}\int\limits_{\mathbb{D}_n} e^{-i(t,\xi)} G_{1,j}(\xi,
u) \, d\xi, \quad j=1,\dots,n+1.$$

Как известно, преобразование Фурье переводит S на S, т. е. $\widehat{G}_0(t,\nu),$ $\widehat{G}_{1,j}(t,\nu)\in S,\, j=1,\dots,n+1.$

Для любого мультииндекса $m = (m_1, \dots, m_n)$ изучим поведение интеграла

$$I = I(\nu) = \int_{\mathbb{D}^n} \xi_1^{m_1} \dots \xi_n^{m_n} e^{-P(\nu,\xi)} d\xi_1 \dots d\xi_n$$
 (1.4)

в зависимости от значения ν , где $0 < \nu < 1$.

Рассмотрим $\max_{j=1,...,n} \frac{\alpha_j}{m_j+1}$. Возможны два варианта.

(a) Максимум достигается только на одной координате $i_0, 1 \le i_0 \le n$, т. е.

$$\frac{\alpha_j}{\alpha_{i_0}} < \frac{m_j + 1}{m_{i_0} + 1} \tag{1.5}$$

при $j=1,\ldots,n,\,j\neq i_0.$ Тогда после замены переменных $\xi=
u^{-\mu^{i_0}}\eta$ в интеграле I получим (достаточно рассматривать интегралы от 0 до $+\infty$)

$$\begin{split} I &\leq C \nu^{-(|\mu^{i_0}| + (m,\mu^{i_0}))} \int\limits_0^\infty \dots \int\limits_0^\infty \eta_1^{m_1} \dots \eta_n^{m_n} e^{-\eta_1^{2kl_1}} \dots e^{-\eta_{i_0-1}^{2kl_{i_0}-1}} \\ &\qquad \times e^{-\eta_{i_0+1}^{2kl_{i_0}+1}} \dots e^{-\eta_n^{2kl_n}} e^{-\eta_1^{2k\alpha_1} \dots \eta_n^{2k\alpha_n}} \, d\eta_1 \dots d\eta_n \\ &= C \nu^{-(|\mu^{i_0}| + (m,\mu^{i_0}))} \int\limits_0^\infty \left(\eta_1^{\frac{\alpha_1}{\alpha_{i_0}}} \dots \eta_{i_0} \dots \eta_n^{\frac{\alpha_n}{\alpha_{i_0}}} \right)^{m_{i_0}} \\ &\qquad \times e^{-(\eta_1^{\frac{\alpha_1}{\alpha_{i_0}}} \dots \eta_{i_0} \dots \eta_n^{\frac{\alpha_n}{\alpha_{i_0}}})^{2k\alpha_{i_0}}} \, d\left(\eta_1^{\frac{\alpha_1}{\alpha_{i_0}}} \dots \eta_{i_0} \dots \eta_n^{\frac{\alpha_n}{\alpha_{i_0}}} \right) \\ &\qquad \times \int\limits_0^\infty \eta^{m_1 - \frac{\alpha_1}{\alpha_{i_0}}} m_{i_0} - \frac{\alpha_1}{\alpha_{i_0}} e^{-\eta_1^{2kl_1}} \, d\eta_1 \dots \int\limits_0^\infty \eta^{m_n - \frac{\alpha_n}{\alpha_{i_0}}} m_{i_0} - \frac{\alpha_n}{\alpha_{i_0}} e^{-\eta_1^{2kl_n}} \, d\eta_n. \end{split}$$

Так как выполняются неравенства (1.5), имеем

$$\begin{cases} m_1 - \frac{\alpha_1}{\alpha_{i_0}} m_{i_0} - \frac{\alpha_1}{\alpha_{i_0}} > -1, \\ \dots \\ m_n - \frac{\alpha_n}{\alpha_{i_0}} m_{i_0} - \frac{\alpha_n}{\alpha_{i_0}} > -1 \end{cases}$$

и каждый из интегралов сходится. В итоге $I \leq C \nu^{-(|\mu^{i_0}| + (m,\mu^{i_0}))}$ для некоторой

(б) Максимум достигается во многих местах, т. е. хотя бы в одном из соотношений (1.5) имеет место равенство.

Для определенности будем считать, что $i_0 = n$. Сначала рассмотрим случай, когда равенство имеет место только в одном из соотношений (1.5), например, при j=n-1, т. е. $\frac{\alpha_1}{\alpha_n}<\frac{m_1+1}{m_n+1},\ldots,\frac{\alpha_{n-2}}{\alpha_n}<\frac{m_{n-2}+1}{m_n+1},\frac{\alpha_{n-1}}{\alpha_n}=\frac{m_{n-1}+1}{m_n+1}.$ Интеграл I представим в виде суммы

$$I = \int_{0}^{\infty} d\xi_{1} \dots \int_{0}^{\infty} d\xi_{n-1} \int_{0}^{\nu^{-\mu_{n}}} \xi^{m} G_{0}(\xi, \nu) d\xi_{n}$$

$$+ \int_{0}^{\infty} d\xi_{1} \dots \int_{0}^{\infty} d\xi_{n-1} \int_{\nu^{-\mu_{n}}}^{\infty} \xi^{m} G_{0}(\xi, \nu) d\xi_{n} = I_{1} + I_{2}.$$

В интеграле I_1 сделаем замену переменных $\xi = \nu^{-\mu^n} \eta$. Получим

$$I_{1} = \nu^{-(|\mu^{n}| + (m,\mu^{n}))} \int_{0}^{\infty} d\eta_{1} \dots \int_{0}^{\infty} d\eta_{n-1} \int_{0}^{1} \eta_{1}^{m_{1}} \dots \eta_{n}^{m_{n}} e^{-\eta_{1}^{2kl_{1}}} \dots e^{-\eta_{n-1}^{2kl_{n-1}}}$$

$$\times e^{-\eta_{1}^{2k\alpha_{1}} \dots \eta_{n}^{2k\alpha_{n}}} d\eta_{n} \leq C \nu^{-(|\mu^{n}| + (m,\mu^{n}))} \int_{0}^{\infty} \eta_{1}^{m_{1}} e^{-\eta_{1}^{2kl_{1}}} d\eta_{1}$$

$$\dots \int_{0}^{\infty} \eta_{n-1}^{m_{n-1}} e^{-\eta_{n-1}^{2kl_{n-1}}} d\eta_{n-1} \int_{0}^{1} \eta_{n}^{m_{n}} d\eta_{n} \leq C \nu^{-(|\mu^{n}| + (m,\mu^{n}))}.$$

Осуществляя в интеграле I_2 преобразование $\xi = \nu^{-\mu^{n-1}} \eta$, имеем

$$\begin{split} I_2 &= \nu^{-(|\mu^{n-1}| + (m,\mu^{n-1}))} \int\limits_0^\infty d\eta_1 \dots \int\limits_0^\infty d\eta_{n-1} \int\limits_{\nu^{-\mu^n_n + \mu^{n-1}_n}}^\infty \eta_1^{m_1} \dots \eta_n^{m_n} \\ &\times e^{-\eta_1^{2kl_1}} \dots e^{-\eta_{n-2}^{2kl_{n-2}}} e^{-\eta_n^{2kl_n}} e^{-\eta_1^{2k\alpha_1}} \dots \eta_n^{2k\alpha_n} \ d\eta_n \\ &= \nu^{-(|\mu^{n-1}| + (m,\mu^{n-1}))} \int\limits_0^\infty \eta_1^{m_1 - \frac{\alpha_1}{\alpha_{n-1}}} m_{n-1} - \frac{\alpha_1}{\alpha_{n-1}}} e^{-\eta_1^{2kl_1}} d\eta_1 \\ &\dots \int\limits_0^\infty \eta_{n-2}^{m_{n-2} - \frac{\alpha_{n-2}}{\alpha_{n-1}}} m_{n-1} - \frac{\alpha_{n-2}}{\alpha_{n-1}}} e^{-\eta_{n-2}^{2kl_{n-2}}} d\eta_{n-2} \int\limits_0^\infty \left(\eta_1^{\frac{\alpha_1}{\alpha_{n-1}}} \eta_2^{\frac{\alpha_2}{\alpha_{n-1}}} \dots \eta_{n-1} \eta_n^{\frac{\alpha_n}{\alpha_{n-1}}} \right)^{m_{n-1}} \\ &\times e^{-(\eta_1^{\frac{\alpha_1}{\alpha_{n-1}}} \eta_2^{\frac{\alpha_2}{\alpha_{n-1}}} \dots \eta_{n-1} \eta_n^{\frac{\alpha_n}{\alpha_{n-1}}})^{2k\alpha_{n-1}}} d\left(\eta_1^{\frac{\alpha_1}{\alpha_{n-1}}} \eta_2^{\frac{\alpha_2}{\alpha_{n-1}}} \dots \eta_{n-1} \eta_n^{\frac{\alpha_n}{\alpha_{n-1}}} \right) \\ &\times \int\limits_{\nu^{-\mu^n_n + \mu^{n-1}}}^\infty e^{-\eta^{2kl_n}_n} d\eta_n. \end{split}$$

В силу условия (б)

$$\frac{\alpha_1}{\alpha_{n-1}} < \frac{m_1+1}{m_{n-1}+1}, \ldots, \frac{\alpha_{n-2}}{\alpha_{n-1}} < \frac{m_{n-2}+1}{m_{n-1}+1}, \frac{\alpha_n}{\alpha_{n-1}} = \frac{m_n+1}{m_{n-1}+1},$$

следовательно,

$$m_1 - \frac{\alpha_1}{\alpha_{n-1}} m_{n-1} - \frac{\alpha_1}{\alpha_{n-1}} > -1, \dots, m_{n-2} - \frac{\alpha_{n-2}}{\alpha_{n-1}} m_{n-1} - \frac{\alpha_{n-2}}{\alpha_{n-1}} > -1,$$

поэтому первые n-1 интегралов сходятся. Если $\mu_n^{n-1} \leq \mu_n^n$, то $\nu^{-\mu_n^n + \mu_n^{n-1}} > 1$ и последний интеграл равномерно ограничен по ν . Если $\mu_n^n > \mu_n^{n-1}$, то $\nu^{-\mu_n^n + \mu_n^{n-1}} < 1$ и, разбив последний интеграл на два интеграла, получим

$$\int\limits_{\nu^{-\mu_n^n+\mu_n^{n-1}}}^{\infty} \frac{e^{-\eta_n^{2kl_n}}}{\eta_n} \, d\eta_n = \int\limits_{\nu^{-\mu_n^n+\mu_n^{n-1}}}^{1} \frac{e^{-\eta_n^{2kl_n}}}{\eta_n} \, d\eta_n + \int\limits_{1}^{\infty} \frac{e^{-\eta_n^{2kl_n}}}{\eta_n} \, d\eta_n \leq (C_1 |\ln \nu| + C_2),$$

где $C_1, C_2 > 0$ — некоторые постоянные. Рассмотрим случай, когда в соотношениях (1.5) имеем l равенств и n-l-1 неравенств. Пусть, например,

$$\frac{\alpha_{1}}{\alpha_{n}} < \frac{m_{1}+1}{m_{n}+1}, \dots, \frac{\alpha_{n-l-1}}{\alpha_{n}} < \frac{m_{n-l-1}+1}{m_{n}+1},
\frac{\alpha_{n-l}}{\alpha_{n}} = \frac{m_{n-l}+1}{m_{n}+1}, \dots, \frac{\alpha_{n-1}}{\alpha_{n}} = \frac{m_{n-1}+1}{m_{n}+1}.$$
(1.6)

Положим $\mu_j^0 = \min_{i=1,\dots,n} \mu_j^i, \ j=n-l,\dots,n,$ и интеграл I разобьем на следу-

ющие r слагаемых:

$$I = \int_{0}^{\infty} d\xi_{1} \dots \int_{0}^{\infty} d\xi_{n-l-1} \int_{0}^{\nu^{-\mu_{n-l}^{0}}} d\xi_{n-l} \int_{0}^{\nu^{-\mu_{n-l+1}^{0}}} d\xi_{n-l+1} \dots \int_{0}^{\nu^{-\mu_{n}^{0}}} \xi^{m} G_{0}(\xi, \nu) d\xi_{n}$$

$$+ \int_{0}^{\infty} d\xi_{1} \dots \int_{0}^{\infty} d\xi_{n-l-1} \int_{\nu^{-\mu_{n-l}^{0}}}^{\infty} d\xi_{n-l} \int_{0}^{\nu^{-\mu_{n-l+1}^{0}}} d\xi_{n-l+1} \dots \int_{0}^{\nu^{-\mu_{n}^{0}}} \xi^{m} G_{0}(\xi, \nu) d\xi_{n}$$

$$+ \dots + \int_{0}^{\infty} d\xi_{1} \dots \int_{0}^{\infty} d\xi_{n-l-1} \int_{\nu^{-\mu_{n-l}^{0}}}^{\infty} d\xi_{n-l} \dots \int_{\nu^{-\mu_{n}^{0}}}^{\infty} \xi^{m} G_{0}(\xi, \nu) d\xi_{n} = I_{1} + I_{2} + \dots + I_{r}.$$

В каждом из слагаемых $I_k, k \neq r$, существует хотя бы один интеграл от 0 до $\nu^{-\mu_j^0}$ (для некоторого номера $j, n-l \leq j \leq n$). Тогда в интеграле I_k после замены переменных $\xi = \nu^{-\mu^i} \eta$, где $i, i = 1, \ldots, n$, — индекс, для которого $\mu_j^0 = \mu_j^i$, получим

$$\begin{split} I_{k} &\leq C \nu^{-(|\mu^{i}|+(m,\mu^{i}))} \int\limits_{0}^{\infty} d\eta_{1} \dots \int\limits_{0}^{\infty} d\eta_{n-l-1} \int\limits_{0}^{\infty} d\eta_{n-l} \dots \int\limits_{0}^{1} d\eta_{i} \int\limits_{0}^{\infty} d\eta_{i+1} \\ & \dots \int\limits_{0}^{\infty} \eta_{1}^{m_{1}} \dots \eta_{n}^{m_{n}} e^{-\eta_{1}^{2kl_{1}}} \dots e^{-\eta_{i-1}^{2kl_{i-1}}} e^{-\eta_{1}^{2k\alpha_{1}} \dots \eta_{n}^{2k\alpha_{n}}} e^{-\eta_{i+1}^{2kl_{i+1}}} \dots e^{-\eta_{n}^{2kl_{n}}} d\eta_{n} \\ & \leq C \nu^{-(|\mu^{i}|+(m,\mu^{i}))} \int\limits_{0}^{\infty} \eta_{1}^{m_{1}} e^{-\eta_{1}^{2kl_{1}}} d\eta_{1} \dots \int\limits_{0}^{\infty} \eta_{n-l-1}^{m_{n-l-1}} e^{-\eta_{n-l-1}} d\eta_{n-l-1} \\ & \dots \int\limits_{0}^{1} \eta_{i}^{m_{i}} d\eta_{i} \int\limits_{0}^{\infty} \eta_{i+1}^{m_{i+1}} e^{-\eta_{i+1}^{2kl_{i+1}}} d\eta_{i+1} \dots \int\limits_{0}^{\infty} \eta_{n}^{m_{n}} e^{-\eta_{n}^{2kl_{n}}} d\eta_{n} \leq C \nu^{-(|\mu^{i}|+(m,\mu^{i}))}. \end{split}$$

Остается оценить I_r . Возьмем один из индексов, для которого в соотношениях (1.5) имеет место равенство (допустим, это индекс n), и в интеграле I_r сделаем замену переменных $\xi = \nu^{-\mu^n} \eta$. Имеем

$$\begin{split} I_r &= \nu^{-(|\mu^n| + (m,\mu^n))} \int\limits_0^\infty d\eta_1 \cdots \int\limits_0^\infty d\eta_{n-l-1} \int\limits_{\nu^{-\mu^0_{n-l} + \mu^n_{n-l}}}^\infty d\eta_{n-l} \\ &\cdots \int\limits_{\nu^{-\mu^0_n + \mu^n_n}}^\infty \eta_1^{m_1} \dots \eta_n^{m_n} e^{-\eta_1^{2kl_1}} \dots e^{-\eta_{n-1}^{2kl_{n-1}}} e^{-\eta_1^{2k\alpha_1}} \dots \eta_n^{2k\alpha_n} d\eta_n \\ &\leq C \nu^{-(|\mu^n| + (m,\mu^n))} \int\limits_0^\infty \frac{e^{-\eta_1^{2kl_1}}}{\eta_1^{p_1}} d\eta_1 \cdots \int\limits_0^\infty \frac{e^{-\eta_{n-l-1}^{2kl_{n-l-1}}}}{\eta_{n-l-1}^{p_{n-l-1}}} d\eta_{n-l-1} \\ &\times \int\limits_{\nu^{-\mu^0_{n-l} + \mu^n_{n-l}}}^\infty \frac{e^{-2kl_{n-l}}}{\eta_{n-l}} d\eta_{n-l} \cdots \int\limits_{\nu^{-\mu^0_{n-1} + \mu^n_{n-1}}}^\infty \frac{e^{-\eta^{2kl_{n-1}}_{n-l-1}}}{\eta_{n-1}} d\eta_{n-1} \int\limits_0^\infty t^{m_n} e^{-t^{2k\alpha_n}} dt, \end{split}$$

 $t=\eta_1^{\frac{\alpha_1}{\alpha_n}}\dots\eta_{n-1}^{\frac{\alpha_{n-1}}{\alpha_n}}\eta_n$, а $p_i,\,i=1,\dots,n-l-1$, суть некоторые числа, большие -1. Следовательно, первые n-l-1 интегралов сходятся. Последний интеграл также сходится. Остается исследовать интегралы от n-l до n-1. Рассмотрим один из этих интегралов. Пусть $n-l\leq i\leq n-1$. Так как $-\mu_i^0+\mu_i^n\geq 0$ и $\nu^{-\mu_i^0+\mu_i^n}\leq 1$, имеем

$$\int\limits_{
u^{-\mu_{i}^{0}+\mu_{i}^{n}}}^{\infty} rac{e^{-\eta_{i}^{2kl_{i}}}}{\eta_{i}} \, d\eta_{i} = \int\limits_{
u^{-\mu_{i}^{0}+\mu_{i}^{n}}}^{1} rac{e^{-\eta_{i}^{2kl_{i}}}}{\eta_{i}} \, d\eta_{i} + \int\limits_{1}^{\infty} rac{e^{-\eta_{i}^{2kl_{i}}}}{\eta_{i}} \, d\eta_{i} \leq C_{1} |\ln
u| + C_{2}.$$

Следовательно,

$$I_r \le \nu^{-(|\mu^n| + (m,\mu^n))} (C_l |\ln \nu|^l + C_{l-1} |\ln \nu|^{l-1} + \dots + C_0)$$
(1.7)

для некоторых положительных постоянных C_0, C_1, \ldots, C_l .

Пусть для мультииндекса $\alpha^{n+1} = (\alpha_1, \dots, \alpha_n)$ (вершины многогранника \mathfrak{N}) имеет место неравенство $\alpha_1 < \alpha_2 < \dots < \alpha_n$.

Рассмотрим прямую, проходящую через точки $\alpha^n = (0, 0, \dots, l_n)$ и $\alpha^{n+1} =$ $(\alpha_1, \dots, \alpha_n)$. Эта прямая принадлежит всем гиперплоскостям, имеющим внешние нормали $\mu^1, \mu^2, \dots, \mu^{n-1}$. Зададим данную прямую аналитически: $x_1 =$ $lpha_1-tlpha_1,\,x_2=lpha_2-tlpha_2,\,\ldots,\,x_{n-1}=lpha_{n-1}-tlpha_{n-1},\,x_n=lpha_n+t(l_n-lpha_n).$ Обозначим через $\beta = (\beta_1, \dots, \beta_{n-1}, 0)$ точку пересечения данной прямой с гиперплоскостью $x_n=0$. Тогда $\beta_i=rac{lpha_i l_n}{l_n-lpha_n},\ i=1,2,\ldots,n-1$. Так как $lpha_1<lpha_2<\cdots<lpha_{n-1},$ то $eta_1<eta_2<\cdots<eta_{n-1}$. Рассмотрим прямую, проходящую через точки $\alpha^{n-1}=(0,0,\ldots,l_{n-1},0)$ и $\beta=(\beta_1,\beta_2,\ldots,\beta_{n-1},0)$. Эта прямая принадлежит всем гиперплоскостям, имеющим внешнюю нормаль $\mu^1, \mu^2, \dots, \mu^{n-2}$. Точку пересечения прямой, проходящей через точки $lpha^{n-1}=(0,0,\ldots,l_{n-1},0)$ и $\beta = (\beta_1, \beta_2, \dots, \beta_{n-1}, 0),$ с гиперплоскостью $x_{n-1} = 0$ обозначим через $\gamma =$ $(\gamma_1, \gamma_2, \dots, \gamma_{n-2}, 0, 0)$. Так как $\beta_1 < \beta_2 < \dots < \beta_{n-1}$, то $\gamma_1 < \gamma_2 < \dots < \gamma_{n-2}$. Аналогично продолжим процесс до точки $\sigma = (\sigma_1, 0, \dots, 0)$, которая принадлежит гиперплоскости с внешней нормалью μ^1 и является точкой пересечения прямой, проходящей через точки $\alpha^2=(0,l_2,\ldots,0)$ и $\delta=(\delta_1,\delta_2,0,\ldots,0)$, с гиперплоскостью $x_2 = 0$. Тем самым гиперплоскости μ^1 принадлежат все точки $\alpha, \beta, \gamma, \dots, \sigma$. Пусть N — четное число такое, что векторы $N\alpha, N\beta, N\gamma, \dots, N\sigma$ являются мультииндексами, имеющими четные координаты (это возможно, так как векторы $\alpha, \beta, \gamma, \dots, \sigma$ имеют рациональные координаты).

Применяя оценку (1.7), докажем следующую лемму (аналог леммы 1.1 из [9]).

Лемма 1.1. Пусть $\alpha_1 < \alpha_2 < \dots < \alpha_n$. Тогда для любого мультииндекса $m = (m_1, \dots, m_n)$ и любого четного числа N, удовлетворяющего вышеуказанному условию, существуют постоянные C_0, C_1, \dots, C_l (зависящие от m, N, k, α) такие, что для любого ν , $0 < \nu < 1$, имеют места неравенства

$$|D^{m}\widehat{G}_{r}(t,\nu)| \leq \nu^{-\max_{i=1,\dots,n}(|\mu^{i}|+(m,\mu^{i}))} \times \frac{(C_{l}|\ln\nu|^{l}+C_{l-1}|\ln\nu|^{l-1}+\dots+C_{0})}{1+\nu^{-N}\left(t_{1}^{N\alpha_{1}}t_{2}^{N\alpha_{2}}\dots t_{n}^{N\alpha_{n}}+t_{1}^{N\beta_{1}}\dots t_{n-1}^{N\beta_{n-1}}+\dots t_{1}^{N\sigma_{1}}\right)}, \quad (1.8)$$

где r=0 или $r=1,j,\ j=1,\dots,n+1,\$ а $l,\ l=0,1,\dots,n-1,\$ — количество равенств в соотношениях (1.6).

Доказательство. Оценим $\widehat{G}_{1,j}(t,\nu),\ j=1,\dots,n+1.$ Для любого мультииндекса $m=(m_1,\dots,m_n)$ имеем

$$D^{m}\widehat{G}_{1,j}(t,\nu) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \xi_{1}^{m_{1}} \dots \xi_{n}^{m_{n}} e^{-i(t,\xi)} 2k(\nu \xi^{\alpha^{j}})^{2k-1} e^{-P(\nu,\xi)} d\xi_{1} \dots d\xi_{n}. \quad (1.9)$$

Рассмотрим вершину $\alpha=(\alpha_1,\dots,\alpha_n)$ многогранника $\mathfrak N$ и мультииндекс $m=(m_1,\dots,m_n)$. Пусть между векторами α и m имеет место соотношение (1.6). Тогда, как и при оценке интеграла I, если сделать замену переменных $\xi=\nu^{-\mu^i}\eta$ (для некоторого $i,1\leq i\leq n$) в интегралах, то в отличие от I появляется множитель типа $\left(\nu^{1-(\alpha^j\mu^i)}\eta^{\alpha^j}\right)^{2k-1}e^{-\left(\nu^{1-(\alpha^j,\mu^i)}\eta^{\alpha^j}\right)^{2k}}$, который равномерно ограничен по ν и по η при $i\neq j$. Если i=j, то

$$\left(\eta^{\alpha^i}\right)^{2k-1} e^{-\eta^{2k\alpha^i}} = \left(\eta^{\alpha^i}\right)^{2k-1} e^{-\eta^{(2k-1)\alpha^i}} e^{-\eta^{\alpha^i}} \leq C e^{-\eta^{\alpha^i}}.$$

Тем самым после преобразования $\xi = \nu^{-\mu^i} \eta$ получим

$$|D^{m}\widehat{G}_{1,j}(t,\nu)| \leq C\nu^{-(|\mu^{i}|+(m,\mu^{i}))} \int_{0}^{\infty} \dots \int_{0}^{\infty} \eta_{1}^{m_{1}} \dots \eta_{n}^{m_{n}} e^{-\frac{1}{2}P(\nu,\nu^{-\mu^{i}}\eta)} d\eta_{1} \dots d\eta_{n}$$

$$\leq \nu^{-\max_{i=1,\dots,n}(|\mu^{i}|+(m,\mu^{i}))} (C_{l}|\ln\nu|^{l} + C_{l-1}|\ln\nu|^{l-1} + \dots + C_{0}), \quad (1.10)$$

где l — количество равенств в соотношениях (1.6).

Оценим величину $\nu^{-N}t_1^{N\alpha_1}\dots t_n^{N\alpha_n}D^m\widehat{G}_{1,j}(t,\nu)$. В силу преобразования Фурье приходим к выражению

$$\nu^{-N} t_1^{N\alpha_1} \dots t_n^{N\alpha_n} D^m \widehat{G}_{1,j}(t,\nu) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \nu^{-N} D_{\xi_1}^{N\alpha_1} \dots D_{\xi_n}^{N\alpha_n} e^{-i(t,\xi)} \times \xi_1^{m_1} \dots \xi_n^{m_n} (2k) (\nu \xi^{\alpha^j})^{2k-1} e^{-P(\nu,\xi)} d\xi_1 \dots d\xi_n,$$

которое после интегрирования по частям сводится к оценке интеграла

$$\nu^{-N+2k-1} \int_{0}^{\infty} \dots \int_{0}^{\infty} \left| D_{\xi_{1}}^{N\alpha_{1}} \dots D_{\xi_{n}}^{N\alpha_{n}} \right| \times \left(\xi_{1}^{m_{1}+(2k-1)\alpha_{1}^{j}} \dots \xi_{n}^{m_{n}+(2k-1)\alpha_{n}^{j}} e^{-P(\nu,\xi)} \right) d\xi_{1} \dots d\xi_{n}.$$

Применив формулу для производной функции $\Phi(\xi)e^{-P(\nu,\xi)},$ как и в [9], получим

$$\nu^{-N+2k-1} \sum_{\beta+\gamma=N\alpha} C_{N\alpha}^{\beta} \int_{0}^{\infty} \dots \int_{0}^{\infty} D_{\xi}^{\beta} \left(\xi_{1}^{m_{1}+(2k-1)\alpha_{1}^{j}} \dots \xi_{n}^{m_{n}+(2k-1)\alpha_{n}^{j}} \right) \times \sum_{\sigma^{1}+\dots+\sigma^{|\gamma|}=\gamma} e^{-P(\nu,\xi)} \prod_{j=1}^{|\gamma|} D_{\xi}^{\sigma^{j}} (P(\nu,\xi)) d\xi_{1} \dots d\xi_{n}, \quad (1.11)$$

где произведение берется по тем σ^{j} , для которых $|\sigma^{j}| > 0$.

Если зафиксировать некоторые мультииндексы $\beta, \gamma, \sigma^1, \ldots, \sigma^{|\gamma|}$ такие, что $\beta + \gamma = \alpha N, \, \sigma^1 + \cdots + \sigma^{|\gamma|} = \gamma$, то в каждом слагаемом в (1.11) под знаком интеграла получим многочлен от $\xi \colon \xi_1^{\rho_1} \ldots \xi_n^{\rho_n}$, причем $\rho_i, \, i=1,\ldots,n$, определяются из соотношений

$$ho_i = m_i + (2k-1)lpha_i^j - Nlpha_i + 2k(lpha_i^r + \dots + lpha_i^q), \quad i = 1,\dots,n,$$

где количество слагаемых в последней сумме равно $|\gamma|$, а индексы r, \ldots, q независимо друг от друга принимают значения $1, 2, \ldots, n+1$ (повторение индексов не исключается).

Из выражения величины ρ_i следует, что если при некоторых $i,j,\ i\neq j,$ имеем $\frac{\alpha_i}{\alpha_j}\neq \frac{m_i+1}{m_j+1},$ то для любого N можно подобрать k таким образом, что $\frac{\alpha_i}{\alpha_j}\neq \frac{\rho_i+1}{\rho_j+1}.$

Далее, если в интеграле (1.11) для некоторого номера $i, i = 1, \ldots, n$, сделать замену переменных $\xi = \nu^{-\mu^i} \eta$, то, учитывая, что $D_\xi^\beta = \nu^{(\mu^i,\beta)} D_\eta^\beta$, в степени ν получим

$$\nu^{-N+(N\alpha,\mu^i)+(2k-1)(1-(\alpha^j,\mu^i))} \prod_r \nu^{2k(1-(\alpha^r,\mu^i))} \nu^{-(|\mu^i|+(m,\mu^i))}, \tag{1.12}$$

где в произведении количество множителей равно $|\gamma|$, а индекс r принимает значения $1, 2, \ldots, n+1$, причем повторение индексов не исключается.

Рассмотрим каждое слагаемое в формуле (1.11) и возьмем тот индекс i_0 , для которого $\frac{\rho_{i_0}+1}{\alpha_{i_0}} \leq \frac{\rho_{j}+1}{\alpha_{j}}, \ j=1,\dots,n$. Для определенности будем считать, что $i_0=n$ и

$$\frac{\alpha_1}{\alpha_n}<\frac{\rho_1+1}{\rho_n+1},\ldots,\frac{\alpha_{n-l-1}}{\alpha_n}<\frac{\rho_{n-l-1}+1}{\rho_n+1},\frac{\alpha_{n-l}}{\alpha_n}=\frac{\rho_{n-l}+1}{\rho_n+1},\ldots,\frac{\alpha_{n-1}}{\alpha_n}=\frac{\rho_{n-1}+1}{\rho_n+1}.$$

Каждое слагаемое в (1.11) оценивается так же, как и интеграл I в формуле (1.4). В итоге, исходя из того, что в общем случае по предположению в соотношениях (1.6) имеет место l равенств, для некоторых постоянных C_0, C_1, \ldots, C_l приходим к неравенству

$$\left| \nu^{-N} t_1^{N\alpha_1} \dots t_n^{N\alpha_n} D^m \widehat{G}_{1,j}(t,\nu) \right| \\
\leq \nu^{-\max_{j=1,\dots,n} (|\mu^j| + (m,\mu^j))} (C_l |\ln \nu|^l + C_{l-1} |\ln \nu|^{l-1} + \dots + C_0). \quad (1.13)$$

Оценим величину $\nu^{-N}t_1^{N\beta_1}\dots t_{n-1}^{N\beta_{n-1}}\widehat{G}_{1,j}(t,\nu)$. Все рассуждения проводятся на аналогии с предыдущим случаем с той лишь разницей, что везде мультииндекс α следует заменить мультииндексом $\beta=(\beta_1,\beta_2,\dots,\beta_{n-1},0)$. Так как точка β принадлежит гиперплоскостям, имеющим внешнюю нормаль $\mu^1,\mu^2,\dots,\mu^{n-1}$, то $(N\beta,\mu^i)=N,\ i=1,\dots,n-1,\ a\ (N\beta,\mu^n)>N$ (согласно построению точки β). В итоге получим, как и в предыдущем случае, что степень ν больше или равна $-\max_{j=1,\dots,n}(|\mu^j|+(m,\mu^j))$. Следовательно, $\nu^{-N}t_1^{N\beta_1}\dots t_{n-1}^{N\beta_{n-1}}\widehat{G}_{1,j}(t,\nu)$ тоже оценивается неравенством вида (1.13).

Аналогично оценивается член $\nu^{-N}t_1^{N\gamma_1}\dots t_{n-2}^{N\gamma_{n-2}}\widehat{G}_{1,j}(t,\nu)$, если учесть, что точка $\gamma=(\gamma_1,\dots,\gamma_{n-2},0,0)$ находится вне многогранника $\mathfrak N$ и принадлежит гиперплоскостям, имеющим внешнюю нормаль $\mu^1,\mu^2,\dots,\mu^{n-2}$, следовательно, $(N\gamma,\mu^i)=N$ при $i=1,\dots,n-2$ и $(N\gamma,\mu^{n-1})>N,$ $(N\gamma,\mu^n)>N$. Наконец, для точки $\sigma=(\sigma_1,0,\dots,0)$ нужно учесть, что она принадлежат гиперплоскости с внешней нормалью μ^1 и $(N\sigma,\mu^1)=N,$ $(N\sigma,\mu^i)>N,$ $i=2,\dots,n$, т. е. для всех слагаемых имеет место неравенство (1.13). Следовательно, неравенство (1.8) и лемма 1.1 доказаны. \square

Лемма 1.2. Пусть $\alpha_1 < \alpha_2 < \dots < \alpha_n$. Тогда существуют постоянная C>0 и натуральное число N_0 такие, что для любого $N>N_0$ и для любого ν , $0<\nu<1$, имеет место неравенство

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \frac{dt_1 dt_2 \dots dt_n}{1 + \nu^{-N} \left(t_1^{N\alpha_1} \dots t_n^{N\alpha_n} + t_1^{N\gamma_1} \dots t_{n-1}^{N\gamma_{n-1}} + \dots + t_1^{N\sigma_1} \right)} \le C \nu^{|\mu^1|}. \quad (1.14)$$

ДОКАЗАТЕЛЬСТВО. Так как $\alpha_1 < \alpha_2 < \dots < \alpha_n$, то $\beta_1 < \beta_2 < \dots < \beta_{n-1}$, $\gamma_1 < \gamma_2 < \dots < \gamma_{n-2}$, $\frac{\alpha_1}{\alpha_2} = \frac{\beta_1}{\beta_2} = \frac{\gamma_1}{\gamma_2}$ и т. д. После замены переменных $t = \nu^{\mu^1} \eta$ интеграл примет вид

$$J = \int\limits_0^\infty \cdots \int\limits_0^\infty \frac{\nu^{|\mu^1|} \, d\eta_1 \ldots d\eta_n}{1 + \left(\eta_1^{\frac{\alpha_1}{\alpha_n}} \ldots \eta_{n-1}^{\frac{\alpha_{n-1}}{\alpha_n}} \eta_n\right)^{N\alpha_n} + \left(\eta_1^{\frac{\beta_1}{\beta_{n-1}}} \ldots \eta_{n-2}^{\frac{\beta_{n-2}}{\beta_{n-1}}} \eta_{n-1}\right)^{N\beta_{n-1}} + \cdots + \eta_1^{N\sigma_1}}.$$

В последнем интеграле, производя замену переменных $\tau_1=\eta_1,\,\tau_2=\eta_1^{\frac{\alpha_1}{\alpha_2}}\eta_2,\,\ldots,\,\tau_n=\eta_1^{\frac{\alpha_1}{\alpha_n}}\eta_2^{\frac{\alpha_2}{\alpha_n}}\ldots\eta_{n-1}^{\frac{\alpha_{n-1}}{\alpha_n}}\eta_n$ и учитывая, что якобиан преобразования равен $\tau_1^{-\frac{\alpha_1}{\alpha_2}}\tau_2^{-\frac{\alpha_2}{\alpha_3}}\ldots\tau_{n-1}^{-\frac{\alpha_{n-1}}{\alpha_n}}$, получим

$$J \le C\nu^{|\mu^1|} \int_{0}^{\infty} \dots \int_{0}^{\infty} \frac{d\tau_1 \tau_2 \dots d\tau_n}{\tau_1^{\frac{\alpha_1}{\alpha_2}} \dots \tau_{n-1}^{\frac{\alpha_{n-1}}{\alpha_n}} \left(1 + \tau_1^{N\sigma_1} + \dots + \tau_{n-1}^{N\beta_{n-1}} + \tau_n^{N\alpha_n}\right)}.$$

Последний интеграл сходится при $\min(N\sigma_1,\dots,N\alpha_n)>n$, так как $\frac{\alpha_1}{\alpha_2}<1,$ $\frac{\alpha_2}{\alpha_3}<1,\dots,\frac{\alpha_{n-1}}{\alpha_n}<1.$

Рассмотрим случай, когда $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$. Для определенности пусть $\alpha_1 < \alpha_2 < \cdots < \alpha_{n-k} \leq \alpha_{n-k+1} \leq \cdots \leq \alpha_n \ (k=1,\ldots,n-1)$.

Построим комплекты векторов следующим образом. Рассмотрим грань, проходящую через точки $\{\alpha^2,\ldots,\alpha^n,\alpha^{n+1}\}$ с внешней нормалью μ^1 . Продолжим эту грань до пересечения с k гиперплоскостями $(x_1, \ldots, x_{n-1}, 0), (x_1, \ldots, x_n)$ $(x_{n-2},0,x_n),(x_1,\ldots,x_{n-k},0,x_{n-k+2},\ldots,x_{n-1},x_n).$ Как и выше, обозначим через $(\beta_1, \dots, \beta_{n-2}, \beta_{n-1}, 0)$ точку пересечения координатной гиперплоскости (x_1, \dots, x_n) $(x_{n-1},0)$ и прямой, проходящей через точки $lpha^n=(0,\dots,0,l_n)$ и $lpha^{n+1}=(lpha_1,lpha_2,lpha_n)$ \ldots, α_n); через $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_{n-2}, 0, 0)$ обозначим точку пересечения прямой, проходящей через точки $lpha^{n-1}=(0,\dots,0,l_{n-1},0)$ и eta, с гиперплоскостью $(x_1,x_2,$ $\ldots, x_{n-2}, 0, 0)$, и т. д. до построения точки $\delta = (\delta_1, \ldots, \delta_k, 0, \ldots, 0)$. Далее поочередно построим точки $(n_1,\ldots,n_{k-1},0,0,\ldots,0), (q_1,\ldots,q_{k-2},0,0,\ldots,0)$ и т. д. до $(r_1,0,0,\ldots,0)$. Получим первый комплект n векторов. Затем построим следующий комплект n векторов. Обозначим через $\sigma = (\sigma_1, \dots, \sigma_{n-2}, 0, \sigma_n)$ точку пересечения координатной гиперплоскости $(x_1, x_2, \dots, x_{n-2}, 0, x_n)$ и прямой, проходящей через точки $\alpha^n = (0, \dots, 0, l_n)$ и $\alpha^{n+1} = (\alpha_1, \alpha_2, \dots, \alpha_n)$; через $\theta =$ $(\theta_1,\dots,\theta_{n-3},0,0,\theta_n)$ обозначим точку пересечения прямой, проходящей через точки $\alpha^{n-1}=(0,\ldots,0,l_{n-1},0)$ и $\beta,$ с гиперплоскостью $(x_1,x_2,\ldots,x_{n-3},0,0,x_n),$ и т. д. до построения точки $q=(q_1,\ldots,q_k,0,\ldots,0)$. Далее поочередно построим точки $(l_1,\ldots,l_{k-1},0,\ldots,0)$ до $(\sigma_1,0,\ldots,0)$. Таким образом построим всевозможные комплекты n векторов с всевозможными вариантами пересечений. Их количество будет k!. Обозначим построенное множество комплектов через \mathfrak{U} . Через \mathfrak{B} обозначим множество всевозможных комбинаций n-мерных векторов с координатами 1, 0, где первые n-k координат этих векторов равны 1, а остальные k координат равны 0 или 1. Их число равно 2^k .

Пусть $(\underbrace{1,\dots,1}_{n-k},1,0,0,\dots,1)$ — некоторый элемент из ${\mathfrak B}.$ Сопоставим ему

следующий комплект из \mathfrak{U} . Первый элемент α ; если последний 0 в векторе $(\underbrace{1,\ldots,1}_{n-k},1,0,0,\ldots,1)$ находится на i-м месте, то берем $\beta=(\beta_1,\ldots,\beta_{i-1},0,\beta_{i+1},\ldots,\beta_{i-1},\ldots,\beta$

 \ldots, β_n). Далее, если предпоследний нулевой элемент находится на j-м месте, j < i, то рассмотрим вектор $\gamma = (\gamma_1, \ldots, \gamma_{j-1}, 0, \gamma_{j+1}, \ldots, \gamma_{i-1}, 0, \gamma_{i+1}, \ldots, \gamma_n)$ и т. д. для всех нулей. Затем поочередно справа налево приравниваем к нулю те координаты полученных векторов, где в векторе $(1, \ldots, 1, 1, 0, 0, \ldots, 1)$ стоят

единицы. Проиллюстрируем это на примере, когда $k=4,\,n=6.$

Вектору (1,1,1,0,1,1) сопоставляется комплект α , $(\theta_1,\theta_2,\theta_3,0,\theta_5,\theta_6)$, $(\varepsilon_1,\varepsilon_2,\varepsilon_3,0,\varepsilon_5,0)$, ..., $(m_1,0,0,0,0,0)$, а векторам (1,1,1,1,1,1), (1,1,1,1,1,0), (1,1,1,1,0,0), (1,1,1,0,0,0), (1,1,1,0,0,0), (1,1,0,0,0)— один и тот же комплект $(\alpha_1,\alpha_2,\ldots,\alpha_6)$, $(\beta_1,\beta_2,\ldots,\beta_5,0)$, $(\gamma_1,\gamma_2,\gamma_3,\gamma_4,0,0)$, $(\sigma_1,\sigma_2,\sigma_3,0,0,0)$, $(\delta_1,\delta_2,0,0,0,0)$, $(n_1,0,0,0,0,0)$.

При k=1 векторам $(\overline{1},1)$ и $(\overline{1},0)$ сопоставляется один комплект $(\alpha_1,\ldots,\alpha_n)$, $(\beta_1,\ldots,\beta_{n-1},0),\ldots,(\delta_1,0,\ldots,0)$.

При k=2 векторам $(\overline{1},1,1), (\overline{1},1,0)$ и $(\overline{1},0,0)$ сопоставляется комплект α , $(\beta_1,\ldots,\beta_{n-1},0),\ldots,(\delta_1,0,\ldots,0),$ вектору $(\overline{1},0,1)$ — комплект α , $(\sigma_1,\ldots,\sigma_{n-2},0,\sigma_n), (\gamma_1,\ldots,\gamma_{n-1},0,0),\ldots,(l_1,0,\ldots,0).$

При k=3 векторам $(\overline{1},1,1,1), (\overline{1},1,1,0), (\overline{1},1,0,0), (\overline{1},0,0,0)$ сопоставляется комплект, как при k=1, вектору $(\overline{1},1,0,1)$ — комплект $\alpha, (\bar{\beta},\beta_{n-2},0,\beta_n), (\bar{\gamma},\gamma_{n-2},0,0), \ldots, (n_1,0,\ldots,0),$ вектору $(\overline{1},0,1,1)$ — комплект $\alpha, (\bar{\beta},\beta_{n-2},0,\beta_n), (\bar{\gamma},0,\gamma_{n-1},0), (\bar{\delta},0,0,0), \ldots, (m_1,0,\ldots,0),$ вектору $(\overline{1},0,1,0)$ — комплект $\alpha, (\bar{\beta},0,0,0), (\bar{\gamma},0,\gamma_{n-1},0), (\bar{\delta},0,0,0), \ldots, (l_1,0,\ldots,0).$ Вектору $(\overline{1},0,0,1)$ сопоставляется $\alpha, (\bar{\beta},\beta_{n-2},0,\beta_n), (\bar{\gamma},0,0,\gamma_n), (\bar{\sigma},0,0,0), \ldots, (r_1,0,\ldots,0).$

Так как $k! > 2^k$ при $k \ge 4$, для всех элементов из $\mathfrak B$ всегда существует соответствующий набор из $\mathfrak U$.

Лемма 1.3. Пусть $\alpha_1 < \alpha_2 < \cdots < \alpha_{n-k} \le \alpha_{n-k+1} \le \cdots \le \alpha_n$. Тогда для любого мультииндекса m и любого четного числа N, удовлетворяющего вышеуказанному условию, существуют постоянные $C_i, i=0,1,\ldots,l$, такие, что для любого $\nu, 0 < \nu < 1$, имеют места неравенства

$$|D^m\widehat{G}_r(t,\nu)| \leq \nu^{-\max\limits_{i=1,...,n}(|\mu^i|+(m,\mu^i))}$$

$$\times \frac{(C_l|ln\nu|^l + C_{l-1}|ln\nu|^{l-1} + \dots + C_0)}{(1 + \nu^{-N}(t^{N\alpha} + t^{N\rho} + \dots + t^{N\sigma}))\dots(1 + \nu^{-N}(t^{N\alpha} + \dots + t^{Nq}))}, \quad (1.15)$$

где в множителях из неравенств (1.15) участвуют те комплекты n векторов из \mathfrak{A} , через которые оцениваются все элементы множества \mathfrak{B} , а r=0 или r=1,j, $j=1,\ldots,n+1;$ l равно числу равенств в формуле (1.6).

Доказательство. Пусть r=1,j. Для доказательства нужно оценить выражения типа

$$(1+\nu^{-N}(t^{N\alpha}+t^{N\rho}+\cdots+t^{N\sigma}))\dots(1+\nu^{-N}(t^{N\alpha}+\cdots+t^{Nq}))D^{m}\widehat{G}_{1,j}(t,\nu).$$
 (1.16)

После раскрытия скобок и применения свойства преобразования Фурье вопрос сводится к оценке слагаемых типа

$$\nu^{-lN} \int_{\mathbb{R}^n} e^{-i(t,\xi)} D_1^{\beta_1} \dots D_n^{\beta_n} (\xi_1^{m_1} \dots \xi_n^{m_n} \cdot G_{1,j}(\xi,\nu)) d\xi_1 \dots d\xi_n,$$

где $\beta=\beta_1,\ldots,\beta_n$ — мультииндексы, которые получаются при всевозможных умножениях слагаемых, присутствующих в формуле (1.16), $l=0,1,\ldots,k$. Для оценки каждого слагаемого, как и при оценке интеграла (1.4), нужно оценить соответствующую степень ν . Учитывая выборы мультииндексов в выражениях (1.15), как и при доказательстве леммы 1.1, можем утверждать, что степень ν будет больше или равна — $\max_{i=1,\ldots,n}(|\mu^i|+(m,\mu^i))$. В итоге каждое слагаемое

выражения (1.16) оценивается через
$$\nu^{-\max\limits_{i=1,\ldots,n}(|\mu^i|+(m,\mu^i))}(C_l|\ln\nu|^l+\cdots+C_0).$$

Лемма 1.4. Пусть для мультииндекса $\alpha=(\alpha_1,\ldots,\alpha_n)$ выполняется условие $\alpha_1<\alpha_2<\cdots<\alpha_{n-k}\leq\alpha_{n-k+1}\leq\cdots\leq\alpha_n$. Тогда существуют такие числа $a_i,\ i=0,1,\ldots,l,$ и такое натуральное число $N_0,$ что для любого $N>N_0$ и любого $\nu,\ 0<\nu<1,$ имеет место неравенство

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \frac{dt_{1}dt_{2} \dots dt_{n}}{(1 + \nu^{-N}(t^{N\alpha} + t^{N\beta} + \dots + t^{N\sigma})) \dots (1 + \nu^{-N}(t^{N\alpha} + \dots + t^{Nq}))}$$

$$\leq \nu^{\min_{i=1,\dots,k} |\mu^{i}|} (a_{0}|\ln \nu|^{l} + a_{1}|\ln \nu|^{l-1} + \dots + a_{l}), \quad (1.17)$$

где l — число равенств между координатами вектора $\alpha = (\alpha_1, \dots, \alpha_n)$.

Для доказательства введем обозначение $\mu_j^0 = \max_{i=1,\dots,k} \mu_j^i, \ j=n-k+1,\dots,n,$ и интеграл в неравенстве (1.17) разобьем на r слагаемых, как и в интеграле I в случае (б). Затем каждое слагаемое $I_k,\ k=1,\dots,r,$ оценим по отдельности. При оценке I_k применяется метод доказательства леммы 1.2. В отличие от оценки (1.14) появляется множитель $|ln\nu|$, так как $\frac{\alpha_i}{\alpha_{i+1}}=1$ в некоторых отношениях внутри интеграла J.

Для $\nu > 1$ имеем следующую оценку.

Лемма 1.5. Для любого мультииндекса m и любого натурального числа N, удовлетворяющего вышесказанным условиям, существует постоянная C, такая, что для любого ν , $\nu > 1$, имеет место неравенство

$$|D^{m}\widehat{G}_{0}(t,\nu)| \leq C\nu^{-(|\lambda|+(m,\lambda))} \frac{1}{1+\nu^{-N}(t_{1}^{Nl_{1}}+\dots+t_{n}^{Nl_{n}})},$$
(1.18)

где
$$\lambda = (\lambda_1, \ldots, \lambda_n) = \left(\frac{1}{l_1}, \ldots, \frac{1}{l_n}\right)$$
.

Доказательство. Так как

$$P(
u, \xi) = (
u \xi^{l_1})^{2k} + \dots + (
u \xi^{l_n})^{2k} + (
u \xi^{\alpha})^{2k}$$

в выражении

$$D^{m}\widehat{G}_{0}(t,\nu) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \xi_{1}^{m_{1}} \dots \xi_{n}^{m_{n}} e^{-i(t,\xi)} e^{-P(\nu,\xi)} d\xi$$

после замены переменных $\xi=
u^{-\lambda}\eta$ получим $|D^m\widehat{G}_0(t,
u)|\leq C
u^{-(|\lambda|+(m,\lambda))}.$

При оценке выражения $\nu^{-N}t_1^{Nl_1}D^m\widehat{G}_0(t,\nu)$ в степени ν кроме $-(|\lambda|+(m,\lambda))$ появляются выражения $(1-(\alpha^r,\lambda))2k,\,r=1,\ldots,n+1,$ которые неположительны $((\alpha^r,\lambda)\geq 1,\,r=1,\ldots,n+1),$ а так как $\nu>1,$ в итоге получим, что

$$\left|\nu^{-N}t_1^{Nl_1}D^m\widehat{G}_0(t,\nu)\right| \le C\nu^{-(|\lambda|+(m,\lambda))}.$$

Аналогично оцениваются остальные слагаемые.

2. Усреднение функций и его свойства

Для любой функции U рассмотрим ее усреднение с ядром $\widehat{G}_0(t,\nu)$:

$$U_{\nu}(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} U(t) \widehat{G}_0(t-x,\nu) dt.$$
 (2.1)

Изучим свойства этого усреднения.

Лемма 2.1. Пусть $f \in L_p(\mathbb{R}^n)$, $1 . Тогда <math>f_{\nu} \in L_p(\mathbb{R}^n)$ и $\|f_{\nu}\|_{L_p(\mathbb{R}^n)} \to 0$ при $\nu \to \infty$.

Доказательство не отличается от доказательства леммы 2.1 из [9].

Лемма 2.2. Если $f \in L_p(\mathbb{R}^n)$, $1 , то <math>f_{\nu} \in L_p(\mathbb{R}^n)$ и

$$\lim_{\nu \to 0} \|f_{\nu} - f\|_{L_p(\mathbb{R}^n)} = 0.$$

Доказательство. Так как

$$rac{1}{(2\pi)^{rac{n}{2}}}\int\limits_{\mathbb{R}^n}\widehat{G}_0(t,
u)\,dt=G_0(0,
u)=1,$$

то

$$f(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) \widehat{G}_0(t, \nu) dt$$

и для разности $f_{\nu}-f$ имеем

$$f_
u(x)-f(x)=rac{1}{(2\pi)^{rac{n}{2}}}\int\limits_{\mathbb{R}^n}\left(f(x+ au)-f(x)
ight)\widehat{G}_0(au,
u)\,d au.$$

Отсюда, применяя обобщенное неравенство Минковского, получим

$$\|f_{
u} - f\|_{L_p} \leq rac{1}{(2\pi)^{rac{n}{2}}} \int\limits_{\mathbb{D}_n} \|f(\cdot + au) - f(\cdot)\|_{L_p} |\widehat{G}_0(au,
u)| \, d au.$$

В лемме 1.5 при $\nu>1$ доказали неравенство (1.18) для $\lambda=\left(\frac{1}{l_1},\dots,\frac{1}{l_n}\right)$. Докажем, что при $0<\nu<1$ для этого λ справедлива оценка

$$|\widehat{G}_0(t,\nu)| \le C\nu^{-|\lambda| + (1-(\alpha,\lambda))2k} \frac{1}{1 + \nu^{-N} (t_1^{Nl_1} + \dots + t_n^{Nl_n})}, \tag{2.2}$$

где C — некоторая постоянная, не зависящая от ν и t.

Если в формуле $\widehat{G}_0(t,\nu)$ сделать замену переменных $\xi=\nu^{-\lambda}\eta,$ то для $e^{-P(\nu,\xi)}$ получим

$$e^{-P(\nu,\xi)} = e^{-(\eta_1^{l_1})^{2k} - \dots - (\eta_n^{l_n})^{2k} - \dots - (\nu^{1-(\lambda,\alpha)}\eta^{\alpha})^{2k}} \leq e^{-\eta_1^{2kl_1} - \dots - \eta_n^{2kl_n}}$$

Для оценки $u^{-N} \big| t_i^{Nl_i} \widehat{G}_0(t, \nu) \big|, \ i=1,\dots,n,$ следует оценить величину

$$\nu^{-N} \int\limits_{\mathbb{D}} \left| D_i^{Nl_i} e^{-P(\nu,\xi)} \right| d\xi.$$

Если в каждом слагаемом формулы (1.11) сделать замену переменных $\xi = \nu^{-\lambda}\eta$, то в степенях ν появляются выражения $\nu^{-N+Nl_i\lambda_i-|\lambda|}\prod_r \nu^{2k(1-(\alpha^r,\lambda))}$, где количество произведений равно $|\gamma|$ и индексы r могут повторяться.

Так как $Nl_i\lambda_i = N$, $(\alpha^r, \lambda) = 1$, $r = 1, \ldots, n$, и $(\alpha^{n+1}, \lambda) = (\alpha, \lambda) > 1$, степень ν оценивается через $-|\lambda| + (1 - (\alpha, \lambda))2k$, что и доказывает неравенство (2.2).

Рассмотрим λ -расстояние $ho_\lambda(x)=\left(x_1^{2l_1}+\dots+x_n^{2l_n}
ight)^{rac{1}{2}}.$ Представим $\|f_
u-f\|_{L_p}$ в виде

$$\begin{split} \|f_{\nu} - f\|_{L_p} &\leq C \int\limits_{\rho_{\lambda}(\tau) \leq \nu^{\theta}} \|f(\cdot + \tau) - f(\cdot)\|_{L_p} |\widehat{G}_0(\tau, \nu)| \, d\tau \\ &+ C \int\limits_{\rho_{\lambda}(\tau) \geq \nu^{\theta}} \|f(\cdot + \tau) - f(\cdot)\|_{L_p} |\widehat{G}_0(\tau, \nu)| \, d\tau = A_1(\nu) + A_2(\nu), \end{split}$$

где $\theta \in (0,1)$ пока что произвольный параметр.

Оценим $A_1(\nu)$. Применяя оценку для $\widehat{G}_0(t,\nu)$, при m=0 (см. леммы 1.1, 1.3) имеем

$$A_1(\nu) \leq C \sup_{\rho_{\lambda}(\eta) \leq \nu^{\theta}} \|f(\cdot + \eta) - f(\cdot)\|_{L_p(\mathbb{R}^n)} \nu^{-\max_{i=1,\ldots,n} |\mu^i|} \int_{\rho_{\lambda}(\eta) \leq \nu^{\theta}} d\eta_1 \ldots d\eta_n.$$

Из выпуклости многогранника \mathfrak{N} следует, что $|\lambda|>\max_{i=1,\dots,n}|\mu^i|$, значит, можно подобрать число $\theta,\,0<\theta<1$, такое, что $\theta|\lambda|>\max_{i=1,\dots,n}|\mu^i|$. Последний интеграл оценивается с помощью λ -сферического преобразования (см. [8, § 4]). Введем обозначение $\eta_1=r^{\lambda_1}\omega_1,\,\dots,\,\eta_n=r^{\lambda_n}\omega_n$, где $\omega_1^{2l_1}+\dots+\omega_n^{2l_n}=1$. Тогда

$$A_1(\nu) \leq C \nu^{\theta|\lambda| - \max\limits_{i=1,\ldots,n}|\mu^i|\}} \sup_{\rho_\lambda(\eta) \leq \nu^\theta} \|f(\cdot + \eta) - f(\cdot)\|_{L_p(\mathbb{R}^n)}.$$

Учитывая, что показатель степени ν положителен, а функция f из $L_p(\mathbb{R}^n)$ непрерывна в целом при $1 \leq p < \infty$ (см. [8]), получим, что $A_1(\nu) \to 0$ при $\nu \to 0$. Применяя неравенство (2.2), для $A_2(\nu)$ имеем

$$A_{2}(\nu) \leq 2\|f\|_{L_{p}(\mathbb{R}^{n})} \nu^{-|\lambda| + (1 - (\alpha, \lambda))2k} \int_{\rho_{\lambda}(\tau) > \nu^{\theta}} \frac{d\tau_{1} \dots d\tau_{n}}{1 + \nu^{-N} \left(\tau_{1}^{Nl_{1}} + \dots + \tau_{n}^{Nl_{n}}\right)}.$$

Отсюда после преобразования $\tau = \nu^{\lambda} \eta$ приходим к неравенству

$$A_2(\nu) \leq 2C \|f\|_{L_p(\mathbb{R}^n)} \nu^{(1-(\alpha,\lambda))2k} \int_{\rho_\lambda(\eta) \geq \nu^{\theta-1}} \frac{d\eta_1 \dots d\eta_n}{1 + \eta_1^{Nl_1} + \dots + \eta_n^{Nl_n}}$$

$$\leq 2C \|f\|_{L_p(\mathbb{R}^n)} \nu^{(1-(\alpha,\lambda))2k} \int_{\rho_\lambda(\tau) \geq \nu^{\theta-1}} \frac{d\tau_1 \dots d\tau_n}{1 + \rho_\lambda^N(\eta)}.$$

Используя в полученном интеграле λ -сферическое преобразование, получим

$$\begin{split} A_2(\nu) & \leq 2C \|f\|_{L_p(\mathbb{R}^n)} \nu^{(1-(\alpha,\lambda))2k} \int\limits_{\nu^{\theta-1}}^{\infty} \int\limits_{\rho_{\lambda}(\omega)=1} \frac{r^{|\lambda|-1}}{1+r^N} \Bigg(\sum_{i=1}^n \lambda_i^2 \omega_i^2 \Bigg) \, d\omega \\ & \leq C \nu^{(1-(\alpha,\lambda))2k} \|f\|_{L_p(\mathbb{R}^n)} \int\limits_{\frac{\alpha}{2}-1}^{\infty} r^{|\lambda|-1-N} dr = C \nu^{(N-|\lambda|)(1-\theta)+(1-(\alpha,\lambda))2k} \|f\|_{L_p(\mathbb{R}^n)}. \end{split}$$

Пусть число N таково, что показатель ν положителен. Тогда $A_2(\nu) \to 0$ при $\nu \to 0$. \square

Следствие 2.1. Пусть $f \in L_p(\mathbb{R}^n)$, где $1 \le p < \infty$. Тогда существует последовательность $\nu_k \to 0$ при $k \to \infty$ такая, что $\lim_{k \to \infty} f_{\nu_k}(x) = f(x)$ для почти всех $x \in \mathbb{R}^n$.

Доказательство непосредственно следует из свойств L_p -сходимости.

3. Интегральное представление функций через мультианизотропные ядра

Теорема 3.1. Пусть для функции f существуют производные $D^{\alpha^i}f$, $i=1,\ldots,n+1$, где α^i являются вершинами вполне правильного многогранника $\mathfrak N$ и $D^{\alpha^i}f\in L_p(\mathbb R^n)$, $1\leq p<\infty$, $i=1,\ldots,n+1$. Тогда для почти всех $x\in \mathbb R^n$ имеет место представление

$$f(x) = f_h(x) + \lim_{\varepsilon \to 0} \sum_{j=1}^{n+1} \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\varepsilon}^{h} d\nu \int_{\mathbb{R}^n} D^{\alpha^j} f(t) \widehat{G}_{1,j}(t-x,\nu) dt.$$
 (3.1)

Доказательство. Из формулы Ньютона — Лейбница и из усреднения (2.1) имеем

$$f_h(x) - f_{\varepsilon}(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\varepsilon}^{h} \frac{\partial}{\partial \nu} d\nu \int_{\mathbb{R}^n} f(x+t) \widehat{G}_0(t,\nu) dt$$
$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\varepsilon}^{h} \int_{\mathbb{R}^n} f(x+t) \frac{\partial}{\partial \nu} \widehat{G}_0(t,\nu) dt d\nu. \quad (3.2)$$

Вычислим производную $\frac{\partial}{\partial \nu}\widehat{G}_0(t,\nu)$:

$$\frac{\partial}{\partial \nu} \widehat{G}_0(t,\nu) = \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{j=1}^{n+1} \int_{\mathbb{R}^n} e^{-i(t,\xi)} e^{-P(\nu,\xi)} (-2k) \nu^{2k-1} \xi^{2k\alpha^j} d\xi
= \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{j=1}^{n+1} D_t^{\alpha^j} \int_{\mathbb{R}^n} e^{-i(t,\xi)} e^{-P(\nu,\xi)} (-2k) (\nu \xi^{\alpha^j})^{2k-1} d\xi
= \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{j=1}^{n+1} D_t^{\alpha^j} \widehat{G}_{1,j}(t,\nu).$$

Подставляя полученное выражение в (3.2) и учитывая, что для функции f существуют обобщенные производные $D^{\alpha^j}f$, получим

$$f_h(x) - f_{\varepsilon}(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{j=1}^{n+1} \int_{\varepsilon}^{h} \int_{\mathbb{R}^n} D_t^{\alpha^j} f(x+t) \widehat{G}_{1,j}(t,\nu) dt d\nu. \tag{3.3}$$

Применяя к (3.3) следствие 2.1, придем к результату теоремы 3.1. \square

4. Теоремы вложения для мультианизотропных пространств

Рассмотрим пространство $W_p^{\mathfrak{N}}(\mathbb{R}^n)=\{f:f\in L_p(\mathbb{R}^n),\ D^{\alpha^i}f\in L_p(\mathbb{R}^n),\ i=1,\dots,n+1\}$, называемое мультианизотропным пространством С. Л. Соболева. Если $\mathfrak{N}=\{\alpha;|\alpha|\leq m\}$, то это пространство совпадает с изотропным пространством W_p^m ; если $\mathfrak{N}=\{\alpha;(\alpha,\lambda)\leq 1\}$, где $\lambda=(\lambda_1,\dots,\lambda_n)=\left(\frac{1}{m_1},\dots,\frac{1}{m_n}\right)$, то $W_p^{\mathfrak{N}}(\mathbb{R}^n)$ совпадает с анизотропным пространством $W_p^{m_1,\dots,m_n}(\mathbb{R}^n)$. Поэтому приведенные ниже теоремы вложения для пространств $W_p^{\mathfrak{N}}(\mathbb{R}^n)$ можно рассматривать как обобщение соответствующих теорем в мультианизотропном случае.

Теорема 4.1. Пусть мультииндекс $\alpha=(\alpha_1,\ldots,\alpha_n)$ таков, что $\alpha_1<\alpha_2<\cdots<\alpha_n$, а числа p и q удовлетворяют соотношениям $1\leq p\leq q<\infty$ или $1\leq p<\infty$ при $q=\infty$. Для некоторого мультииндекса $m=(m_1,\ldots,m_n)$ обозначим

$$\chi = \max_{i=1,...,n} (|\mu^i| + (m,\mu^i)) - |\mu^1| \left(1 - rac{1}{p} + rac{1}{q}
ight).$$

Тогда если $\chi < 1$, то $D^m W_p^{\mathfrak{N}}(\mathbb{R}^n) \hookrightarrow L_q(\mathbb{R}^n)$, т. е. любая функция $f \in W_p^{\mathfrak{N}}(\mathbb{R}^n)$ имеет обобщенную производную $D^m f$, принадлежащую классу $L_q(\mathbb{R}^n)$, и для любого h > 0 имеет место неравенство

$$||D^{m}f||_{L_{q}(\mathbb{R}^{n})} \leq h^{1-\chi}(a_{l}|\ln h|^{l} + \dots + a_{0})$$

$$\times \sum_{j=1}^{n+1} ||D^{\alpha^{j}}f||_{L_{p}(\mathbb{R}^{n})} + h^{-\chi}(b_{l}|\ln h|^{l} + \dots + b_{0})||f||_{L_{p}(\mathbb{R}^{n})}$$
(4.1)

при некоторых постоянных $a_0, \ldots, a_l, b_0, \ldots, b_l$, где l — количество равенств в соотношениях (1.6).

Доказательство. В силу представления (3.3) имеем

$$D^{m} f_{h}(x) - D^{m} f_{\varepsilon}(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{j=1}^{n+1} \int_{\varepsilon}^{h} d\nu \int_{\mathbb{R}^{n}} D^{\alpha^{j}} f(t) D^{m} \widehat{G}_{1,j}(t-x,\nu) dt.$$
 (4.2)

Применяя к правой части этого представления неравенство Юнга, получим

$$||D^{m}f_{h} - D^{m}f_{\varepsilon}||_{L_{q}(\mathbb{R}^{n})} \leq C \sum_{j=1}^{n+1} \int_{\varepsilon}^{h} d\nu ||D^{\alpha^{j}}f||_{L_{p}(\mathbb{R}^{n})} ||D^{m}\widehat{G}_{1,j}(\cdot,\nu)||_{L_{r}(\mathbb{R}^{n})}, \quad (4.3)$$

где $1 - \frac{1}{r} = \frac{1}{p} - \frac{1}{q}$.

Оценим выражение $\|D^m \widehat{G}_{1,j}(\cdot,\nu)\|_{L_r(\mathbb{R}^n)}$. Используя лемму 1.1 (неравенство (1.8)), приходим к неравенству

$$||D^{m}\widehat{G}_{1,j}(\cdot,\nu)||_{L_{r}(\mathbb{R}^{n})} \leq \nu^{-\max_{i=1,...,n}(|\mu^{i}|+(m,\mu^{i}))} (C_{l}|\ln\nu|^{l} + \dots + C_{0})$$

$$\times \left(\int_{\mathbb{R}^{n}} \frac{dt_{1} \dots dt_{n}}{\left(1 + \nu^{-N} \left(t_{1}^{N\alpha_{1}} \dots t_{n}^{N\alpha_{n}} + t_{1}^{N\beta_{1}} \dots t_{n-1}^{N\beta_{n-1}} + \dots + t_{1}^{N\sigma_{1}}\right)\right)^{r}} \right)^{\frac{1}{r}}.$$

После преобразования $t = \nu^{\mu^1} \eta$ с учетом леммы 1.2 для $N > N_0$ имеем

$$||D^{m}\widehat{G}_{1,j}(\cdot,\nu)||_{L_{r}(\mathbb{R}^{n})} \leq \nu^{-\max_{i=1,\dots,n}(|\mu^{i}|+(m,\mu^{i})+\frac{|\mu^{1}|}{r})} (C_{l}|\ln\nu|^{l}+\dots+C_{0})$$

$$\leq \nu^{-\chi}(C_{l}|\ln\nu|^{l}+\dots+C_{0}).$$

Подставляя полученную оценку в (4.3), получим

$$||D^m f_h - D^m f_{\varepsilon}||_{L_q(\mathbb{R}^n)} \le h^{1-\chi} (C_l |\ln h|^l + \dots + C_0) \sum_{j=1}^{n+1} ||D^{\alpha^j} f||_{L_p(\mathbb{R}^n)}, \qquad (4.4)$$

т. е. при $h\to 0$ последовательность D^mf_h фундаментальна в $L_q(\mathbb{R}^n)$. Далее, по лемме $2.2\ f_\varepsilon\to f$ при $\varepsilon\to 0$ в $L_p(\mathbb{R}^n)$, $1\le p<\infty$. Отсюда и из свойства обобщенной производной по Соболеву (см. [8, лемма 6.2]) получим, что существует обобщенная производная $D^mf\in L_q(\mathbb{R}^n)$ такая, что $\|D^mf-D^mf_\varepsilon\|_{L_q(\mathbb{R}^n)}\to 0$ при $\varepsilon\to 0$.

Оценим норму $||f||_{L_q(\mathbb{R}^n)}$. Из неравенства (4.4) имеем

$$||D^m f||_{L_q(\mathbb{R}^n)} \le ||D^m f_h||_{L_q(\mathbb{R}^n)} + ||D^m f - D^m f_h||_{L_q(\mathbb{R}^n)}$$

$$\le ||D^m f_h||_{L_q(\mathbb{R}^n)} + h^{1-\chi} (C_l |\ln h|^l + \dots + C_0) \sum_{i=1}^{n+1} ||D^{\alpha^j} f||_{L_p(\mathbb{R}^n)}.$$

Что касается оценки $\|D^m f_h\|_{L_q(\mathbb{R}^n)}$, то, применяя интегральное представление 2.1, из неравенства Юнга получаем

$$||D^m f_h||_{L_q(\mathbb{R}^n)} \le C||f||_{L_p(\mathbb{R}^n)} ||D^m \widehat{G}_0(\cdot, h)||_{L_r(\mathbb{R}^n)}.$$

Из неравенства (1.8) для $D^m \widehat{G}_0(t, \nu)$ следует, что

$$\begin{split} \|D^{m}\widehat{G}_{0}(\cdot,\nu)\|_{L_{r}(\mathbb{R}^{n})} &\leq \nu^{-\max_{i=1,...,n}(|\mu^{i}|+(m,\mu^{i}))} (C_{l}|\ln\nu|^{l}+\cdots+C_{0}) \\ &\times \left(\int\limits_{\mathbb{R}^{n}} \frac{dt_{1}\dots dt_{n}}{\left(1+\nu^{-N}\left(t_{1}^{N\alpha_{1}}\dots t_{n}^{N\alpha_{n}}+t_{1}^{N\beta_{1}}\dots t_{n-1}^{N\beta_{n-1}}+\cdots+t_{1}^{N\sigma_{1}}\right)\right)^{r}}\right)^{\frac{1}{r}}. \end{split}$$

После преобразования $t=
u^{\mu^1}\eta$ имеем

$$||D^{m} f_{h}||_{L_{q}(\mathbb{R}^{n})} \leq h^{-\max_{i=1,\dots,n}(|\mu^{i}|+(m,\mu^{i}))+\frac{|\mu^{1}|}{r}} (b_{l}|\ln h|^{l} + \dots + b_{0}) \times \left(\int_{\mathbb{R}^{n}} \frac{d\eta_{1},\dots,d\eta_{n}}{\left(1 + \eta_{1}^{N\alpha_{1}}\dots\eta_{n}^{N\alpha_{n}} + \dots + \eta_{1}^{N\alpha_{1}}\right)^{r}} \right)^{\frac{1}{r}} ||f||_{L_{p}(\mathbb{R}^{n})}.$$

Предполагая, что $N > N_0$ (для сходимости интеграла), получим

$$||D^m f_h||_{L_q(\mathbb{R}^n)} \le h^{-\chi} (b_l |\ln h|^l + \dots + b_0) ||f||_{L_p(\mathbb{R}^n)}.$$

Замечание 4.1. В неравенстве (4.1) логарифмический множитель появляется только для тех мультииндексов, для которых имеет место соотношение (1.6), а l — число равенств в соотношениях (1.6). Пример, иллюстрирующий появление логарифма, можно найти в [9].

Теорема 4.2. Пусть мультииндекс $\alpha = (\alpha_1, \dots, \alpha_n)$ таков, что $\alpha_1 < \alpha_2 < \dots < \alpha_{n-j} \le \alpha_{n-j+1} \le \dots \le \alpha_n$, а числа p и q удовлетворяют соотношениям $1 \le p \le q < \infty$ или $1 \le p < \infty$ при $q = \infty$. Для некоторого мультииндекса $m = (m_1, m_2, \dots, m_n)$ обозначим

$$\chi = \max_{i=1,...,n} (|\mu^i| + (m,\mu^i)) - \min_{i=1,...,k} |\mu^i| igg(1 - rac{1}{p} + rac{1}{q}igg).$$

Тогда если $\chi<1,$ то $D^mW^{\mathfrak{N}}_p(\mathbb{R}^n)\hookrightarrow L_q(\mathbb{R}^n)$ и имеет место неравенство

$$||D^{m}f||_{L_{q}(\mathbb{R}^{n})} \leq h^{1-\chi}(a_{k+l}|\ln h|^{k+l} + \dots + a_{0}) \sum_{i=1}^{n+1} ||D^{\alpha^{i}}f||_{L_{p}(\mathbb{R}^{n})} + h^{-\chi}(b_{k+l}|\ln h|^{k+l} + \dots + b_{0}) ||f||_{L_{p}(\mathbb{R}^{n})}$$
(4.5)

при некоторых постоянных $a_0, \ldots, a_{k+l}, b_0, \ldots, b_{k+l}$, где $k, k \leq j$, — число равенств в мультииндексе α , а l — число равенств в соотношениях (1.6).

ДОКАЗАТЕЛЬСТВО не отличается от доказательства теоремы $4.1\ \mathrm{c}$ применением лемм $1.3\ \mathrm{u}\ 1.4.$

Теорема 4.3. Пусть мультииндекс $\alpha = (\alpha_1, \dots, \alpha_n)$ таков, что $\alpha_1 < \alpha_2 < \dots < \alpha_n$, а число p удовлетворяет соотношению $1 \le p < \infty$. Для некоторого мультииндекса $m = (m_1, m_2, \dots, m_n)$ обозначим

$$\chi = \max_{i=1,...,n} (|\mu^i| + (m,\mu^i)) - |\mu^1| igg(1 - rac{1}{p}igg).$$

Тогда если $\chi < 1$, то $D^m W_p^{\mathfrak{N}}(\mathbb{R}^n) \hookrightarrow C(\mathbb{R}^n)$, т. е. для любой $f \in W_p^{\mathfrak{N}}(\mathbb{R}^n)$ производная $D^m f$ почти всюду непрерывна в \mathbb{R}^n , и имеет место неравенство

$$\sup_{\mathbf{x}\in\mathbb{R}^n} |D^m f(\mathbf{x})| \le h^{1-\chi} (a_l |\ln h|^l + \dots + a_0) \sum_{j=1}^{n+1} ||D^{\alpha^j} f||_{L_p(\mathbb{R}^n)} + h^{-\chi} (b_l |\ln h|^l + \dots + b_0) ||f||_{L_p(\mathbb{R}^n)}.$$

Доказательство. Применяя неравенство (4.3) при $q=\infty$, получим, что семейство функций $D^m f_{\varepsilon}$ фундаментально в $L_{\infty}(\mathbb{R}^2)$ и, следовательно, сходится к $D^m f$. Но так как функции $D^m f_{\varepsilon}$ непрерывны, сходимость $L_{\infty}(\mathbb{R}^2)$ совпадает с равномерной сходимостью и предельная функция $D^m f$ непрерывна. Поскольку $D^m f$ определена лишь с точностью до эквивалентности, в теореме на самом деле утверждается непрерывность производной исходной функции почти всюду. \square

Теорема 4.4. Пусть мультииндекс $\alpha=(\alpha_1,\ldots,\alpha_n)$ таков, что $\alpha_1<\alpha_2<\cdots<\alpha_{n-j}\leq\alpha_{n-j+1}\leq\cdots\leq\alpha_n$, а число p удовлетворяет соотношению $1\leq p<\infty$. Для некоторого мультииндекса $m=(m_1,m_2,\ldots,m_n)$ обозначим

$$\chi = \max_{i=1,...,n} (|\mu^i| + (m,\mu^i)) - \min_{i=1,...,k} |\mu^i| igg(1 - rac{1}{p}igg).$$

Тогда если $\chi < 1$, то $D^m W_p^{\mathfrak{N}}(\mathbb{R}^n) \hookrightarrow C(\mathbb{R}^n)$ и имеет место неравенство

$$\sup_{\mathbf{x}\in\mathbb{R}^n} |D^m f(\mathbf{x})| \le h^{1-\chi} (a_{l+k} |\ln h|^{l+k} + \dots + a_0) \sum_{j=1}^{n+1} \|D^{\alpha^j} f\|_{L_p(\mathbb{R}^n)}$$
$$+ h^{-\chi} (b_{l+k} |\ln h|^{l+k} + \dots + b_0) \|f\|_{L_p(\mathbb{R}^n)}.$$

Доказательство аналогично доказательству теоремы 4.3.

ЛИТЕРАТУРА

- 1. Соболев С. Л. Об одной теореме функционального анализа // Мат. сб. 1938. Т. 4, № 3. С. 471–497.
- Соболев С. Л. Некоторые применения функционального анализа в математической физике. Л.: Изд-во Ленингр. ун-та, 1950.
- 3. Никольский С. М. Об одной задаче С. Л. Соболева // Сиб. мат. журн. 1962. Т. 3, № 6. С. 845–857.
- Smith K. T. Inequalities for formally positive integro-differential forms // Bull. Amer. Math. 1961. V. 67. P. 368–370.
- 5. Ильин В. П. Интегральные представления дифференцируемых функций и их применение к вопросам продолжения функций классов $W_p^l(G)$ // Сиб. мат. журн. 1967. Т. 8, № 3. С. 573–586
- Бесов О. В. О коэрцитивности в неизотропном пространстве С. Л. Соболева // Мат. сб. 1967. Т. 73, № 4. С. 585–599.
- Решетняк Ю. Г. Некоторые интегральные представления дифференцируемых функций // Сиб. мат. журн. 1971. Т. 12, № 2. С. 420–432.
- Бесов О. В., Ильин В. П., Никольский С. М. Интегральные представления функций и теоремы вложения. М.: Наука, 1975.
- 9. Карапетян Γ . А. Интегральное представление и теоремы вложения для мультианизотропных пространств в плоскости с одной вершиной анизотропности // Изв. НАН РА. Математика. 2016. Т. 51, № 6. С. 23–42.
- **10.** *Карапетян* Γ . *А*. Интегральное представление и теоремы вложения для мультианизотропных пространств в плоскости // Изв. НАН РА. Математика. (в печати).
- **11.** Карапетян Γ . А. О стабилизации в бесконечности к полиному решений одного класса регулярных уравнений // Тр. Мат. ин-та АН СССР. 1989. Т. 187. С. 116–129.
- **12.** Успенский С. В. О представлении функций, определенных одним классом гипоэллиптических операторов // Тр. Мат. ин-та АН СССР. 1972. Т. 117. С. 292–299.
- 13. Hörmander L. On the theory of general partial differential operators // Acta. Math. 1975. V. 94. P. 161–248.
- 14. Никольский С. М. Об устойчивых граничных значений дифференцируемых функций многих переменных // Мат. сб. 1963. Т. 61, № 2. С. 224–252.

Статья поступила 23 июня 2016 г.

Карапетян Гарник Альбертович Российско-Армянский (Славянский) университет, ул. О. Эмина, 123, Ереван 0051, Армения pmi@rau.am