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A CLASS OF RUSCHEWEYH - TYPE HARMONIC

UNIVALENT FUNCTIONS WITH VARYING ARGUMENTS

G.Murugusundaramoorthy

Abstract. A comprehensive class of complex-valued harmonic univalent functions
with varying arguments defined by Ruscheweyh derivatives is introduced. Necessary
and sufficient coefficient bounds are given for functions in this class to be starlike.
Distortion bounds and extreme points are also obtained.
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1. Introduction

A continuous function f = u + iv is a complex- valued harmonic function in
a complex domain G if both u and v are real and harmonic in G. In any simply
connected domain D ⊂ G we can write f = h + g where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D is
that |h′(z)| > |g′(z)| in D (see [2]).

Denote by H the family of functions f = h + g that are harmonic univalent
and orientation preserving in the open unit disc U = {z : |z| < 1} for which
f(0) = h(0) = 0 = fz(0)− 1. Thus for f = h+ g in H we may express the analytic
functions for h and g as

h(z) = z +

∞
∑

m=2

amz
m, g(z) = b1z +

∞
∑

m=2

bmz
m (0 ≤ b1 < 1). (1)

Note that the family H of orientation preserving,normalized harmonic univalent
functions reduces to S the class of normalized analytic univalent functions if the
co-analytic part of f = h+ g is identically zero that is g ≡ 0.

Department of Mathematics, Vellore Institute of Technology, Vellore, India
E-mail Address: gmsmoorthy@yahoo.com
Dedicated to late Professor K.S. Padmanabhan, Director, RIASM, University of Madras,
Madras, T.N., India.
c©2003 Cameron University

Typeset by AMS-TEX

90



A CLASS OF RUSCHEWEYH - TYPE HARMONIC UNIVALENT FUNCTIONS 91

For f = h+ g given by (1) and n > −1, we define the Ruscheweyh derivative of
the harmonic function f = h+ g in H by

Dnf(z) = Dnh(z) +Dng(z) (2)

where D the Ruscheweyh derivative (see[5]) of a power series φ(z) = z+
∞
∑

m=2
φmz

m

is given by

Dnφ(z) =
z

(1 − z)n+1
∗ φ(z) = z +

∞
∑

m=2

C(n,m)φmz
m

where

C(n,m) =
(n+ 1)m−1

(m− 1)!
=

(n+ 1)(n+ 2) . . . (n+m− 1)

(m− 1)!
.

The operator ∗ stands for the hadamard product or convolution product of two
power series

φ(z) =

∞
∑

m=1

φmz
m and ψ(z) =

∞
∑

m=1

ψmz
m

defined by

(φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =

∞
∑

m=1

φmψmz
m.

For fixed values of n(n > −1), let RH(n, α) denote the family of harmonic
functions f = h+ g of the form (1) such that

∂

∂θ
(argDnf(z)) ≥ α, 0 ≤ α < 1, |z| = r < 1. (3)

We also let VH (n, α) = RH(n, α)∩VH , where VH [3], the class of harmonic functions
f = h+g for which h and g are of the form (1) and their exists φ so that , mod 2π,

βm + (m− 1)φ ≡ π, δm + (m− 1)φ ≡ 0, m ≥ 2, (4)

where βm = arg(am) and δm = arg(bm).
Note that RH(0, α) = SH(α) [4], is the class of orientation preserving harmonic

univalent functions f which are starlike of order α in U, that is ∂
∂θ

(argf(reiθ)) > α

where z = reiθ in U. In [1] , it is proved that the coefficient condition

∞
∑

m=2

m (|am| + |bm|) ≤ 1 − b1

is sufficient for functions f = h + g and of the form (1) to be in SH(0). Recently
Jahangiri and Silverman [3] gave the sufficient and necessary conditions for func-
tions f = h + g of the form (1) to be in VH(α) where 0 ≤ α < 1. Further note
that if n = 0 and the co-analytic part of f = h+ g is zero, then the class VH (n, α)
reduces to the class studied in [6].
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In this paper, we will give the sufficient condition for f = h + g given by (1)
to be in the class RH(n, α), and it is shown that these coefficient condition is also
necessary for functions in the class VH (n, α). Finally we obtain distortion theorems
and characterize the extreme points for functions in VH (n, α).

2.Coefficient Bounds

In our first theorem we obtain a sufficient coefficient bound for harmonic func-
tions in RH(n, α)

Theorem 1. Let f = h+ g given by (1). If

∞
∑

m=2

(

m− α

1 − α
|am| +

m+ α

1 − α
|bm|

)

C(n,m) ≤ 1 −
1 + α

1 − α
b1 (5)

where a1 = 1 and 0 ≤ α ≤ 1, then f ∈ RH(n, α).

Proof. To prove f ∈ RH(n, α), by definition of RH(n, α) we only need to show
that if (5) holds then the required condition (3 ) satisfied. For (3) we can write

∂

∂θ
(argDnf(z)) = Re

{

z(Dnh(z))′ − z(Dng(z))′

Dnh(z) −Dng(z)

}

= Re
A(z)

B(z)
.

Using the fact that Re w ≥ α if and only if |1− α+w| ≥ |1 + α−w|, it suffices to
show that

|A(z) + (1 − α)B(z)| − |A(z) − (1 + α)B(z)| ≥ 0. (6)

Substituting for A(z) and B(z) in (6), which yields

|A(z) + (1 − α)B(z)| − |A(z) − (1 + α)B(z)|

≥ (2 − α)|z| −
∞
∑

m=2

[mC(n,m) + (1 − α)C(n,m)]|am||z|m

−
∞
∑

m=1
[mC(n,m) − (1 − α)C(n,m)]|bm| |z|m − α|z|

−
∞
∑

m=2
[mC(n,m) − (1 + α)C(n,m)]|am||z|m

−
∞
∑

m=1
[mC(n,m) + (1 + α)C(n,m)]|bm| |z|m

≥ 2(1 − α)|z|

{

1 −
∞
∑

m=2

m−α
1−α

|am||z|m−1C(n,m) −
∞
∑

m=1

m+α
1−α

|bm||z|m−1C(n,m)

}

≥ 2(1−α)|z|

{

1 −
1 + α

1 − α
b1 −

(

∞
∑

m=2

m− α

1 − α
C(n,m)|am| +

∞
∑

m=2

m+ α

1 − α
C(n,m)|bm|

)}

.

(7)
The last expression is non negative by (5), and so f ∈ RH(n, α).

Now we obtain the necessary and sufficient conditions for function f = h+ g be
given with (4).
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Theorem 2. Let f = h+ g be given by (1). Then f ∈ VH (n, α) if and only if

∞
∑

m=2

{

m− α

1 − α
|am| +

m+ α

1 − α
|bm|

}

C(n,m) ≤ 1 −
1 + α

1 − α
b1 (8)

where a1 = 1 and 0 ≤ α < 1.

Proof. Since VH(n, α) ⊂ RH(n, α), we only need to prove the ”only if” part of
the theorem. To this end, for functions f ∈ VH (n, α), we notice that the condition
∂
∂θ

(argDnf(z)) ≥ α is equivalent to

∂

∂θ
(argDnf(z)) − α = Re

{

z(Dnh(z))′ − z(Dng(z))′

Dnh(z) −Dng(z)
− α

}

≥ 0.

That is

Re









(1 − α)z +

(

∞
∑

m=2

(m− α)C(n,m)|am|zm −
∞
∑

m=1

(m+ α)C(n,m)|bm|zm

)

z +
∞
∑

m=2
C(n,m)|am|zm +

∞
∑

m=1
C(n,m)|bm|zm









≥ 0.

(9)
The above condition must hold for all values of z in U. Upon choosing φ according
to (4) we must have

(1 − α) − (1 + α)b1 −

(

∞
∑

m=2
(m− α)C(n,m)|am|rm−1 +

∞
∑

m=2
(m+ α)C(n,m)|bm|rm−1

)

1 + |b1| +

(

∞
∑

m=2
C(n,m)|am| +

∞
∑

m=2
C(n,m)|bm|

)

rm−1

≥ 0.

(10)
If the condition (8) does not hold then the numerator in (10) is negative for r
sufficiently close to 1. Hence there exist a z0 = r0 in (0,1) for which quotient of
(10) is negative. This contradicts the fact f ∈ VH (n, α) and so proof is complete.

Corollary 1. A necessary and sufficient condition for f = h+g satisfying (8) to
be starlike is that arg(am) = π−2(m−1)π/k, and arg(bm) = 2π−2(m−1)π/k , (k =
1, 2, 3, . . . ).

Our next theorem on distortion bounds for functions in VH (n, α) which yields a
covering result for the family VH (n, α).

Theorem 3. If f ∈ VH (n, α) then

|f(z)| ≤ (1 + |b1|)r +
1

C(n, 2)

(

1 − α

2 − α
−

1 + α

2 − α
|b1|

)

r2, |z| = r < 1

and

|f(z)| ≥ (1 + |b1|)r −
1

C(n, 2)

(

1 − α

2 − α
−

1 + α

2 + α
|b1|

)

r2, |z| = r < 1. (11)
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Proof. We will only prove the right hand inequality in (11). The argument for
the left hand inequality is similar. Let f ∈ VH (n, α) taking the absolute value of f,
we obtain

|f(z)| ≤ ((1 + |b1|)|r| +

∞
∑

m=2

(|am| + |bm|)|r|m

≤ (1 + b1)r + r2
∞
∑

m=2

(|am| + |bm|

That is

|f(z)| ≤ (1 + |b1|)r +
1 − α

C(n, 2)(2 − α)

(

∞
∑

m=2

(2 − α)C(n, 2)

1 − α
|am| +

(2 − α)C(n, 2)

1 − α
|bm|

)

r2

≤ (1 + |b1|)r +
1 − α

C(n, 2)(2 − α)

[

1 −
1 + α

1 − α
|b1|

]

r2

≤ (1 + |b1|)r +
1

C(n, 2)

(

1 − α

2 − α
−

1 + α

2 − α
|b1|

)

r2.

Corollary 2. Let f of the form (1) be so that f ∈ VH (n, α). Then

{

w : |w| <
2C(n, 2) − 1 − [C(n, 2) − 1]α

(2 − α)C(n, 2)
−

2C(n, 2) − 1 − [C(n, 2) − 1]α

(2 + α)C(n, 2)
b1

}

⊂ f(U).

(12)
We use the coefficient bounds to examine the extreme points for VH (n, α) and

determine extreme points of VH (n, α).

Theorem 4. Set λm = (1−α)
(m−α)C(n,m) and µm = 1+α

(m+α)C(n,m) . For b1 fixed, the

extreme points for VH (n, α) are

{z + λmxz
m + b1z} ∪ {z + b1z + µmxzm} (13)

where m ≥ 2 and |x| = 1 − |b1|.

Proof. Any function f in VH (n, α) may expressed as

f(z) = z +

∞
∑

m=2

|am|eiβmzm + b1z +

∞
∑

m=2

|bm|eiδmzm,

where the coefficients satisfy the inequality (5). Set

h1(z) = z, g1(z) = b1z, hm(z) = z+λme
iβmzm, gm(z) = b1z+µme

iδmzm for m = 2, 3, . . . .

WritingXm = |am|
λm

, Ym = |bm|
µm

, m = 2, 3, . . . andX1 = 1−
∞
∑

m=2
Xm; Y1 = 1−

∞
∑

m=2
Ym

we have,

f(z) =

∞
∑

m=1

(Xmhm(z) + Ymgm(z)).
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In particular, setting

f1(z) = z+b1z and fm(z) = z+λmxz
m +b1z+µmyzm, (m ≥ 2, |x|+ |y| = 1−|b1|)

we see that extreme points of VH (n, α) are contained in {fm(z)}.

To see that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) =
1

2
{f1(z) + λ2(1 − |b1|)z

2} +
1

2
{f1(z) − λ2(1 − |b1|)z

2},

a convex linear combination of functions in VH (n, α).
To see that is not an extreme point if both |x| 6= 0 and |y| 6= 0, we will show

that it can then also be expressed as a convex linear combinations of functions in
VH(n, α). Without loss of generality, assume |x| ≥ |y|. Choose ε > 0 small enough

so that ε < |x|
|y| . Set A = 1 + ε and B = 1− | εx

y
|. We then see that both

t1(z) = z + λmAxz
m + b1z + µmyBzm

and
t2(z) = z + λm(2 −A)xzm + b1z + µmy(2 −B)zm,

are in VH (n, α) and note that

fn(z) =
1

2
{t1(z) + t2(z)}.

The extremal coefficient bounds shows that functions of the form (13) are the
extreme points for VH (n, α), and so the proof is complete.
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