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1 Introduction

The exponential function e* is an eigenfunction of the derivative operator,
since

De®® = ae™ (1.1)

where D :=d/dx, and a denotes a real or complex arbitrary constant.
Another interesting differential operator exists in literature, namely the La-
guerre derivative, denoted in the following by Dy, and defined by

d d
Dy := DzD = i (1.2)
In preceding articles, we have shown the role of the Laguerre derivative in
the framework of the so called monomiality principle [1], [2] and its application
to the multidimensional Hermite (Hermite-Kampé de Fériet or Gould-Hopper
polynomials) [3], [4], [5] or Laguerre polynomials [1], [6].
It is easily seen, by induction, that the Laguerre derivative verifies:

(DxD)" = D"x"D" (1.3)

Furthermore, introducing the Tricomi function Cpy(z), of order zero, and
the relevant Bessel function:

S

k=0

= Jo(2V/), (1.4)

and putting:

er() = Co(—2) =Y (Z!)Q’ (1.5)

k=0
we obtain the result:

Theorem 1.1 The function ej(ax) is an eigenfunction of the Laguerre deriva-
tive operator, 1.e.

Dy ei(azx) = aey(az) (1.6)
Proof. Note that
D, =D+ zD? (1.7)

and consequently

Dy ey(ax) = (D + zD?) Z a® (1.8)
k=0
0 k— 0 k-1
kX 2 kL
Z (k+k(k—1)) a (k!)2—2k a Citle
k=1 k=1



= aey(ax).

= az a e
k=0
O

Note that the preceding conclusion depends on the coefficients of the com-
bination expressing the Laguerre derivative Dy in terms of D, and zD?2, so
that it turns out the identity: (k+ k(k — 1)) = k%

In the following we will show that the above technique can be iterated,
producing Laguerre classes of exponential-type functions, called L-exponentials,
and the relevant L-circular, and L-hyperbolic functions.

Further extensions are given in the concluding section, and applications to
the solution of generalized evolution problems is touched on.

2 Generalizations of the Laguerre derivative
and L-exponential functions

In this section, we generalize the Laguerre derivative, and define the relevant
L-exponential functions.
We start by considering the operator:

Dy, := DxDzD = D (2D + 2°D?) = D + 3xD? + 2°D?, (2.1)

and the function:

es(z) = kzo (Z!)3. (2.2)

The following theorem holds true:

Theorem 2.1 The function es(az) is an eigenfunction of the operator Doy,

1.€.
Dy ex(ax) = aeg(ax) (2.3)
Proof. Note that
00 k

. _ 2 213 kL

Dy, es(azx) = (D + 3zD? + 2° D) ;a Gitle

SN (b 3h(k— 1) + (k= 1)(k—2)) o S = SOk et LA

GEIE GIE
k=1 k=1



= azak (Z!)S = aey(ax). (2.4)

O
Even in this case, the conclusion depends on the identity:

k+3k(k—1)+k(k—1)(k—2) =&,

so that, it can be recognized that the coefficients of the combination expressing
the 2L-derivative D,y in terms of D, zD? and 22D3, are the Stirling
numbers of the second kind, S(3,1),5(3,2),5(3,3), (see: [7] and [8], p. 835,
for an extended table).

We can consequently extend the above results as follows.

Considering the operator:

Dg, 1)1 := Da---DxDxD = D (zD + 2*D* + ... + 2" 'D" 1) =
= S(n,1)D + S(n,2)zD* + ... + S(n,n)z" "' D", (2.5)

and the function:

en(z) = ; (kf;—nﬂ (2.6)

we can state the following theorem:

Theorem 2.2 The function e,(ax) is an eigenfunction of the operator Dor.
1.€.

A

D1, en(az) = ae,(ax) (2.7)

Proof. Proceeding by induction, i.e. assuming eq. (2.5) to be true, and
recalling the above remarks, it is sufficient to prove that the coefficients of the
combination expressing the nlL-derivative D,y in terms of D, zD?, ...,
and 2" D", verify the same induction property as the Stirling numbers of the
second kind, namely [7]:

S(n+1,h) =S(n,h—1)+ hS(n,h). (2.8)
This is clearly true, since, considering in eq.
Dn, =D (S(n,1)zD + S(n,2)z*D* + ... + S(n,n)z"D") (2.9)
the general terms, i.e.

D (S(n,h —1)z" D" + S(n, h)z"D") (2.10)
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we find:

(h —1)S(n,h — 12" 2D" '+ S(n,h — 1)2" ' D" +
+ hS(n,h)z" D" 4 S(n, h)z" D"+,

so that, the coefficient of z"~1D" is given by S(n,h—1)+hS(n,h) and must
coincide with S(n + 1,h), and then the recursion (2.8) holds true.
O

Remark 2.1 The above results show that, for every positive integer n, we can
define a Laguerre-exponential function, satisfying an eigenfunction property,
which is an analog of the elementary property (1.1) of the exponential. This
function, denoted by e, () :==> 7, (kg—:“’ reduces to the exponential function
when n =0, so that we can put by definition:

eo(z) =€, Doy := D.

Obviously, ﬁlL = DL.
For this reason we will refer to such functions as L-exponential functions,
or shortly L-exponentials.

2.1 The isomorphism 7,

In recent articles, [9], [10], [11], [12], [13], we have considered a differential
isomorphism, denoted by the symbol 7 := 7., acting onto the space A := A,
of analytic functions of the x wvariable by means of the correspondence:

D = % — Dy := DzD; r  — DI (2.11)
where
D)= [ e (2.12)
—n _ 1 ‘ _A\n—
D, @) = oy | @ = " (€ (2.13)
so that
T = D,"(1) = oy [ w— g e = (2.14)
Note that:
> 7; k > k
T(e) =Y Ej ) _ S (;)2 = () (2.15)
k=0 ) k=0 V'

Nej



T =3 T = S i =l (2.16)

and so on.
A straightforward computation gives:

(2.17)

i.e. the Laguerrian derivative is a lowering shift operator for the polynomial
m'ﬂ,

family py(z) := .

3 The monomiality principle and some rele-
vant examples

The study of the properties of ordinary and generalized polynomials is simpli-
fied by the use of the so called monomiality principle, according to which a
given polynomial p,(r) (n € N and z € C) is defined a “quasi monomial” if
two operators P and M called from now on “derivative” and “multiplicative”
operator respectively, can be defined in such a way that

Plpa(@)) = npu1(o), (3.
M(pn(a) = pusae).

The P and M operators are shown to satisfy the commutation property

~

[P, M]=PM - MP =1, (3.3)

and thus display a Weyl group structure.

The properties of p,(z) can be deduced from those of the P and M operators.
If P and M possess a differential realization, then the polynomial p,(z) satisfy
the differential equation

~

Mp(pn(fb)) = npn(x) (3'4)

If po(x) = 1, then p,(z) can be explicitly constructed as
pulz) = M"™(1). (3.5)

The identity (3.5) implies that the exponential generating function of p,(x)
can be cast in the form -

tM Z ~p

n=0

(3.6)

3
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3.1 The Hermite-Kampé de Fériet polynomials
Consider the Hermite-Kampé de Fériet, or heat polynomials:
H,(z, = n! e SSEe=—
(z.9) " — rl(n —2r)! (3.7)
H,(z,0) = z"
which are related to the Hermite polynomials by

(_ 1)1‘xn—2r

H,(z,—%) = He,(x): m

I
S

r=0

(-1 2ay

Hy(22,-1) = Hy(z):=n! (n—2r)lr!

r=0

The H,(z,y) polynomials are quasi-monomial with respect to the opera-

tors: P
JE—
) oz (3.8)
M = z42y—.
ox

3.2 The Gould-Hopper polynomials

An extension of the H-KdF polynomials is given by assuming:

rn]r

3 =nnl
() nzr'n—jr

The HY (x,y) polynomials are quasi-monomial with respect to the operators:

p - 9

ox .
R 51
M = z+jy

Oxi—1’
Note that, for 7 =1, we simply have:

HO (2, y) _"'Zuyx— _
r.

(n—r)! (z+y)"

11



3.3 The two variable Laguerre polynomials

Consider the two variable Laguerre polynomials, defined by :

Lu(z,y) = n‘;% (3.9)
Lo(z,0) = 2

MK

which are related to the ordinary Laguerre L, (z) by:

Lp(z,1) = Ly(—2)

Ly(z,y) = y"Ly (—%) (3.10)

The L,(z,y) polynomials are quasi-monomial with respect to the operators:

P, = D,xD,

W= oy Do (3.11)

Remark 3.1 The monomiality property of the polynomials L, (z,y) can be
derived directly observing that, substituting:

P = D, with = DyxD,,
M = z- with M* = D;l
x" with m—',
then
Y (2,) = (y +2)" = "o
becomes

(o) = (D7) (1) = 2 ()
Consequently we deduce that the Laguerre polynomials L, (z,y) correspond
to the Hermite-Kampé de Fériet polynomials 25 (x,y) := (z+y)" with respect
to the isomorphism 7.
The polynomials L, (z,y) was applied in several problems in Physics, con-
nected with electromagnetic waves, diffusion problems, and so on.

4 Iterations of the isomorphism 7,

It is worth to note that the isomorphism 7 := 7., defined in Section 2, can
be iterated producing a set of generalized Laguerre derivatives as follows.
By using equations (2.11), we find:

T,D, = T,(DzD) = DzDD,'DzD = DzDzD =: Dy, (4.1)

12



T. Dy, = T,(DxDxD) = DzDxzDxD =: Dy, (4.2)
and, in general, by induction:
T°7'D, = T>"Y(DxzD) = DaDD;'DaxD = DxzDxD---xD =: Dy,

where the last operator contains s+ 1 ordinary derivatives, always denoted
by the symbol D. It is convenient, in the following, to introduce a suitable
notation regarding the iterations of the isomorphism 7., showing their action
on powers, and consequently on all functions belonging to A := A,. In fact,
according to the above definition we can write:

A A

.= D;' = D;'(1) (4.3)
T=T.0,'() =D (1) =  DF(1)=_ (4.4)

and, by induction:

s _ s—17-171) — -1 A—n _ 7
T =T7>"D_ (1) = Dﬁ_l(l) = Dﬁ_l(l) = (4.5)
It is easily seen that, Vk € N, Vs € N,
R k! mlc+1 R k! mk+1
D (") = ———, ..., Dil(a* 4.6
’Tz(l' ) [(k+1)|]27 ) ’]’z( ) [(k+1)]3+1, ( )
and, Vh € N,
. k! aFth A k!
D (2*) = —"—, ..., DM =—""—""——.
)= o PEE) = mypea

5 Higher order Laguerre polynomials

According to the above mentioned properties, by applying the isomorphism 7.°
with respect to the x variable, the following higher order Laguerre polynomials
corresponding to the Gould-Hopper HW)(zx,y) ones appear:

L3 (a,y) = L3 (@, y) == T, (HY (2,y)) - (5.1)
The relevant properties are given by the following theorem

Theorem 5.1 The polynomials L%;S)(:p,y) are explicitly given by

m]lc

LY (z,y) = HO(T, — m) Z IS (5.2)

13



Furthermore, they are defined by the operational identity:

Ly (z,y) = exp{y (DSL> ya™ = exp{yDya? Dy - - 2! Dija™ =
T R i1 m
- (T;+jy (D) ) (1)

so that they are quasi-monomial with respect to the operators:

P (bu
M = (T +€'y (1??;)”> o

T

(5.3)

and satisfy the differential equation:

0 ) A J .
(4;8) — D)
5, L) (D3L>m LU (2, y). (5.5)

The generating function is given by

N " 5 . o TFtE j
> L y) o = T eplat by} = @ 3 iy = e a),
m—0 ' k=0 " (5.6)

The proof follows by a straightforward application of the iterated isomor-
phism 77 starting from the corresponding properties of the Gould-Hopper
polynomials H (xz,y) and using equations (2.5)-(2.15).

In a similar way, by applying the isomorphisms 77 and 7,7 to the same
polynomials we can define a more general class of higher order Laguerre poly-
nomials:

L= (z,y) = T*T7 (HD (2, y)) . (5.7)

which are explicitly expressed by

(isio) () o ytam It
L)% = HJ(T;,7°)=m! 5.8
and are given by the generating function:

N tm : .

Z LU (g, y)% =TT, exp{at + yt’} = es(wt) es(yt’). (5.9)

Further properties are obtained by using the same procedure as above.

14



6 Laguerre-type Bessel functions

Noting that the isospectral transformation 7 := 7,, defined by equation (1.1)
implies, according equation (1.2):

@ = DM(1) == = pala) (6.1)

Then the polynomial family {p,(z)} is quasi-monomial under the action of
the operators:

P:=D", M :=Dy,. (6.2)
In fact:
R B A_lxn xn+1 B
Pro(o) = D255 = s = o), (63
Npo(2) = Dy — Dap™ —p & _ 6.4
pn(x) = Loy =Dz H_n(n—l)! = np,_1(z). (6.4)
Furthermore

(b1 = [ 0] =1

Then the main properties of the polynomial family {p,(z)}, (since py = 1),
can be deduced by using the standard monomiality technique:

e Generating function.

exp {10, } (1) =Y D pala) = S8 — ey (o). (6.5)

12
“— nl — (n!)
e Differential equation.
R .o "
Dm_lDL— = nN—
n! n!
e Operational definition.
~ ~ "

Consider the classical first kind Bessel functions, defined by

Jo@) =" (-1)'a" () (6.6)

2n 20 ol(n + )l

n=0

15



According to the monomiality principle, it is possible to construct a class of
Bessel-type functions, by considering the p-based Bessel functions, defined as
follows:

[o.¢]

() = 3 L Prn(@)

2n 20 ol(n + )l

n=0

where p is a symbol denoting the considered polynomial family p = {p(z)} =
{% }, so that:

J (1‘) o i (—1)h;pn+2h (6 7)
pUn : g 272k pl(n + h)!(n + 2h)! '

The Bessel-type functions defined by equation (6.7) are essentially deter-
mined by applying the above mentioned isomorphism 7 to both sides of
equation (6.6), so that we will refer to them as Laguerre-type Bessel functions
(shortly L-Bessel functions).

Then we can prove the following theorems.

Theorem 6.1 The generating function of the Laguerre-type Bessel functions
pdn () is given by:

el E (t . %)} - f (@) 1, (6.8)

n—=—oo

which is obtained by applying the isomorphism T to both sides of the generating
function of the ordinary first kind Bessel functions:

x 1 - "
exp [5 (t - ;)1 = nz_oo In(z) .
Proof. In fact, using definition (1.4) and the Binomial theorem, we have:
Too ok i(_l)h R\ (1 k—h 1 h -
(k!)2 h) \2 2t )
k=0 h=0

k

z (_1)h th—2h
_Zh! (k—h)l 28

k
0 h=0

er [z

)]

Il
(]

Mol
R~

NE

=
Il

Putting n =k — 2h, and noting that n runs from —oo to +oo, the above
formula can be written as:

“ [m (% B 2%)] = nfw (f Qi 2h h!((_nl):gfzn + 2h)!) .

h=0

16



Then the proof follows by comparing the last formula with equation (6.7).

Dt
2

The same result can be shown starting from exp [ (t — %)], and using

the property (6.9) of the inverse derivative operator.
O

Theorem 6.2 The Laguerre-type Bessel functions ,J,(z) satisfy the recur-
rence relations:

{ [):;1 [pJn1(2) + pJnya ()] = 2n pJn(z) (6.9)
pIn-1(2) = pIni1(z) = 2D pJn(2).
Proof. Since
T\ Zep | 2L (11| =
13 i) P2 t) -
- . 10
— pa(@) = ) Ju(DJY) 17,

the first recurrence can be proved by differentiating the first and third term of
equation (6.10) with respect to ¢. The second recurrence relation follows by
applying the Laguerrian derivative Dy := D,xD, to the second and fourth
term of equation (6.10). This last computation is quite tedious, and can be
simplified by using the result of Lemma 1.1, which allows us to obtain the same
result by differentiating formally to the second and fourth term of equation
(6.10) with respect to D !.

O

Then, we can derive the following result:

Theorem 6.3 The shift operators E+ and E_ of the Laguerre-type Bessel
functions ,J,(x) are given by the equations:

=17 .
{ D: By =n (6.11)
n

where I denotes the identity operator.

Theorem 6.4 The differential equation satisfied by the Laguerre-type Bessel
functions ,J,(x) is given by:

([)i + DDy —n2D? + f) JJn(z) = 0, (6.12)

and can be derived by applying the isomorphism T to both sides of the differ-
ential equation of the ordinary first kind Bessel functions:

{xzﬁz + 2D, + (2% — nz)f} Jn(z) =0,

17



and using straightforward modifications.
Proof. In fact, using the isomorphism (1.1), the differential equation of the
ordinary first kind Bessel functions becomes:

D?D? + D;'Dy + (D2 — n2)f] Jn(z) = 0,

and the result follows differentiating twice both sides of the last equation.

The same result can be proved by using the shift operators (6.13) and the
usual technique connected with the monomiality principle, starting from the
equation:

7 2D Appell Polynomials

For any j > 2, the 2D Appell polynomials RS’ (x,y) are defined by means of
the generating function:

, PR t
G (@ yt) = A(t) e =" RY)(a, ¥~ (7.1)
n=0 ’

Even in this general case, the polynomial RY )(ac, y), is isobaric of weight n,
so that it does not contain the variable y, for every n=0,1,...,7 — 1.

e Explicit forms of the polynomials R in terms of the Gould-
Hopper polynomials H{’ and vice-versa.

The following formulas hold:

R (z,y) = ( ) wnH (2,) = (7.2)

h

h ]'r T
- Z h)! Z — )’
h=
where the R, are the “Appell numbers” appearing into the definition:
=R
Alt) =D St (A(0) #0),
k=0
H) _ "V0, . RY

where the () are the coefficients of the Taylor expansion in a neighborhood

of the origin of the reciprocal function 1/A(t).

18



e Recurrence relation.

It is useful to introduce the coefficients of the Taylor expansion:

Al) ot
i - nzoa%. (7.3)

The following linear homogeneous recurrence relation for the generalized
Appell polynomials RY )(:E, y) holds:

R (z,y) = 1,
() _ ) n—1\ . 50

Rn ('T7y) - (.CL' + aO)Rn—l(:E7y) + ] -1 JY Rnfj(x7y) (74)

n—2 n—1
+ Z ( L )an—k—lR](f])(may)
k=0
e Shift operators.
B 1

e Differential equation.

M1 G i1, (1T IYY
D ...+ =DJ — 2| DI 7.6
e T *((j—1>!> : (76)
P DL ok (a4 o) D =] B (o) =0,

8 Higher order Appell polynomials

According to the above mentioned properties, we can define a more general class
of higher order Appell polynomials. Namely, the following result holds:

Theorem 8.1 The polynomials RY* (z,y), defined by the generating func-

tion
. . tn
_ (4;850) z
A ex(atleo(ut’) = 3 R @), (8.1)

19



where:
RJ*) (2,y) == RY (T, 1), (8.2)
are explicitly expressed by

. - n 5850
RED ) =3 () Run ) (83
h=0

where the coefficients Ry are the Appell numbers associated with the func-

tion A(t) (see equation (2.2)), and the higher order Laguerre polynomials

ng;&o)(z,y), defined by equation (1.14), come into play:

ng;s;a) (I, y) _ /Z;s:z;oH}(Lj) (I, y) (84)

Proof. Applying the isomorphisms 7.7 and 7,7 to both sides of the generating
function of the polynomials RY (x,y), yields

S0 x J S0 j tn
TSI Alt) & = 3 TT7RD (w,y)—,
n=0 )
and therefore:
. s . tn
_ (9) s qo\
A(t) es(zt)ey(yt!) = E R/ (Tm ,’Z; ) i

n=0

so that equations (8.1)-(8.2) hold. Equation (8.4) is a consequence of (2.2) and
(8.3).
O

Further properties are obtained by using the same procedure as above, and
can be summarized as follows.

Theorem 8.2 The polynomials R (x,y), verify the recurrence relation

R (w,y) = (8.5)

n—1

1
Rﬁf?s?") (r,y) = (D;;lfl + ao) Rfff{”) (x,y) + (] 1>]1U RT("L]'LS]%U) (z,9)

-2

n—1 s

+ ( ]C >Oénl~clR](g]7 7 )(1:7?/)7
k=0

where the operator Ijﬁ_l, acting on Rgfisfo)(x,y), is defined by equations
(1.9)-(1.10), and the oy are the coefficients of the expansion (2.3).

20



(4:8;0)

Theorem 8.3 Shift operators for the polynomials Ry (x,y), are given by:

1 -
Ly = ~Du. (8.6)

L = ([)7;3_1 +a0> + y Dt

G- 1) 2o (n— k)l

Theorem 8.4 A differential equation satisfied by the polynomials
R (x,y), is given by:

Qp—1 = Qj Al a1ty A
[—(n— 1)!D3L+...—i— ] Dg™ + (—(] ) ) D, (8.7)

Vg . A
+(j i ;)!Dsi e <D7;—1 +040) Dy — n} RJ*9(x,y) = 0.

9 Applications to a class of Laguerre-type evo-
lution problems

We show in this section a simple application to the solution of evolution equa-
tions [14].

Theorem 9.1 For any fized integral s > 1, consider the problem:

{ Dyr. S(z,t) = %, in the half — plane x > 0, (9.1)
5(0,t) = g(t),
with analytic boundary condition ¢(t).
The operational solution of equation (9.1) is given by:
0 L
S(z,t) =e5 | v=— t) = ——g(l 9.2
)= (v55) 90 = 3 g gwt®) (9:2)

Representing ¢(t) = Z axt®, from equation (9.2) we find, in particular:
k=0

S(x,0) = ;%ak(];”—,)

Note that the operational solution becomes an effective solution whenever
the series in equation (9.2) is convergent. The validity of this condition depends
on the growth of the coefficients aj of the boundary data g¢(t) (see [15]), but
it is usually satisfied in physical problems.

More generally the following results holds:

21



Theorem 9.2 Let (), be a differential operator with respect to the = variable,
and denote by () an eigenfunction of €, such that:

Q Plaz) = a Plax),  (0) =1, (9-3)

then the evolution problem:

{ Q. S(z,t) = %, in the half — plane z > 0, (9.4)

5(0,8) = g(1),

with analytic boundary condition ¢(t), admits the operational solution:

0
S(z,t) =7 (fEE) g(t) (9.5)
Proof. The eigenfunction property of 1, implies:

Q. S(a1) = O, ¢ (m%) o= 2 (m%) o(t) = 2 S(a1),

. d . 8
since z; commutes with qﬁ(xm).

Furthermore, as a consequence of the hypothesis 1(0) = 1, the boundary
condition, for x = 0, is trivially satisfied.
O

10 Further results

In this Section we apply the preceding results to the solution of further Laguerre-
type evolution problems. Some other extensions can be found in [16].

We start from the operational definitions of generalized and higher order
Laguerre polynomials:

b " 1;1 _

and, for every integer j > 1:

nm]n

D, P r i1
e! — = L)Y (z,t) m'z PIRTEIER (10.2)
More generally, for every integers 7 > 1 and s> 1:
e = LU¥)(z,t) = m! Zn' T T (10.3)

22



We note that, from the above equations, if we consider an analytic function
admitting the expansion

o zm
m=0 ’
then we can write -
e f(z) =3 am LY (2,1). (10.5)
m=0

Sufficient conditions for the convergence of last series expansions can be
found in [16], showing connections with the corresponding ones considered in
[15].

Therefore, we can solve the following Laguerre-type evolution problems.

Theorem 10.1 The problem:

s o o A .
i %:ﬂ%S = D;S, in the half — plane ¢ >0, (10.6)
S(z,0) = f(x),
with analytic initial condition f(z) = Z amz—' admits the operational solu-
m
m=0
tion: »
S(x,t) = €1 f(z). (10.7)

Consequently, the solution (10.7) can be found in terms of the series expan-

sion:
o

S(x,t) = Z LI (2,1). (10.8)

m=0

More generally

Theorem 10.2 The problem:

08 o
{ 57 = Dl.S. in the half — plane £ >0, (10.9)

S(x,0) = f(=),

= x
with analytic initial condition f(x) = Zam admits the operational
m

solution:

S(z,t) = eDi f(z). (10.10)
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Consequently, the solution (10.10) can be found in terms of the series ex-
pansion:

S(x,t) =Y am LY (x,1). (10.11)
m=0

Following the same methods developed in [15], i.e. introducing suitable
hyperbolic or circular operators of the generalized Laguerre derivative, we have
found in [16] explicit solutions of Laguerre-hyperbolic or Laguerre-elliptic type
problems too.

11 Eigenfunctions of generalized Laguerre-type
derivatives

We consider in this section operators of the kind
DM i pi=h, h,j € No=NU{0}, j>h. (11.1)

Note that, as particular cases, when h = 0 we find the operator Dz’D’, and
when j=h+ 1=/ the operator D‘x’D.
We prove the following result

Theorem 11.1 The operator (11.1) admits the eigenfunction
€(h+1,45-h)(T) =

oo
xlﬂ

(ED2(k—DWk=2)-(k+h—g+ DN k+h)(k+h—1)! - (E+ 1)

k=0

Note that in the denominator of the right hand side of the last equation,
(k!)? is multiplied by a total of (j —h —1)+h =j — 1 factorials.
Proof. It is a straightforward consequence of equation:

Dh—i—l:Eij—h k —
2 : k-1 (11.2)
=k*k—-1)(k—-2)---(E+h—j+1)(k+h)(k+h—1)---(k+1)z" 1,
O

Remark 11.1 In the series expansion of the eigenfunction of Theorem 11.1,
and in the following as well, we assume the usual convention T'(s) =0, for s <0
for the running index.

Consider now the positive integers j; > jo... > j., and denote by
JsisJses - - -5 Js, arearrangement of the same integers according the permutation:
81,89,...,8p.
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Theorem 11.2 The operator Dz?s1 D%s1 ... xJsr Disr  admits the eigenfunction

k

o
T
e(lyjslyjsl 7777 Jsr ]sr) : : k.' r+1 F‘1 [F2]r71 X X F ’
k:O "

where Fy, Fy, ..., F. are given by

Frim (k=) (k=2)- (k= j1 + 1)1,
= k-l k=i -1 (k=j+1)

Proof. The result is a consequence of equation:

ijlejsl :E.]STD]ST:Ek f—
=k (k—1)(k—2)(k—j1+1) (k=1 (k=2 (k—ja+1)-- (11.3)
k= 1)k —2) - (k— jy+ 1)ab !

O

In a similar way, considering the positive integers ¢; < ¢5... < £, and
denoting by /¢, ,4s,,..., ¥, a rearrangement of the same integers according
the permutation: si,$s,...,s,, we can prove the following result

Theorem 11.3 The operator D1ix1 ... Dfsrxfsc D admits the eigenfunction

k

> x
sT,EsT,l)(:E) T Z (k.!)T+1 [Gl]T X [Gz]Tfl X o0 X GT,

where G1,Gs, ..., G, are given by

Gr=Fk+DE+2)-(k+6—-1),
Gy = (k+0)((k+6+1) - (k+4y— 1),

Gr=k+l_ ) (E+Llba+ 1) (k+ £, —1)!

Remark 11.2 The above eigenfunctions belong to the class of the so called
multi-index Bessel functions we considered in [17], but we use at present a
more suitable notation for indices.

12 Applications to generalized Laguerre-type
evolution problems

In this Section we apply the preceding result to the solution of generalized
Laguerre-type evolution problems.

The possibility of obtaining such applications is based on the following the-
orem generalizing a known result recalled in [9]:

25



Theorem 12.1 Let Q. be a differential operator with respect to the x  vari-
able, and denote by (x) an eigenfunction of €, such that:

Q. ¥(azx) = a P(az), K lim v Hp(z) =1, (12.1)
z—0
where H and K denote positive constants, then the evolution problem:

Q. S(z,t) = 86—5, in the half — plane x > 0,
K lim x7S(x,t) = g(t),

z—0t

(12.2)

where ¢(t) denotes an analytic function, admits the operational solution:

Sa.t) = v (o35 ) (0 (123
Proof. The eigenfunction property of 1, implies:
. A 0 0 0 0
0 8(0,0) = 0 6 (57 ) a0 = 5 v (37 ) 90 = 37 S(a.0)

: o : 0
since z; commutes with qﬁ(xa).

Furthermore, as a consequence of the hypothesis (12.1); the boundary
condition, for x — 0, is trivially satisfied.
O

Accordingly, we can state the following results:

Theorem 12.2 The evolution problem
DiMlgipDi=dS(z,t) = DyS(z,t), in the half — plane = >0,

K lim 278 (z,t) = g(t),

z—0t

where K =[(j—h—1)PG—-h=2)!(G—h=3)!---0(G-D!IG-2)--(j—h),
and ¢g(t) denotes an analytic function, admits the operational solution:
S(x,t) = emy1ji-n (D) g(t) =
i z* Drg(t)
(K2(k—1D!-(E+h—j+ D k+h) - (k+1)!

k=j—h—1

Further results can be found in [18].
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