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Introduction. In the present paper the first and second boundary value
problems (BVPs) of elastic binary mixture theory are investigated for a trans-
versally-isotropic half plane with curvilinear cuts. The boundary value prob-
lems of elasticity for anisotropic media with cuts were considered in [1, 2]. In
this paper we extend this result to BVPs of elastic mixture for a transversally-
isotropic elastic body. Here we shall be concerned with the plane problem
of elastic binary mixture theory (it is assumed that the second components
u′2 and u′′2 of the three-dimensional partial displacement vectors u′(u′1, u

′
2, u

′
3)

and u′′(u′′1, u
′′
2, u

′′
3) are equal to zero, while the components u′1, u

′
3, u

′′
1, u

′′
3 depend

only on the variables x1, x3). A solution of the first BVP is sought in the form
of a double-layer potential while a solution of the second BVP is sought in
the form of a single-layer potential. For the unknown density we obtain a sys-
tem of singular integral equations. Using the potential method and the theory
of singular integral equations we rigorously prove the solvability of system of
singular integral equations, corresponding to the boundary value problems.

The basic homogeneous equations of statics of the transversally isotropic
elastic binary mixtures theory in the case of plane deformation can be written
in the form [3]

C(∂x)U =

(
C(1)(∂x) C(3)(∂x)
C(3)(∂x) C(2)(∂x)

)
U = 0, (1)

where the components of the matrix C(j)(∂x) = ‖C(j)
pq (∂x)‖2x2 are given in the
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form

C
(j)
pq (∂x) = C

(j)
qp (∂x), j = 1, 2, 3, p, q = 1, 2, C

(j)
11 (∂x) = c

(j)
11

∂2

∂x2
1

+ c
(j)
44

∂2

∂x2
3

,

C
(j)
12 (∂x) = (c

(j)
13 + c

(j)
44 )

∂2

∂x1∂x3

, C
(j)
22 (∂x) = c

(j)
44

∂2

∂x2
1

+ c
(j)
33

∂2

∂x2
3

,

c
(k)
pq -are constants, characterizing the physical properties of the mixture and sat-

isfying certain inequalities caused by the positive definiteness of potential en-
ergy. U = UT (x) = (u′, u′′) is four-dimensional displacement vector-function,
u′(x) = (u′1, u

′
3) and u′′(x) = (u′′1, u

′′
3) are partial displacement vectors depend-

ing on the variables x1, x3. Evrerywhere below by ”T” we denote transposition.
Let D be the half-plane x3 < 0 with the boundary x3 = 0 and suppose

that the boundary of the half-plane is fastened. Let’s assume that in D we
have p curvilinear cuts, lj = ajbj, j = 1, 2, ..., p, which are simple relatively
nonintersecting open Lyapunov arcs having no common points, and do not
intersect the boundary. The positive direction on lj is chosen from the point
aj to the point bj. The normal on lj is direct to the right with respect to the

positive motion of direction. l =
p⋃

j=1

lj. We suppose that D is filled with binary

transversally-isotropic elastic mixture.
We introduce the notation z = x1 + ix3, ζk = y1 + αky3, tk = t1 + αkt3,

σk = zk − ςk, zk = x1 + αkx3, t = t1 + t3.
The basic boundary value problems of static of the theory of elastic binary

mixtures are formulated as follows:
Problem 1. Find a regular solution of the equation (1) in D, when the

boundary values of the displacement vector are given on both sides of the
lj, j = 1, 2, ..., p and on the boundary x3 = 0. Let’s also assume, that the
principal vector of external force acting on l, stress vector and the rotation at
infinity are zero. It is required to define the deformed state of the plane.

If we denote by U+(U−) the limits of U on l from the left (right), then the
boundary conditions of the problem will take the form

U+(t0) = f+(t0), U−(t0) = f−(t0), t0 ∈ l, U− = 0, x3 = 0, (2)

where f+, and f− are the given functions on l satisfying Hölder’s conditions
on the cuts lj, having derivatives in the class H∗ (for the definitions of the
classes H and H∗ see[4]) and satisfying the following conditions on the ends
aj and bj of lj

f+(aj) = f−(aj), f+(bj) = f−(bj).

Problem 2. Find a regular solution of the equation (1) in D, when the stress
vector is given on both sides of the lj, j = 1, 2, ..., p and the boundary x3 = 0
is traction free. In addition it is assumed that the principal vector of external
force acting on l, stress vector and the rotation at infinity are zero. The
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boundary conditions can be written as follows:

[TU ]+(t0) = f+(t0),

[TU ]−(t0) = f−(t0), t0 ∈ l, [TU ]− = 0, x3 = 0,−∞ < x3 < +∞, (3)

where f+, and f− are the given known vector-functions on l of the Holder class
H, which have derivatives in the class H∗ and satisfying at the ends aj and bj

of lj, the conditions

f+(aj) = f−(aj), f+(bj) = f−(bj).

Therefore, it is interesting to study the behavior of the solution of the problem
in the neighborhood of cuts.

The first BVP for the half-plane with curvilinear cuts. We seek
for a solution of the problem in the form [5],

U(z) =
1

π
Im

4∑

k=1

E(k)

∫

l

∂ln(tk − zk)

∂s
[g(s) + ih(s)]ds+

+
1

π
Im

4∑

k=1

4∑
j=1

E(k)Ej

∫

l

∂ln(tk − zk)

∂s
[g(s)− ih(s)]ds +

p∑

k=1

Vj(z), (4)

where E(k) = ‖A(k)
pq A−1‖4x4 denotes a special matrix that reduces the first

BVP to a Fredholm integral equation of second order, A(k) = ‖A(k)
pq ‖4x4. The

elements of the matrix E(k) and the matrix A−1 are defined as follows

A−1 =
1

∆1∆2




A33∆2 0 −A13∆2 0
0 A44∆1 0 −A24∆1

−A13∆2 0 A11∆2 0
0 −A24∆1 0 A22∆1


 ,

Aij =
4∑

k=1

A
(k)
ij , A

(k)
ij = A

(k)
ji ,

A
(k)
11 = dk[c

(2)
11 q4 + α2

kt11 + α4
kt12 + c

(2)
44 q3α

6
k],

A
(k)
22 = dk[q1c

(2)
44 + α2

kt44 + α4
kt42 + c

(2)
33 q4α

6
k],

A
(k)
33 = dk[c

(1)
11 q4 + α2

kt33 + α4
kt23 + c

(1)
44 q3α

6
k],

A
((k))
44 = dk[q1c

(1)
44 + α2

kt55 + α4
kt52 + c

(1)
33 q4α

6
k],

A
(k)
12 = dkαk[v12 + v11α

2
k + v13α

4
k],

A
(k)
14 = dkαk[w11 + w12α

2
k + w13α

4
k], k = 3, 4,

A
(k)
23 = dkαk[v22αk + v21α

2
k + v23α

4
k],

A
(k)
34 = dkαk[w24 + w14α

2
k + w34a

4
k], k = 3, 4, 5, 6,

A
(k)
24 = dk[−q1c

(3)
44 + α2

kt66 + α4
kt62 − c

(3)
33 q4α

6
k],

A
(k)
13 = dk[−q4c

(3)
11 + α2

kt22 + α4
kt13 − c

(3)
33 q3α

6
k],

(5)
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∆1 =
√

a1a2a3a4∆2, ∆2 = A22A44 − A2
24, ∆1 = A11A33 − A2

13,

t11 = c
(2)
11 δ22 + c

(2)
44 q4 − α

(3)2
13 c

(2)
44 + 2c

(3)
44 α

(2)
13 α

(3)
13 − α

(2)2
13 c

(1)
44 ,

t12 = c
(2)
44 δ22 + c

(2)
11 q3 − α

(3)2
13 c

(2)
33 + 2c

(3)
33 α

(2)
13 α

(3)
13 − α

(2)2
13 c

(1)
33 ,

t22 = −c
(3)
11 δ22 − c

(3)
44 q4 + α

(1)
13 α

(3)
13 c

(2)
44 − c

(3)
44 (α

(2)
13 α

(1)
13 + α

(3)2
13 ) + α

(2)
13 α

(3)
13 c

(1)
44 ,

t13 = −c
(3)
44 δ22 − c

(3)
11 q3 + α

(1)
13 α

(3)
13 c

(2)
33 − c

(3)
33 (α

(2)
13 α

(1)
13 + α

(3)2
13 ) + α

(2)
13 α

(3)
13 c

(1)
33 ,

t52 = t33 − c
(1)
11 δ22 + c

(1)
33 δ11, t62 = t22 − c

(3)
11 δ22 + c

(3)
33 δ11,

t42 = t11 − c
(2)
11 δ22 + c

(2)
33 δ11,

t44 = c
(2)
44 δ11 + c

(2)
33 q1 − α

(3)2
13 c

(1)
11 + 2c

(3)
11 α

(2)
13 α

(3)
13 − α

(3)2
13 c

(2)
11 ,

t66 = −c
(3)
44 δ11 − c

(3)
33 q1 + α

(2)
13 α

(3)
13 c

(1)
11 − c

(3)
11 (α

(2)
13 α

(1)
13 + α

(3)2
13 ) + α

(1)
13 α

(3)
13 c

(2)
11 ,

t23 = c
(1)
44 δ22 + c

(1)
11 q3 − α

(1)2
13 c

(2)
33 + 2c

(3)
33 α

(1)
13 α

(3)
13 − α

(3)2
13 c

(1)
33 ,

t33 = c
(1)
11 δ22 + c

(1)
44 q4 − α

(1)2
13 c

(2)
44 + 2c

(3)
44 α

(1)
13 α

(3)
13 − α

(3)2
13 c

(1)
44 ,

t55 = c
(1)
44 δ11 + c

(1)
33 q1 − α

(1)2
13 c

(2)
11 + 2c

(3)
11 α

(1)
13 α

(3)
13 − α

(3)2
13 c

(1)
11 ,

v11 = α
(2)
13 (α

(2)
13 α

(1)
13 − α

(3)2
13 )− α

(1)
13 (c

(2)2
44 + c

(2)
11 c

(2)
33 )− α

(2)
13 (c

(3)2
44 + c

(3)
11 c

(3)
33 )

+α
(3)
13 (2c

(2)
44 c

(3)
44 + c

(2)
11 c

(3)
33 + c

(3)
11 c

(2)
33 ),

w12 = −α
(2)
13 (α

(2)
13 α

(1)
13 − α

(3)2
13 )− α

(3)
13 (c

(1)
44 c

(2)
44 + c

(2)
11 c

(1)
33 + c

(3)2
44 + c

(3)
11 c

(3)
33 )

+α
(2)
13 (c

(1)
44 c

(3)
44 + c

(3)
11 c

(3)
33 ) + α

(1)
13 (c

(2)
44 c

(3)
44 + c

(2)
11 c

(3)
33 ),

v21 = −α
(3)
13 (α

(2)
13 α

(1)
13 − α

(3)2
13 )− α

(3)
13 (c

(2)
44 c

(1)
44 + c

(3)
11 c

(3)
33 + c

(3)2
44 + c

(1)
11 c

(2)
33 )

+α
(2)
13 (c

(1)
44 c

(3)
44 + c

(1)
11 c

(3)
33 ) + α

(1)
13 (c

(2)
44 c

(3)
44 + c

(3)
11 c

(2)
33 ),

w14 = α
(1)
13 (α

(2)
13 α

(1)
13 − α

(3)2
13 ) + α

(3)
13 (2c

(1)
44 c

(3)
44 + c

(3)
11 c

(1)
33 + c

(3)2
44 + c

(1)
11 c

(3)
33 )

−α
(1)
13 (c

(3)2
44 + c

(3)
11 c

(3)
33 )− α

(2)
13 (c

(1)2
44 + c

(1)
11 c

(1)
33 ),

v12 = −α
(1)
13 c

(2)
44 c

(2)
11 + α

(3)
13 (c

(2)
11 c

(3)
44 + c

(3)
11 c

(2)
44 )− α

(2)
13 c

(3)
11 c

(3)
44 ,

v13 = −α
(1)
13 c

(2)
44 c

(2)
33 + α

(3)
13 (c

(2)
33 c

(3)
44 + c

(3)
33 c

(2)
44 )− α

(2)
13 c

(3)
33 c

(3)
44 ,

w11 = α
(1)
13 c

(3)
44 c

(2)
11 − α

(3)
13 (c

(2)
11 c

(1)
44 + c

(3)
11 c

(3)
44 ) + α

(2)
13 c

(3)
11 c

(1)
44 ,

w13 = α
(1)
13 c

(2)
44 c

(3)
33 − α

(3)
13 (c

(1)
33 c

(2)
44 + c

(3)
33 c

(3)
44 ) + α

(2)
13 c

(3)
44 c

(1)
11 ,

v22 = α
(1)
13 c

(2)
44 c

(3)
11 − α

(3)
13 (c

(1)
11 c

(2)
44 + c

(3)
11 c

(3)
44 ) + α

(2)
13 c

(1)
11 c

(3)
44 ,

v23 = α
(1)
13 c

(3)
44 c

(2)
33 − α

(3)
13 (c

(2)
33 c

(1)
44 + c

(3)
33 c

(3)
44 ) + α

(2)
13 c

(3)
33 c

(1)
44 ,

w24 = −α
(1)
13 c

(3)
44 c

(3)
11 + α

(3)
13 (c

(3)
11 c

(1)
44 + c

(1)
11 c

(3)
44 )− α

(2)
13 c

(1)
11 c

(1)
44 ,
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w34 = −α
(1)
13 c

(3)
44 c

(3)
33 + α

(3)
13 (c

(1)
33 c

(3)
44 + c

(3)
33 c

(1)
44 )− α

(2)
13 c

(1)
33 c

(1)
44 ,

αk, k = 1, 2, 3, 4, are the roots of the characteristic equation ([6]). g and h
are the unknown real vectors from the Holder class that have derivatives in
the class H∗. We write

Vj(z) =
1

π
Im

4∑

k=1

A(k)
(zk − b

(k)
j )ln(zk − b

(k)
j )− (zk − a

(k)
j )ln(zk − a

(k)
j )

b
(k)
j − a

(k)
j

Kj,

a
(k)
j = Re aj + αk Im aj, b

(k)
j = Re bj + αk Im bj.

K(j), j = 1, ..., p, are the unknown real constant vectors to be defined later on.
The vector Vj(z) satisfies the following conditions:
1. Vj(z) has the logarithmic singularity at infinity

Vj =
1

π
Im

4∑

k=1

A(k)(− ln zk + 1)Kj + O(z−1
k ).

2. Under Vj is supposed a branch, which is uniquely defined on the cut
plane along lj.

3. Vj is continuously continued function on lj from the left and right,
including the end points aj and bj, i. e., we have the equalities

V +
j (aj) = V −

j (aj), V +
j (bj) = V −

j (bj),

V +
j − V −

j = 2 Re
4∑

k=1

A(k)
τk − a

(k)
j

b
(k)
j − a

(k)
j

Kj, j = 1, ..., p.

It is easily to check U− = 0, x3 = 0, and

+∞∫

−∞

(TU)−ds +

∫

l

[(TU)+ − (TU)−]ds = 0.

To define the unknown density, we obtain by virtue of (4)-(2), the following
system of singular integral equation of the normal type

2g(τ) = f− − f+ − Re
p∑

j=1

4∑
k=1

A(k)
τk − a

(k)
j

b
(k)
j − a

(k)
j

Kj,

1

π

∫

l

h(t)dt

t− t0
+

1

π

∫

l

K(t0, t)dt = Ω(t0), t0 ∈ l, (6)

where

K(t0, t) = −iE
∂θ

∂s
+
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+Re
4∑

k=1

E(k)
∂

∂s
ln(1 + λk

t− t0
t− t0

),−Re
4∑

k=1

4∑
q=1

E(k)Eq
∂

∂s
ln(tq −−tk0),

Ω(t0) =
1

2
(f+ + f−)− 1

2

p∑
j=1

(V +
j + V −

j )

− 1

π

∫

l

[E
∂θ

∂s(t)
+ Im

4∑

k=1

E(k)
∂

∂s(t)
ln(1 + λk

t− t0
t− t0

)

+Im
4∑

k=1

4∑
q=1

E(k)Eq
∂

∂s(t)
ln(tq − tk0)]g(t)ds,

λk =
1 + iαk

1− iαk

, θ = arg(t− t0), tk0 = Re t0 + αk Im t0, t = y1 + iy3.

Thus we defined vector g on l. It is not difficult to verify, that g ∈ H,
g′ ∈ H∗, g(aj) = g(bj) = 0, Ω ∈ H, Ω′ ∈ H∗. Formula (6) is a system of
singular integral equations of the normal type with respect to the vector h.
The points aj and bj are nonsingular ones, while the summary index of the
class h2p is equal to −4p (for the definition of the class h2p see [4]).

If the solution of equation (6) on the class h2p exists , it will satisfy Holder’s
condition on l, vanishing on the points aj and bj and having to derivatives in
the class H∗.

Let’s prove that the homogeneous equation corresponding to the system of
equation (6) only has a trivial solution h0 in the class h2p. Let’s assume the
contrary. Let h0 be nontrivial solution of the homogeneous system in the class
h2p and construct the potential

U0(z) =
1

π
Re

4∑

k=1

E(k)

∫

l

∂ ln (tk − zk)

∂s
[g(t) + ih(t)]ds

+
1

π
Im

4∑

k=1

4∑
j=1

E(k)Ej

∫

l

∂ ln (tj − zk)

∂s
[g(t)− ih(t)]ds.

It is clear U+
0 = U−

0 = 0, t ∈ l and on the basis of uniqueness theorem U0 = 0,
z ∈ D. Therefore TU0 = 0, z ∈ D, and

(TU0)
+ − (TU0)

− = 2A−1∂h0

∂s
= 0.

Consequently h0 = 0, since h0(aj) = 0, that completes the proof. Thus the
corresponding adjoint homogeneous equation has 4p linearly independent so-
lution σj, j = 1, ..., 4p in the adjoined class and the conditions of solvability
are ∫

l

Ωσjds = 0.

From last equality we get 4p algebraic equation with respect to Kj. On the
basis of the uniqueness theorem it is not difficult to prove that the last system
is solvable.
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The second BVP for the half-plane with curvilinear cuts. We
seek for a solution of the above formulated second BVP for the half-plane in
the form [5]

U(z) =
1

π
Im

4∑

k=1

RT
(k)iL(

∫

l

ln (tk − zk)[g(s) + ih(s)]ds

4∑
j=1

L(k)iL
∫
l

ln (zk − tj)[g(s)− ih(s)]ds),

where g and h are unknown real vector-functions.

R(k) = ‖R(k)
pq ‖4x4, p, q = 1, 2, 3, 4,

R
(k)
1j = αk(c

(1)
44 A

(k)
1j + c

(3)
44 A

(k)
j3 ) + c

(1)
44 A

(k)
j2 + c

(3)
44 A

(k)
j4 ,

R
(k)
2j = −α−1

k R
(k)
1j ,

R
(k)
3j = αk(c

(3)
44 A

(k)
1j + c

(2)
44 A

(k)
j3 ) + c

(3)
44 A

(k)
j2 + c

(2)
44 A

(k)
j4 ,

R
(k)
4j = −α−1

k R
(k)
3j , j = 1, 2, 3, 4,

(7)

A
(k)
pq are given by (5) and L(k)T L denotes the complex conjugate matrix of

L(k)T L,

L =
1

∆1∆2




L33∆2 0 −L13∆2 0
0 L44∆1 0 −L24∆1

−L13∆2 0 L11∆2 0
0 −L24∆1 0 L22∆1


 , (8)

L11 = −∆q4[a44B1 + (b11 + 2a34)A1 + a33D1],

A1 = −B0m3, B1 = Bom1,

L13 = ∆q4[a24B1 + (−b33 + a14 + a23)A1 + a13D1],

C1 = −A! + B1m2

α1α2α3α4

,

L22 = −∆q4[a44C1 + (b11 + 2a34)B1 + a33A1],

D1 = −A1m2 −B1α1α2α3α4,

L24 = ∆q4[a24C1 + (−b33 + a14 + a23)B1 + a13A1],

∆1 = L11L33 − L2
13,

L33 = −∆q4[a22B1 + (b22 + 2a12)A1 + a11D1],

∆2 = L22L44 − L2
24,

L44 = −∆q4[a22C1 + (b22 + 2a12)B1 + a11A1],

∆2 = [b4(m1m3 − 2
√

a1a2a3a4) + q4∆m0]q4∆B0 > 0,

m0 = (a11a44 + a33a22 − 2a13a24), ∆1 =
√

a1a2a3a4∆2,
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m1 =
4∑

k=1

αk, m2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4,

m3 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4,

B−1
0 = (α1 + α2)(α1 + α3)(α1 + α4)(α2 + α3)(α2 + α4)(α3 + α4).

Between the coefficients apq, bpp and c
(j)
pq there are the relations

a11∆ = c
(2)
11 q3 − c

(1)
33 c

(2)2
13 + 2c

(2)
13 c

(3)
13 c

(3)
33 − c

(2)
33 c

(2)2
13 > 0,

a12∆ = c
(2)
13 (c

(1)
13 c

(2)
13 − c

(3)2
13 )− c

(1)
13 c

(2)
11 c

(2)
33 − c

(2)
13 c

(3)
11 c

(3)
33 + c

(3)
13 (c

(2)
11 c

(3)
33 + c

(3)
11 c

(2)
33 ),

a13∆ = −c
(3)
11 q3 + c

(2)
33 c

(1)
13 c

(3)
13 + c

(1)
33 c

(2)
13 c

(3)
13 − c

(3)
33 (c

(1)
13 c

(2)
13 + c

(3)2
13 ),

a14∆ = −c
(3)
13 (c

(1)
13 c

(2)
13 − c

(3)2
13 ) + c

(1)
13 c

(2)
11 c

(3)
33 + c

(2)
13 c

(3)
11 c

(1)
33 − c

(3)
13 (c

(2)
11 c

(1)
33 + c

(3)
11 c

(3)
33 ),

a23∆ = −c
(3)
13 (c

(1)
13 c

(2)
13 − c

(3)2
13 ) + c

(1)
13 c

(3)
11 c

(2)
33 + c

(2)
13 c

(1)
11 c

(3)
33 − c

(3)
13 (c

(1)
11 c

(2)
33 + c

(3)
11 c

(3)
33 ),

a22∆ = c
(2)
33 q1 − c

(1)
11 c

(2)2
13 + 2c

(2)
13 c

(3)
13 c

(3)
11 − c

(2)
11 c

(2)2
13 > 0,

a24∆ = −c
(3)
33 q1 + c

(2)
11 c

(1)
13 c

(3)
13 + c

(2)
13 c

(3)
13 c

(1)
11 − c

(3)
11 (c

(1)
13 c

(2)
13 + c

(3)2
13 ),

a33∆ = c
(1)
11 q3 − c

(2)
33 c

(1)2
13 + 2c

(1)
13 c

(3)
13 c

(3)
33 − c

(1)
33 c

(3)2
13 > 0,

a34∆ = c
(1)
13 (c

(1)
13 c

(2)
13 − c

(3)2
13 )− c

(2)
13 c

(1)
11 c

(1)
33 − c

(1)
13 c

(3)
11 c

(3)
33 + c

(3)
13 (c

(1)
11 c

(3)
33 + c

(3)
11 c

(1)
33 ),

a44∆ = c
(1)
33 q1 − c

(2)
11 c

(1)2
13 + 2c

(1)
13 c

(3)
13 c

(3)
11 − c

(1)
11 c

(3)2
13 > 0,

∆ = (c
(1)
11 a11 + c

(2)
11 a33 + 2c

(3)
11 a13)∆− q1q3 + (c

(1)
13 c

(2)
13 − c

(3)2
13 ) > 0,

bjj = c
(j)
44 q−1

4 > 0, j = 1, 2, 3.

L(k) =




α2
kL

(k)
22 − αkL

(k)
22 α2

kL
(k)
24 − αkL

(k)
24

−αkL
(k)
22 L

(2)
22 − αkL

(k)
24 L

(k)
24

α2
kL

(k)
24 − αkL

(k)
24 α2

kL
(k)
44 − αkL

(k)
44

−αkL
(k)
24 L

(k)
24 − αkL

(k)
44 L

(k)
44


 ,

L
(k)
22 = −∆q4dk[a44 + α2

k(b11 + 2a34) + a33α
4
k],

L
(k)
24 = ∆q4dk[a24 + α2

k(−b33 + a14 + a23) + a13α
4
k],

L
(k)
44 = −∆q4dk[a22 + α2

k(b22 + 2a12) + a11α
4
k].

For the stress vector we get

T (∂x, n)U(z) =
1

π
Im

4∑

k=1

L(k)iL[

∫

l

∂ ln(tk − zk)

∂s
[g(t) + ih(t)]ds+

1

π
Im

4∑
j=1

L(j)iL

∫

l

∂ ln (zk − tj)

∂s
[g(t)− ih(t)]ds].
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It can be shown that the vector TU satisfies the condition (TU)− = 0, auto-
matically;

[T (∂x, n)U(z)]− =
1

π
Im

4∑

k=1

L(k)iL[

∫

l

g(t) + ih(t))

x1 − tj
ds

+
1

π
Im

4∑
j=1

L(j)iL

∫

l

g(t)− ih(t)

x1 − tj
ds] = 0.

But on the arc ends lj, j = 1, 2, ..., p, we have

[T (∂x, n)U(z)]± = ∓g(t0) +
1

π
Im

4∑

k=1

L(k)iL[

∫

l

∂ ln (tk0 − tk)

∂s
[g(t) + ih(t)]ds

+
1

π
Im

4∑
j=1

L(j)iL

∫

l

∂ ln (tk0 − tj)

∂s
[g(t)− ih(t)]ds] = f±(t0).

From last equation we get

2g(τ) = f− − f+,

1

π
Re

4∑

k=1

P(k)

[ ∫

l

∂ ln (tk0 − tk)

∂s
h(t)dt

−
4∑

j=1

P(j)

∫

l

∂ ln (tk0 − tj)

∂s
h(t)dt

]
= Ω(t0),

(9)

where

Ω(t0) =
1

2
(f− + f+)− 1

π
Im

4∑

k=1

P(k)[

∫

l

∂ ln (tk0 − tk)

∂s
g(t)dt

−
4∑

j=1

P(j)

∫

l

∂ ln(tk0 − tj)

∂s
g(t)dt].

We must require in addition that the solution h of the system of singular
integral equations (9) satisfies the condition

∫

l

h(t)ds = RL

∫

l

(f− − f+)ds, (10)

where
4∑

k=1

R(k)T = −E + iR.

We seek for the solution of the system (9) in the class h0 ([4]). Therefore,
the total index in the class h0 is 4p.
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Let’s prove that the adjoint homogeneous system corresponding to the
system (9) has only the trivial solution in the adjoint class. The adjoint ho-
mogeneous system has the form

1

π
Re

4∑

k=1

iLL(k)

∫

l

∂ ln (tk − tk0)

∂s
ν(t)ds

−
4∑

k=1

4∑
j=1

LiL(j)iLLk

∫
l

∂ ln(tj − tk0)

∂s
ν(t)ds = 0.

(11)

Note, that the solution of the system (11) will be vector, satisfying the Holder’s
conditions, vanishing at the end points aj and bj, and having derivative in the
class H∗ ([4]).

Multiplying the system (11) by nonsingular matrix a = L−1 given by (8)
and taking into account the identity aLL(k) = P(k)a, we obtain

1

π
Re

4∑

k=1

P(k)

∫

l

∂ ln (tk − tk0)

∂s
aν(t)ds

−Re
4∑

k=1

4∑
j=1

P(j)Pk

∫
l

∂ ln(tj − tk0)

∂s
aν(t)ds = 0.

(12)

Let ν0 be the nontrivial solution of the system (12) and construct the potential

U0(z) =
1

π
Re

4∑

k=1

RT
(k)iL

∫

l

∂ ln (tk − zk)

∂s
aν(t)ds

−Re
4∑

k=1

4∑
j=1

P(j)Pk

∫

l

∂ ln (tj − tk)

∂s
aν(t)ds.

(13)

Then at every point of l, except may be aj and bj

[T (∂t, n)U0]
± = 0

and on the basis of the uniqueness theorem we have U0 = 0.
Finally, from equality: U+

0 − U−
0 = −2aν(t0) = 0, t0 ∈ l, it follows, that

ν0 = 0, which contradicts our assumption.
Thus, the system (9) is solvable in the class h0 for the arbitrary right-

hand side and the solution depended on the 4p arbitrary constants. These
constants are fixed by the conditions (10), given the system of algebraic 4p
linear equations.

Let’s prove that the determinant of this system is not zero. Indeed, let’s
take the homogeneous system, corresponding to the conditions f± = 0. Sup-
posing the solution K

(0)
1 , ..., K

(0)
4p nontrivial, we construct the potential

U0(z) =
1

π
Re

4∑

k=1

RT
(k)L

∫

l

ln (zk − tk)h
(0)ds, (14)
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where h(0) is a linear combinations of solutions h(j)

h(0) =

4p∑

k=1

K(j)h(j),

and h(j) are linearly independent solutions of the homogeneous equation cor-
responding to (9). h(j)has satisfy the following condition

∫

lj

h(0)ds = 0.

Then the potential (14) is regular at infinity and by the uniqueness theorem
h(0) = 0. But we have the following equality

(∂u

∂s

)+

−
(∂u

∂s

)−
= Lh(0) = 0.

Whence we conclude that K(j) = 0, which contradict the assumption. Thus
the solvability of the problem is proved.
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