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Abstract. Solvability of the operator-differential equations of the fourth or-
der of elliptic type with partial derivatives in the weighted spaces are considered
in the paper. Solvability conditions in some weighted spaces, expressed by the
coefficients of given operator-differential equations are obtained. Connection
between lower bound of the spectrum of operator participating in the main
part of the equation and exponent of the weight function is also determined.
In this paper are found conditions oh the lower boundary of the spectrum of
the main operator for operationally-differential equation depending of two and
of the order of the weighted spaces which provide existence and uniqueness of
the regular solution of a class of the operationally-differential equation of the
fourth order in weighted spaces on all axis.
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LetH — be a separable Hilbert space, A — a positive definite self-adjoin
operator in H. Let v = (y1,72) € R?), R = (—o0,00). By Ly, (R* H) we
denote a Hilbert space of vector-function f(z,y) with values in H for which
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1L, = / / If (@ )P e mdzdy | < oo,
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On D (R?; H,)- set of infinitely differentiable in H vector-function u(z,y),
determines in R?, with values Hy = D (A*) with compact supports, we deter-
mine the norm
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k,j=0
k+j5 <4
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By W, (R?* H) we denote a completion of D (R Hy) by the norm [ulfy,,

Notice that for v = 0 = (0,0) the space Log(R?* H) = Lo(R?* H) and
Wo, 01 (R?, H) = W3 (R?; H). In the spaceHconsider the following operator-
differential equation
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where f(z,y), u(x,y) are vector functions with values in H, and the operators
Aand Ay ; (k,j =0,4,k + j < 4) satisfy the following conditions:

1) A is a positive-definite operator with lower boundary of the spectrum
o, 1.e., A> poE
2) the operators By ; = Ay; A%~ (k j = 0,4,k + j < 4) are bounded
operators in H.

Definition. If for f(x,y) € Lo, (R?* H) there exists a vector-function
u(z,y) € Wfﬁ (R?; H), that satisfies equation (1) almost everywhere in R?,
we'll call it a regular solution of equation (1). If for any f(x,y) € Lo, (R%* H)
there exists a regular solution of equation (1) that satisfies the estimation

||U||I/V24,W < const ||f||L2w ;

then equation (1) is said to be regularly solvable.

In the present paper, we’ll find conditions on coefficients of equation (1) and
the vector v = (71, 72), that provide regular solvability of the given equation.

Note that for v = 0 solvability of equation (1) was investigated in the
paper [1] for Ay ; =0 (k,j = 0,4,k +j < 4) in the paper [2]. For one variable,
when A is an elliptic operator with discrete spectrum, and A;; = a,; are scalar
numbers, equation (1) was investigated in the paper [3], when A is a self-adjoint
operator and coefficients are unbounded operators see [4].

The following theorem was proved in [2]

Theorem 1.[2]. Let A-be a positive-definite self-adjoin operator with lower

boundary of the spectrum pg and |y| = /7 +75 < ?guo, then the equation

4 4
Pouzpo(a 8) otu  0*u

2 u=— A= 2 (2
15 reqularly solvable.
Further, denote

o 0 . Oty
Piu=P (%7@)10: Z Akj@x"f—(’ﬂyj’
k,7=0 (3)
k+j<d4
u(x,y) € Wfﬂ (R2;H)

and
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Pu = FPyu + Pu. (4)

At first we prove the following theorem.

Theorem 2. Let the operator A and vector ~ satisfy the conditions of
theorem 1. Then for any u(x,y) € W3 (R* H) the following estimations
hold:

i) O

< Cj (7; o) ||P0u||L2,,(R2;H)

&Ek@yj Lo~ (R2;H) L (5)
(k,j=0,4,k+j<4)
where
4
Ho
Coo (7: o) = , (6)
Ho =8 (M +72)
4y} 16+¢
Cuo (Vs 10) =1+ ; (7)
Vb =8I+ wg—8 (v +13)
42 1675
Coa (7; o) = = : (8)

1+ )
Vig =80+ Ho— 807 +12)
forj=0,k=1,23andk=0,7=1,2,3

E\* /4 —k % 42 244 + 8v4
Cro = (‘) <—) (1+ = + : 1 2 1 )a 9)
4 4 Vg =80 +73) o =8V +12)
aj

NAYE A 4v3 2475 + 87,
COJ_(Z)(T) 1+ —t T8 (7 ) , (10)
Vs =80t +48) o 7T

fork#0,j#40, k+j=4(k=1,j=3k=2,j=2k=3,j=1)

cw(%uo):(E)Z(Z)i(H A0E+93) 160 +9d) ). )

4/ \4 Vi =80+ 9 1o — 80 +13)
And for2 < k45 <3, k40,j#0,k=1,j=1Lk=2j=1k=1,j=2)
(k+3) k J

Crj (7; o) = <W> - (2)4 (2)4- (12)

Proof: Obviously, it suffices to prove these inequalities for a vector-function
from D (R? Hy). Let u(x,y) € D(R* H,). After substitution v (z,y) =
u(z,y) e 1Y we get following equivalents of the inequality
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HA4_(k+J) (a% + ’Yl) (% + ’Y2> v (x,y)
Lo(R2:H) (13)

< Cry (73 o) || Po (%+71)’(8iy+72> Lo(R2:;H)
2

where the numbers Cy ; (7; pto) are determined from equalities (6)-(12).
After Fourier transformation we get the following equivalent inequalities:

A4 (k+3) H
H (i€ + )" (in + ) 0 (€, 7) e S (14)

< Oy (7; o) || Po (i€ +v1) , (i€ +v2) 0 (5 77)HL2 (R2;H)"
Let

Po((i€+7),(in+7)0(&n) =g(&n), (&n) € R

Since the operator pencil

Py (i€ + ), (in+72) = (i€ +7)" B+ (in+ 1)  E+ A% (§,1) € R,
is invertible in H for |y] = v/7{ + 75 < éguo (see [2]), then

(& m) =P ' (i€ +m) . (in+72)) § (& m), (§m) € R*.
Then inequality (14) takes the following form

HA4—(k+j) (i€ + )" (in + 7)) By (GE+ 1), (i€ + 7)) § (€, 77)’

LQ(RQ;H)
< Cry (Vi 10) 119 (€M 1y (o) -
(15)
Now, consider the case £k = 0,5 = 0. Then
JATF (€ + ) i+ g€l
< sup [JAUB(GE+ 1) ) 13 € ey 1O
(&meER?
Since for any (¢,7) € R?
|A*Py (i€ + 7)), (in 4+ 72))|| 1
- HA4 (€ + )" + (in+7)" + AY)
. . -1
< swp pt ((E€ + )" + (i + )" + p) H
pneo
< sup |[pt[Re ((i6 +7)* + (in+72)" + 1)) 7|
neo(A) (17)
—1
< swp pHE A ' 4 e — 68797 — 6n*3) H
pneo
< sup H/f‘ (€2 =393+ (> = 392" + (' — 8 (71 +13) "
B> po
-1 4
< sup |[pt (p* =8 (v +73)) H < “3—8(“#73) = Coo (7; ko) »

[T
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Then taking into account inequality (12) in inequality (16) we prove the validity
of inequality (15) for k =0, j =0.
Now, let’s consider the case j =0,k = 1,2,3. Then

HA4—k (25 + f)/l)k Pofl ((Zf + ’71) s (iT} + 72)) g (fﬂ?)‘ Lo(R2;H) ( )
2 (5 18

sup (66 + 1) AU (66 + ) s i+ 32))|| - 1 (6l ey

(&meER?

On the other hand, for (¢,7) € R?

|+ AR (G + ) s Gin +72)|
W@ D)2

< sup
nea(a) (62 = 392)° + (12 = 393)" + ' = 8 (v +73) (19)
4—k (¢2 2\ 3
< swp — L (§4+%) —
nea(4) (€2 —377)" + p* — 8 (1 +12)
Let 0 > 0. Then having applied Young’s inequality, we have:
k
- k 4—k 1 2\ 4 4—k k1
it (@ 4t) = )T (oo @ )7) 0T (€ D),

k
Now choose d > 0.So, that %5 = % Lo ie, 6= (ﬁ) *,

Then

(=2}

4

e

k(g2 onh 4 k(K

= (g) (#)T (' + (& +4D)").

Considering this inequality in (19) we get

(' + (€ +)°)

[

| Ge+ )" AR (g + ), i+ 7))
< <E)Z (4—’f)44 s u42+(£2+7%)2
4 4 pea(a) (€2 = 317)" + p* =8 (71 +12)
() (5
< (Z s
=\1 1

2
« sup pt— 8 (vE+4d) 4 (€2 — 372" + 877 (€2 — 39?) + 247} + 844
uea(4) (€2 =39 + ' =8 (v + )
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k 4—k
ENT (4—Fk\ 7
<[ 2 s
=\ A
£ — 343 2471 + 873
x sup 1+ 892
peo(A) ( "2 =3 +pt =8 (vi+d)  pt—8(vi+d)

k 4—k
§ (k) (4—k) . 4y . 2i+s
- \4 4 Vs =80t +3)  mo—8(+%)

= Cro (7; o) -

Thus, inequality (15) is true also for j = 0,k = 1,2,3. Inequality (15) is
similarly proved for j =0,k =1,2,3.

Now, consider the case k #0, j #0, k+j=4(k=1,7=3;k=2,j=2;
k=3, j=2). In this case

(€ + )" (i +72) Pyt (€ + 7)., (in +12)) § (&, 77)‘ La(R%H)

< sup
(&m€ER?

(i€ + )" (in +72) B (i€ + 7). (in +72))| (20)

X ||g (ga n)||L2(R2§H) ’
For (§,7m) € R? we have:

e+ 90" (im + 32 P (G + ) (06 +2)) 4 6,m)]

L2(R2;H)
< swp — 22(5 +27) (n? +72) —
neo(A) (€2 — 373" 4+ (12 — 392)% + ut — 8 (74 +14)

Since for any 0 > 0

k —k
2

(§2+vf)§(n2+7§)% = (&€+%) (" +7%) =

:<5f+71 IZ(

ko, A—k 1
< 15(5 +42)° +T54

4—k
) 1

(f +V1)

4—k
Now, assuming 0 = (%) 1 we get that

k i —k%
@D et <] (S0) 7 (@ o))
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k J
AN 1\ 4
= (Z) (fl) ((€ -3+ 892 (- 3)
F167] + (2 = 393)° + 893 (1" — 343) + 1674).

Thus (21) implies

|6 )" (i -+ 2 B (36 490 (im + 7)) | <
i (£48)"+ ()

k N _
S (Z) (i) uig&) (E _371)2_"_( 2 3’}/2)24—//44—8(7%_{_,\61) —
_ (E)g (l)i (62-342) +(n2—37§)22+8y%(52—37§)+87§(n2—37§)+16(ﬁ+7§) _
4 4 (62-392)"+(n2—3+2) " +ug—8(ri+43)
— (@)% (l)i 1482 §2-3+7 4 (22)
47 4 L (e2-3+2)+ui—8(vi+44)
4 4
] 2 n2—37§ 16(71+72) <
+ 72 <n2_3v§)2+u3—8<71+72) + u3*8(’Y%+'Y§) B
k A 16 4+ 4)
< (k)i 1)’ (71+72) (o443 — O, (v '
Now, consider the case 2 < k +7 § 3, k#0,7#0. In this case
AT (g 4 y0)* (i + 72) By (€ +m) s (i +72)) § (€.)
Lo (R2;H)
2(R?;
< swp 4 g0 i+ e B G+ ) G+ | (29)
EmeER

X N1G & Ly (r2er) -
Since for (§,7n) € R?

HA4_(k+j) (Zé_ + P)/l)k (277 + ,.)/2)-7 PO_l ((Zg + 71) 9 (7/77 + 72))HL (R2;H)

< sup [ G ) i +02) B (G )i )| (24)
peo
< sup P (€ 492 (2 + )

peo(A) (€2 = 372)° + (12 — 373)" + 4 — 8 (4 +44)
4—(k+3) k

Let 1,09,03 > 0. 6; * -5 ~(5§ = 1. Then we have

k J
A=) (2 1 42) 7 (? 4 43)
4 (k) k 4
= () (®(E D))" (6 (P +3)°)

" .
) 1 (& +vf)2 + 53211 (n? +7§)2.
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Additionally we require 51%“]‘) = 52§ = 032. Then we get

v (o) (1)

k .
2

(n* +13)

ie.,

p (2 4 302)
4—(k+j k B i 2 2)2 2 2)2
<=y (4_(k+j>> (i) (1 + (€9 + (n* +13)°)

Consequently,

[N
—~
3
)
.
MM
~—
[N

. k j
=D (€2 4 43)>
sup

(72 +12)*
2
pnea(a) (2 =371 4+ (> = 393)" + pu* —8(vf +13)
(k+35) %

(=)'

{u4 F(E =3+ (- 313) + 812 (&2 - 372)°

X sup 2 2\2 2 2\2 4 4 4
peo(a) ¢ (&2 =377)" + (n? = 3v3)" + pt =8 (v +3)
875 (> — 373) + 24 (77 + 73) }
(€2 =392+ (2 —373)" + p* — 8 (v +18)

(=) (')

L A0 ) 24 (71 +13)
X + — 8 (4 4 4 (4 4
po =8 +12)  po— (1 +7)
The theorem is proved.

Now, prove a theorem on solvability of equation (1).
Theorem 3. Let the conditions of theorem 1) and condition 2), moreover

) = Cis i)

4

a (y; o) = Z Cr.j (7 po) [| Bl < 1,
E+75=0
k+j5<4

where the numbers Cy; (7; o) are determined from theorem 2 by equalities
(6)-(12). Operator By ; determined from condition 2). Then equation (1) is
reqularly solvable.

Proof. Write equation (1) in the form Pu = Pou+ Pyu = f wheref(z,y) €
Loy (R* H),u(z,y) € Wy, (R?* H). After substitution of Pyu = v € Ly, (R* H)
we get the equation (+P Py ") v = fin Ly, (R?* H). Since
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‘ Lkt
[P, = Pl <5 45— [[Ae A% HA‘*‘“““)—SJEZ
k+3<4

La

4
< 2 Cri (o) BeglPoully, = o (v po) o]l -
k435=0
kE+j<4

As a (7; o) < 1, the operator E+P Po_l is invertible in the space Lo, (R% H),
then v = (E+ PPy ") fbatu=F;' (E+ PF ") f
Hence it follows that

[ullws < const|fl, -

The theorem is proved.
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