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I. Vekua has constructed several versions of the refined linear theory of thin
and shallow shells, containing the regular process by means of the method of
reduction of three-dimensional problems of elasticity to two-dimensional ones.

In the present paper by means of the I. Vekua method the system of dif-
ferential equations for the nonlinear theory of non-shallow shells is obtained.
Using the method I. Vekua and the method of a small parameter 2-D system
of equations for the nonlinear and non-shallow shells is obtained. For any ap-
proximations of order N the complex representations of Vekua-Bitsadze type
[2] of the general solutions are obtained.

Under thin and shallow shells [. Vekua meant three-dimensional shell-type
elastic bodies satisfying the conditions

a’ —x3b’ =2 al, —h(2', 2?) < a3 < h(2',2?) (o, 3=1,2), (%)

where a” and 02 are mixed components of the metric tensor and the curvature
tensor of the shell’s midsurface, x3 is the thickness coordinate and h is the
semi-thickness, depending on curvilinear coordinates z*, z%.

In the sequel, under by non-shallow shells we mean elastic bodies not sub-

ject to assumption (*), i. e., such that

ag —xgbg - ag = }J;gbg‘ <g<l1.

1. To construct the theory of shells we use the coordinate system which is
normally connected with the midsurface S. This means that the radius-vector
of any point of the domain {2 can be represented in the form [1]

R(z', 2% 2%) = r(a',2%) + 2°n(a', 2%) (2° = 23),

where r and n are radius-vector and the unit vector of the normal of the
midsurface S(x3 = 0); ', 2% are the Gaussian parameters of S.

Covariant and contravariant basis vectors R; and R' of the surface
S (3 = const) and the corresponding basis vectors r; and 7* of the midsurface
S(x3 = 0) are connected by the following relations [1]:

R = Alrj= Ayr!, R = A%/ = Ar; (i,j=1,2,3),
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where

A =al —a3bl, A% =071 - 2Hx3)a} + x3bf], AL = A} =57, O
1

V=1-2Hrs+ Kz}, Rs=R’=rs=r>=n (a,8=1,2).

Here (aq3, a®?, aj) and (bag, b b3) are the components (co, contra, mixed)
of the metric tensor and curvature tensor of the midsurface S. By H and K
we denote a middle and Gaussian curvature of the surface S, where

2H =% = bl + b3, K = bibs — byb3.
The main quadratic forms of the midsurface S have the form
[=ds® = aagdxo‘d:vﬁ, T = kyds® = bagdxo‘d:vﬁ, (2)
where k; is the normal curvature of the surface S, and

dz®
aag = ra'rg, bag = —Tang, k?s = bagsaS’g, Sa = %
Here and in the sequel, under a repeated indices we mean summation; note
that the Greek indices range over 1, 2, while Latin indices range over 1, 2, 3.
To construct the theory of non- shallow shells, it is necessary to obtain for-
mulas for a family of surfaces S(x3 = const), analogous to (2) of the midsurface
S(z3 = 0) which have the form [1]

[ = di? = gopda®da®, 11 = ksds* = bogda®da?®, (3)
where
Gap = Qap — 2$3ba5 + $§(2Hba5 — K(Iaﬁ), ZA)a,g = (1 — 2HSL’3)baﬁ + $3Kaag,

and k; the normal curvature of the surface S.
It is not now difficult to get the expression for the tangential normal I of
the surface S directed to § [3]:

5 d
I=5xn=[1-ask)l— Wss]d—f, 45 = \J1 — 25k, + a3(k2 + 72)ds,
where s and [ are the unit vectors of the tangent and tangential normal on
S, ds and ds are the linear elements of the surfaces S and S, and 7, is the
geodesic torsion of the surface S.

2. We write the equation of equilibrium of elastic shell-type bodies in a
vector form

1 8 /go" |
LOVIT G 0 Vit B =0, (4)
V9 ox!
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where g is the discriminant of the metric quadratic form of the three-dimensional
domain €2, V; are covariant derivatives with respect to the space coordinates
2!, ® is on external force, o’ are the contravariant constituents of the stress

vector o acting on the area with the normal I and representable as the

Cauchy formula as follows:

on=0 li, (li:lRia )

For the stress vector acting on the area with normal l , we obtain

ds
—. 5
ds (5)

The stress-strain relation for the geometrically nonlinear theory of elasticity
has the form

o4 =0 (IR,) = Vo (Ir,)

o' =0"(R; +9;U) = E"e, (R; + 0;U), (6)

where 0 are contravariant components of the stress tensor, ei; are covariant
components of the strain tensor, U is the displacement vector, £?? and e;;
are defined by the formulas:

EOM=2g"g" + u(g"q" +g"g"), ey = (ROU + ROU +0.U9,U). (7)

To reduce the three-dimensional problems of the theory of elasticity to the
two-dimensional problems, it is necessary to rewrite the relation (4-7) in forms
of the bases of the midsurface S of the shell (2.

The relation (4) can be written as

L(f)\/aﬁaa n do?
Va o Ox oz

From (1), (6), (7) we obtain

+ 9P = 0, (CL = a11Q92 — CL%2>. (8)

i i g 1 j
o' = A, Ay MU (1, 0,U) + 543, (U0 U)(rj, + A5,0,U), (9)
Mnina — )\gitjgpiar M(ahmajlth + ai1q1aj1p1) (aij — ,r.i,r.j)

3. The isometric system of coordinates on the surface S is of special inter-
est, for in this system we can obtain basic equations of the theory of shells in
a complex form which in turn allows one to construct for a rather wide class
of problems complex representations of general solutions by means of analytic
functions of one variable z = z! + i

The main quadratic forms in the system of coordinates are of the type

1 _
I =ds® = A(z,2)dzdz, 1l =k,ds” = 7A (Qd2* + 2Hdzdz + Qdz*]
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Q = 0.5(b) — b2 +2ib}),  A(z,2) > 0.

Introducing the well-known differential operators 20z = 0y — 10y, 20; =
0; + 10, and the notations le = ﬁairj, X, = 9®r;, for the geometrically
nonlinear theory of non-shallow shells from (8) and (9) we obtain the following
complex form both for the system of equations of equilibrium and Hooke’s law:

+ =+ 3
LOATIre | 07T\ 4 Qrp) + 2% 4 XL =0,
1 (o0 one M (10)
1 73 T3 1 2 At 973 =
x ( 5 T 8z ) + H(r{ +75) 4+ Re (QT¥ry) + Dos + X3 =0,
=9 {\0+u [RTO.U+(R.+20,U) 0°U|} (RT+20°U)
+ ud {[R+85U+(R++285U) o7U] (R++282U>
+ [R+83U—|—(n+83U) GEU} (’I’L+83U>} s
= {[A@ 4 2u(ndPU + %83U83U)1(n +a,U) (11)
+1 {(%ngU +nd,U + 0.UU)(R" +20°U)
+ (%R@,U +nd:U + 0:U8U)(R" + Q@zU)} } :
(0PU = 05U).
Here

+ 1 +

Trry = (T it (ri+iry), Firy = (7' =it (r +iry), TS =17,
5 =7y, 1 =70, 200U =(R"R")0.U+ <R+R+>85U, TY = T,
©=2Re [(R"+0°U)) 0.U+05U3+0.5(3:U)°, R"=0"" [1—Ha;) r+
‘HU3Q’F+:|7 R+ = (]_ — H.’,U3)'I°+—.T3Q'F+, R+:R1 +7:R2, R+:R1+iR2,

R'R* =425(A9?) Y (1—Hz3)Q RYR=2(A0?) ' (9+222QQ),
Rtr, =207'Qus, R v, =207'(1 — Has), 77t =207, vt =7l +ir2.
We have the formulas

7"+8ZU:A7182U+ —ﬁUg, 7"+782U — 85U+ — QUg, X+:X1+iX2,
nd.U=0.Us + 0.5 (QU,+HU,) (U* =Ur*, Uy =Ur,, Us =Un).

4. In the present paper the three-dimensional problems of the theory of
elasticity are reduced to the two-dimensional ones by the method suggested by

I. Vekua. Since the system of Legendre polynomials {Pm (%)} is complete
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in the interval [-h,h], for equation (8) we obtain the infinite system of two-
dimensional equations

h
! 6\/&%& Qo a3 _ —
/ {% Dpo + 9 + 19@} P, (,3 ) des=0 (m=0,1,...)

or in a form

v, @ a mh+ (( V3 (me g >+ 0 (12)
where
- h h
(m), (m 2m+1 i . 2m +1 i
(0' , <I)): o /(190',19@)Pm (ES) dxs= o7 /(T,X)Pmdxg,

—h —h

(m) (m) 9 1 /() (=) (- ()

F:@+”;'(0%h4—wnﬁ9ﬂ (ﬁzﬂi@)

V. are covariant derivatives on the midsurface S.
The equation of state (9) may be written as

#icapien 3 \(Ginr z A 50,8 (o0, )
m1=0
4—2 Z ( %f)pﬁqfﬁl—i_ Z %13]‘11)511111)1' U)(D U D, U)]
mg=0 (m ma= 0(””1 mz
where
@U=$%Uﬁﬁﬁlwzn? (U+[fﬁ)> (14)
h
m) . 2m+1 - s
= o () (3):
(n{ill)lljl 2h / 1170 41 h n XT3
—h
h
(m) ijp 2m + 1 i j »
(ml‘/i{mQS'ljlpl = 2h ﬂAzp Ajl ) Apl Pml PmQPmdxg, (15)
h
(m) 1jpq 2m +1 i J P A4
( A s'ljlpllh - 2h 1914“ ’ AJI ) AplAq1Pm1Pm2Pm3Pmdx3-
mi1,ma,ms3

—h

The boundary conditions on the lateral contour 05 take the form:
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a) for the stresses

h

(m) (m) (m) 2m + 1 ds x
w=0wl+ o ays+ 0 mn= 9% /U(l)EPm (f) dzs, (16)
h

(m)

m
o

b) for the displacements

h

m  2m+1 T (m) (m) (m)

U = 5h /UPm (ﬁ) des = U (l)l + U (S)<S) + U 3n. (17)
h

Thus we have constructed an infinite system of two-dimensional equations

of geometrically non-linear and non-shallow shells (12-17), which is consistent

+
with the boundary conditions on the face surfaces, i.e. s = o (zt, 2% +h).
The passage to finite systems can be realized by various methods one of
which consists in considering of a finite series, i.e.

N m) (m
(9o, U, 9®) = 3 ((?})i, (U),(cp)) P (52) = (.U, X),

m=0
where N is a fixed nonnegative number. In other words, it is assumed that

(m) (m) ; .

U=0 o'=0, if m>N.
Approximation of this type will be called approximation of order N.
The integrals of type (15) can be calculated [5], for example,

h
m) 5 2m +1 T3

b en = T /19_1331 (23) B} (23) P, (F> P, (ﬁ) drs =
“h

24 1[ o s (P (0)@ui(y), iy < m " LG LG,
Vi [Bal(hy)Bﬁl(hy) ( Qumy () P(y), my < m)} + K Omys (18)

1
if £ # 0K #0and ala)dm, if E = H?—K = 0; where Qu(y) is
the Legendre function of the second kind, E is the Euler difference, Bj(z) =

a§+xL%, LG = b5 —2Ha$. Under the square brackets we mean the following:
B B B B

e = fly2) = fyn), vie=[HF VE)h ™.

For the integrals containing the product of three (four) Legendre polyno-
mials we have

h

(Tl) orazas _ 2m + 1 / B3 B, BS, PP Pdes - om + 1
(i ms) P23 on 1—2Hxzs + Kxg ™m0 " K2ht

—h
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Y

min m1 mg 82 n Ps(y)Qm(y), s S m Y2
x Z Oy Z Chigsah” .
0y10y2 | y1 — Y2 \ Qy(y)Pn(y), s > m

where s = my + mq — 2r,

9

A, AA L 2(p+q) —4r+1 1.3---2p—1
Upgr = , A=
pa Aprgr 2(p+q) —2r+1" "7 !
3
Bj; (2)Bg; () Bg) (« Cigigsa™,
n=0

5. Three-dimensional shell-type bodies are characterized by inequalities
A5l <g<1 (a,=1,2)
Therefore they can be represented as follows
lebGR| < g <1,

where e = hR™! is a small parameter.

Here h is semi-thickness of the shell, R is a certain characteristic radius of
curvature of the midsurface S [4].

Now, following Signorini [3] we assume the validity of the expansions

m), (m) (m) () mn) (min)
((UZ,U,F>:Z(GZ, U. F |

n=1

Substituting the above expansions into the (12,13) and (10,11) than equal-
izing the coefficients of expansions for " we obtain the following 2-D finite
system of equilibrium equations with respect to components of displacement
vector in the isometric coordinates a;; = asy = A(z!, 2?), which has the form:

—_— ) (m.n)
4uag(Afla§ d+)) o4 @)+ 2Dt — (2m+

(m—1,m) (m—3,n) (m,n)

(m—1,n m—3,n
[2&( )4 u3)+--->—|— u, + u, +---]+F+ =0, (19)

m—1,,n) (m—3,n)

m,n (m,n)
p(V ) —eme (0T 0 )
m—1,n) (m—3,n) (m,n)
G2 (w4 )|+ B =0,
where uy = wuy + iug, 0 = A1 ((’Lmﬁ;&r), 2 = o' +i2%20, = 0, — i0s,

2 _ 92
Vv 020z "

>I>J>
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Obviously, in passing from the n-th step of approximation to the (n+1)-th
step only the right-hand side of equations are changed. Below we will omit
upper index n.

Consider now the cases: N =0,1,2,3 [6].

Case N = 0. From (3) we get
(0)
4 &(A*laz{&’) 20+ 1)0-0 =
(m)  (m)
UV = 0 <F+ —Fy=0,m=0,1,2, 3)
The complex representation of general solutions has the form
A 1 o'()d —
o _ _Atdul // // S_0, @)
A+ onom S C—
0) .
s = £(2)+ T(2), (dS:A(C,C)dCdC, C=¢+in),

where f(2), ¢(z) and ¢(z) are holomorphic functions of z. We note that

g/\

0
for plane (i.e. A = 1) the expression of z(u)r coincides with the well-known
representation of Kolosov-Muskhelishvili.

0 (1 1) (0
Case N = 1. With respect to the components (&l,&g) and (&3,7(13)) we

have two systems of equations:

_14 (0 ©
4uag<A azm) 900+ )02 + 20051

0 () (22)
5 (1) (0)
wu3+3[w +(A+2u)9} 0
and "
14 (M B o) @MY\
4M5L<A a u+> L 2N+ p)d- 0 — 3 (2@3 + u+> —0, 2
V2 + 0 = 0.
The complex representation of general solutions has the form:
(0) A + A+ 6 1 — A ow
Uy = V() — o oo
3)\+2,u7r s g 6(N+p) 07
(0) 2 12(A 1 u)
oy 24
uz = w )\+2M(90+80) (V vz Y (24)
and

b= [ s —4“3: WFT - 70 + 12X,
)

s (-z
i = 0(=)+ TG — [ (#0+F0) e = 245 (v = 30)
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where ®(z) and V(z) are holomorphic functions of z.
Note that the systems (10) and (11) coincide with I. Vekua’s refined systems
of equations for the stretch-strain and bending of plate, respectively.

(0) (2) (1)

Case N = 2. In this case with respect to the components (u1,u,us) and
(1) (0) (2)
(uy,us, uz) we have two systems of equations:
_14 O (1)
4;@(A azu+) oA+ 0-0 + 2008 — 0,
2 (2)
10-(A10. &l) +2(\+ )0: 0 — 5p(2 Oty + 3&1) —0,  (25)

u(v%ﬁ + 39) - 3[A((3) O+ 2@&2] —0

and
1)
4u€%<A‘18 (é)) + 2N+ p)o- 6 — (2&% + &l) =0,

2(0)

V=u +9_0 (26)

Vi — 5[)\6’ +3(M 20 )] 0.

In this case the complex representations of the general solutions of the
equations (12) and (13) take the forms

1(40) 5)\+6,u1// // e
t 3N+ 2u

2

A+ 2p = ay 0z’

2 2/ .0w 2 - 2 az_p, Ovy
=i —k 2
e <28§+3/\+2M¢(z)+; ap 0z )’ (27)
(1) 2\
Uz = U1 + V2 — T QM(SOI( )+90/(2>),
where
12N + p) 180u(A + 1)

2, _ 2 _ =1,2 2v=1
Vo = agug, oy N 2 ay, Ot 200)2 =0 (k=1,2); Vw bw,
and

!/
iy = // LG 9 g + A+ G
R O W
8,2 10N+ p) 0z

© _ 1 / _ A
uy = U(2) // ) + ))1n|g S + Zm s v
(2 ;
iy = w — 3H2 (cp( +3(2)),
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60(A+p) w, v2

where Vw = 2 = 3x.

Case N = 3. For this case we have

)
© _ 5+ 6p 1// gds // gds  — 2\ 23:1+Ak vy,
T o3t sC— s C— )\+2,uk:1 a0z
(2) 2 ( Ow 2\ — L @) Gy
= 2= At 29
3
(1) (1) 2\ _
= A — / /
us ; KUk 3>\+2M(¢ + '),
3
7(2 = ka, (V%kzakvk, Vzw:15w>,
where
180t ) 12000+ @) (TA+15p)  7-900(A +p)
k AN+2u  F (A + 2u)? g A2
?__F@A+@oa_}&m@+uq{2_1mA+M%M 1%MA+MW”
S T O T L D W e O E
©_ A 20w [, 1204 180p(\ + )]~
g A+2n T A+ 2u ETON+ 2 T (vx2p? |
and
(1) <I>’+(I>’ 4 230+ 24p—  _—
= = Sl
b [/ T a2 *
AL -3 (‘9Xk 6 8wk
+Z( 0z A+2u 0z )’
2
(3) OxE . 2 v3_1 Ow 4 3N+ 21 —
_ 2 o 30
s Z( 0z "5 0z ) Toaga TG (30)

k=1
(Vwi = yewr, VXK = 24Xk, ),

( 3\ 7""’“)—wk—// (& + @) In|¢ — 2|dS + ¥ + T,

A
s2
I

I Mw

A+2u 5
(2) 2\ —
- 2 (4
" k=1 o 3(A+2p) ( )
60(\ + 1) 350(\ + 1)
2_ 7 60——0 45 105=0
<”k 302w O g O AT
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The general solution of the homogeneous system (19) we can find the form

u+ _ &VJF 4 // 900 - ae1900 C)dSC —m)%m _

/ [ LA ) - 20 o

"‘382%00( )02m +772<P1( )03m (31)
W= - (2 [ Q) + I — 2ldSc —1(2) ~ D)o
S
_2%2 [(906('2) + W)(;Im - (90,1<Z) + W)(ng (m =0,1,.., N)

0 (© _
Vi=Va=0, U3 Yi(z) +i(z), if N=0

(dSe = A(¢,Q)dCdC, ¢ = & +1n).

where ¢} (2),¢1(2),94(2),}(2) are holomorphic functions of z and express the
biharmonic solution of the system (19). Then a1, 5, 11, 172 are known con-

stants. .
Substituting expressions (31) into (19) the matrix equations for V; are

obtained
VIV - AV =X, VQ-BQ=Y, (32)

where V and ) are column-matrices of the form

© 0 WO 0 W, © 1 W g
V: (%7%7""%7%7‘/37“'7%) 9 Q: (‘/27‘/27"'7‘/-2> 9

and A and B are block-matrices 2N +2x 2N +2 and N+1 x N +1 respectively.

Using now the formulae Vekua-Bitsadze for the homogenous matrix equa-
tions (32) we obtain the following complex representation of the general solu-
tions

V =2Re{p(2) // (t,1)R(z,Z,t,1)o(t)dtdt},

Z0 20

Q=2Re{f(z) // (t,)r(z,2,t,0) f(t)dtdt},

Z20 20

or

V(z,Z)=2Re [aR(z,E, 20, Z0)¢(2) —|—/¢>(t)R(z,E,t,Eo)dt :

20



Volume 13, 2009

49

z

O(2,7) = 2Re [ﬁr(z,z, 20,%0) + / U(t)r (2, %, t, Z0) f(t)dt],

20

(=5 o, Vi) =a o= T e2))

— g/\ﬂ(t)dt, Q(20,%0) = B, V() = M)’

where R and r are the Riemann’s matrix functions of the equations (32), ¢(2)

and f(z) are holomorphic column-matrices:

p(2) = (po(2), -+ on(2), onaa(2), - oan(2))", f(2) = (fol2), -, [ (2))"

Then particular solutions of the matrix equations (32) have the form

z):i / / AT R(= % 5 X (4 B,

20 20

2):i//A(t,f)r(z,?,t,f)Y(t,l_f)dtdf,

20 Z0

where

_ A [ o
R(Z,E,t,t) =F + Z//A(tl7tl)dt1dtl +

// (ty, 1) // (2, 12) dtgdt2 dt,di; -

Wl e+

t1 4

//A t, 1) //A tg, 1o) dthtz dt dt; + -

For the first boundary condition (in stress) we have

my (m) m
()\—{—u) 0 - 2,uAaqu <dz> = (al) +iby, ]m(8u3 dZ) = (cl) (on 0S)

0z \ds 0z ds
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The second boundary condition (in displacements) for any m takes the form

SUJF)—Z = (CEQ) +2b2 y (Ug) = (CQ) (on (95)

ds

The basic boundary conditions (N = 0) for any n have the form:
a) for the first boundary problem (in displacements)

(0,n) (0,n) (0n) dz (n) (0,n) (n)
UytiU, = U*d =d,, U,=d, on dD (33)
b) for the second boundary problem (in stresses)
On)  Om 1[0 (0.0) dz]
Oup TV 0y =50 To—| 0 47y ) —| =€,
2 dz 34)

N A B . I (

O =—Im || oyn || ="¢ on .

Here we present a general scheme of solution of boundary problems when
the domain D is a circle of radius rg.

The first boundary problem for any n takes the form (on |z| = r9),

(OU”Z — )+ TR = (”Gl, (= ref*,C = pe¥), (%6)

(n) (n) (0, 1) (O,n—1)
where G| and @, are the known values containing solutions U,,---, U, of

the previous approximations.

(n)
Let A(z, 2) depend only on r = |z|, next ¢'(2), ¥(2) and G, are expanded

in power series of the type

0o 00 (n) .
'(2) = g ap2®, W(z) = E b2, G, = E Age™?,
k=0 k=0

Substituting these expansions into (24), we obtain

A E+1

To %Al + Al T Ak 1

ap=——"7%""—", ak:uUfZl),
oy *® —1 2y,

T0

Apya, (k2 0), = /P%HA(/))dP-
0

Ak Oéng+2
by = —— —

k
To X041
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(O,n)
U , is representable in the form of the Poisson integral,

2

(0,n) 1 (n) 7’8 —7r?
Us(r9) = %/ S(w)'rQ — 2rorcos(¢p — V) + rd . (37)
0

Thus for any n we can construct formal solutions of the problem (22), when
N =0.
From the second boundary condition (23), we obtain (on 9D)

(0,m) _(0,n) (n) (0,n) 1 0n)\ dz (0
Ty T0 J(zs):€+:>()‘+:u)@_2:u YUy )72 =Py (38)
A dz
(0,n) (n) a(%)d‘ (n)
M n z n
= by = Im 823£ = I3 (39)
(0,n) (0,n)
om 10U, 0U,
= - +
A 0z 0z

Consider the case of a spherical shell, whose midsurface is a spherical seg-
ment of radius Ry sin ¢, where Ry is the radius of a sphere. Isometric coordi-
nates on the sphere can be represented in the form

, v
z=a' firt =re¥, r= tg§, A=4R*(1+ 222 (0 <9 <).

Let the expressions

(), (=), () = 3 (an bes ), ((51,(31) =3 (e B,

k=0 k=—o00

be valid, where (51 and (Zl are known values expressed by (%]13, e ,(OmU il)of
the previous approximations. Substituting these expansions into (27), (28)
and taking into account that principal vector and moment of stresses are zero,
we obtain

Ayg 1
ar =
g 2urf 14 2e(1 +12) 5

—1 14+ [((1+rdk+2r2)A -
by = — ( 0)2 (( O) . 0) k+21 + Ak1‘| (k > O)
2urg~ ' k+2r; | 14 22(1+1rg)Barg
2 Ry By 1 / (z — t)tFdt
=———— (k>1), By=0 = .
Ck [ 1+ 7‘% k’?“gil ( = )7 0 ) ﬁk('z) k42 (1 + t§)3
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From here we obtain the well-known Dini’s formula

2
@n) ro [ '
U3(T0790) :_;0/P3(T0,Q0)ln|0—z|d19—|—const ( :7”()6’“9).
0
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