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Here we present vectorial integral inequalities for products of multivariate convex and in-
creasing functions applied to vectors of functions. As applications we derive a wide range
of vectorial fractional inequalities of Hardy type. They involve the left and right Riemann-
Liouville fractional integrals and their generalizations, in particular the Hadamard fractional
integrals. Also inequalities for left and right Riemann-Liouville, Caputo, Canavati and their
generalizations fractional derivatives. These application inequalities are of L, type, p > 1,
and exponential type.
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1. Introduction

We start with some facts about fractional derivatives needed in the sequel, for more
details see, for instance [1], [10].

Let a < b, a,b € R. By C¥ ([a,b]), we denote the space of all functions on [ a,b]
which have continuous derivatives up to order N, and AC ([a,b]) is the space of
all absolutely continuous functions on [a,b]. By ACY ([a,b]), we denote the space
of all functions g with ¢~ € AC ([a,b]). For any a € R, we denote by [a] the
integral part of « (the integer k satisfying k < o < k+1), and [a/] is the ceiling of «
(min{n € N, n > a}). By L; (a,b), we denote the space of all functions integrable
on the interval (a,b), and by Lo (a,b) the set of all functions measurable and
essentially bounded on (a,b). Clearly, L (a,b) C Li (a,b)

We start with the definition of the Riemann-Liouville fractional integrals, see
[13]. Let [a,b], (—00 < a < b < o) be a finite interval on the real axis R. The
Riemann-Liouville fractional integrals I, f and I}* f of order o > 0 are defined by

(1) @) = 7 | FO@=0""at @>a) (1)
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b
(I f) (z) = 1“(104)/ F@)t—z)*tdt, (z<b), (1.2)

respectively. Here I' (a) is the Gamma function. These integrals are called the left-
sided and the right-sided fractional integrals. We mention some properties of the
operators I, f and If* f of order o > 0, see also [15]. The first result yields that the
fractional integral operators I, f and I;* f are bounded in Ly, (a,b), 1 < p < oo,
that is

\2 £, < KUflL, |7 f], < KU, (1.3)
where
(b-a)*
K= W. (1.4)

Inequality (1.3), that is the result involving the left-sided fractional integral, was
proved by H. G. Hardy in one of his first papers, see [11]. He did not write down
the constant, but the calculation of the constant was hidden inside his proof.

Next we are motivated by [12]. We produce a wide range of vectorial integral
inequalities related to integral operators, with applications to vectorial Hardy type
fractional inequalities.

2. Main Results

Let (21,21, p1) and (Q2, X, 12) be measure spaces with positive o-finite measures,
and let k& : Q1 x Q92 — R be a nonnegative measurable function, k (x, -) measurable
on €29 and

K (z)= /Q k(z,y)dus (y), =€ Q. (2.1)

We suppose that K (z) > 0 a.e. on 1, and by a weight function (shortly: a weight),
we mean a nonnegative measurable function on the actual set. Let the measurable
functions ¢; : Q1 — R, ¢ =1, ..., n, with the representation

gi (z) = / k() fi () dpsz () (2.2)

2

where f; : 29 — R are measurable functions, i = 1,...,n.

Denote by @ =z := (21, ...,z,) € R", ¢ := (g1, ..., gn) and 7 = (f1,. fn)-

We consider here ® : R — R a convex function, which is increasing per coordi-
nate, i.e. if z; <w;, 1 =1,...,n, then ® (z1,...,2,) < P (Y1, .., Yn) -

Examples for ¢ :

1) Given g; is convex and increasing on Ry, then ® (z1,...,2,) = Y i g (z;) is
convex on R, and increasing per coordinate; the same properties hold for:
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2) llall, = (Xiey )7, p > 1,

8) let g; are convex and increasing per coordinate on R}, then so is Z;n:l 93 ()
and so is In (Z;”Zl egf($)>, r € RY.

It is a well known fact that, if C' C R™ is an open and convex set, and f: C' = R
is a convex function, then f is continuous on C.

Proposition 2.1: Let ® : Rt — R be a convex function which is increasing per
coordinate. Then ® is continuous.

Proof: The set (0,00)" is an open and convex subset of R™. Thus ® is continuous
there. So we need to prove only that ® is continuous at the origin 0 = (0, ...,0).
By B (0,7) we denote the open ball in R™, 7 > 0. Let € B (0,7) "R, x # 0; that
is0<|z| <.

Define g : [0,7] — R by ¢g(t) = @ (t : ﬁ), t € [0,r]. For t1,t2 € [0,r],

A € (0,1), we observe that g (At1 + (1 — A)t2) = (()\tl + (=Nt )ﬁ) -

@ (M (tgz) + 0= N ) < 2 (1) + =N (ragF) = Aglt) +

(1 = X)g(t2), that is g is a convex function on [0, r].
Next let t; < to, t1,t2 € [0,7], then

g(t) = @ (b)) = @ (bt hi) < (bip i, i) =
D (tgﬁ) = g (t2), hence g (t1) < g (t2), that is g is increasing on [0, r]. Of course

g is continuous on (0,7).

We first prove that g is continuous at zero. Consider the line (7) through (0, g (0))
and (r,¢(r)). It has slope M > 0, and equation y = [ (z) = (M) z+
g(0). If g (r) = g (0), then g (t) = ¢ (0), for all ¢ € [0,7], so trivially g is continuous
at zero and r.

We treat the other case of g (r) > ¢ (0). By convexity of g we have that for any

0<z<r itisg(z) <l(z), equivalently, g(z) < <M> z+ ¢ (0), equivalently

0<g(z)—g(0) < (M) z; here M > 0. Letting z — 0, then g (z) —

g (0) — 0. That is lin%g (z) = ¢ (0), proving continuity of g at zero. So that g is
zZ—r

continuous on [0, 7).

Clearly @ is continuous at 7 - ”x” (0,00)". So we choose (7,),,cy such that
0 < ||z|| < rn <r, with r,, — r, then ® ( - ) ( W)’ proving continuity
of g at r.

Therefore g is continuous on [0, 7].

Hence there exists M > 0 such that |g ()] < M,V t

< [0,
alz))—a(0) _ alr

0,r]. Since g is convex
on [0, r] it has an increasing slope, therefore e (r

)= 90) o M=g(0) 'yyyq

r
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is g ([z])) — @ (0) < (M*D(“)) ||. Equivalently, we have 0 < @ (z) — & (0) <

M%'D(O)) ||z||. Clearly lir%(ID (x) = @ (0), proving continuity of ® at x =0. m
z—

We need also

Theorem 2.2: (multivariate Jensen inequality, see also [8, p. 76], [14]) Let f be
a convex function defined on a convex subset C C R"™, and let X = (X1, ..., X,,) be
a random vector such that P (X € C) = 1. Assume also E (|X]), E (|f (X)|) < co.
Then EX € C, and

f(EX) < Bf (X). (2.3)

We give our first main result.

Theorem 2.3: Let u be a weight function on 1, and k, K, g;, fi, 1 =1,...,n € N,

and ® defined as above. Assume that the function © — u (x) kl((x(wy)) 1s integrable on

Qy for each fixed y € Qo. Define v on Qg by

v(y) = /Q1 u(x) k}ﬁx(,xy)) duy (z) < o0. (2.4)

Then

/Q o) (f1 )]s | o )]) iz (0) (2.5)

under the assumptions:

(1) fis @ (If1], . |fn]), are k(z,y)dus (y) -integrable, py -a.e. in x € Qy, for all
1=1,...,n,

(i) v (y) @ (| f1 (W)] s [fr (Y)]) is p2 -integrable.

Proof: Here we use Proposition 2.1, Jensen’s inequality, Tonelli’s theorem, Fu-
bini’s theorem, and that ® is increasing per coordinate. We have

) du (z) =

[ e ) die 0

)

1

1
/(22 k(l‘,y) f2 (y) d,u2 (y)‘ )ty m

/Q 2 k(2,y) fo (y) dpe (y)D dp ()
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s%%ﬂ@@(Kﬁwl;meummwm@%w

1
m /Q2 k(z,y) | fn (y)| duz (y>) du (z) <

(by Jensen’s inequality)

K (/ D (| f1 (W], s [ fn (W)]) dpo (y)> dpus (z) =

([ e (|7 @)t ) )=
[ (L &yewe
R e e
L2 (7 0]) ([, e ) ot -
Lo (7o) rwinw -

A@M@»mm@mme@,

(17 6)) a0 o () =

proving the claim. =

Notation 2.4: From now on we may write

/k‘my y) dpse (y

which means

(91 (2) 1o (2)) = ( | b 5 ) [ ko) g )i <y>) |

25

(2.6)
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Similarly, we may write

(2.8)

and we mean

(lgr @[5+, lgn (2)]) =

Q/ (@) /1 (y) dpa (y ' '/ (,y) fu ( )duz()D (2.9)

We also can write that

7 7

7@ < [ ken|T 0w, (210)
and we mean the fact that

|mm§4kwwm@wmw (2.11)

foralli=1,...,n,etc.

Notation 2.5: Neat let (21,31, p1) and (g, 3o, p2) be measure spaces with pos-
itive o-finite measures, and let kj : 1 X Q3 — R be a nonnegative measurable
function, kj (x,-) measurable on Qy and

K; (z) :/Q kj(z,y)dpa (y), € Q,j=1,...,m. (2.12)

We suppose that K; (z) > 0 a.e. on Q. Let the measurable functions gj; : Q1 — R
with the representation

%mzé@@wmwmmm, (2.13)

where fj; : Q2 — R are measurable functions, i = 1,...,n and j =1,....,m

Denote the function vectors g—f = (951, 952, -, gjn) and 7; = (fit, o fjn), 4 =
1,...,m.

We say E) is integrable with respect to measure p, iff all fj; are integrable with
respect to p.

We also consider here ®; : R — Ry, j = 1,...,m, convex functions that are
increasing per coordinate. Again u is a weight function on €.

Our second main result is when m = 2.

Theorem 2.6: Here all as in Notation 2.5. Assume that the function
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xKll(;)7K2(2x)x’ > is integrable on Q1, for each y € Q. Define Ao on Qs by

2 xay)

>
[\
—~
&
I
S
IS
O
7
[uly
w
s
G

dpy (z) < oo. (2.14)

Then

% () i ()

(e[l amw) ([, o (
Qg Q2
under the assumptions:

(i) Af1i, @1 (| funls o [ i)} {foi, @2 ([ ful, s [fon])}  are Ky (x,y)duz (y) -

integrable, p1 -a.e. in x € Qy, j = 1,2 (respectively), for alli =1, ....n.
.. — —
(i1) Aa®q < N1 >, Py ( f2

Proof: Acting, similarly as in the proof of Theorem 2.3 we have

/ u(l‘)‘h( )‘I)Q( )d/ﬁl(m):
Q

y ) : (2.16)

Jrewanw), (@

>, are both pe -integrable.

g5 (2)
KQ (:L’)

91 (2)
K1 (a;)

) dm @)= )
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%

(calling 11 (x) := [,y k1 (2,) @, ( 7 <y>\) dus ()

u

(.Z‘)’y (.%') — B
/Ql /Qz Kl (.’IJ) }'22 (.’E) k2 (ﬂi,y) (1)2 ( f2 (y) > dﬂg (y) d,ul (l’) —

u(z) 1 (2) — )
/92 /Ql K () [1(2 (z)kZ (x,y) P2 ( f2 (y) ) dp () dpsg (y) =

[ ([B ) (], 7 eate e don o)) s ) =
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([, (
[Lfn(ﬁ@b(Lf”%ﬁ;%%ﬁ”mmm}wwﬂz

(fo=(Eoaew) [ =

proving the claim. m

E@me) (2.19)

%

7o )] ) e ) i )]

When m = 3, the corresponding result follows.

Theorem 2.7: Here all as in Notation 2.5. Assume that the function

T (“(z)ﬁll(é)yl)(}zggl]zigzy)> is integrable on 1, for each y € Qg. Define A3 on Qs

by
Then
3 —
9; (@)
/Qlu(a:)jIIQDj ( K@) >du1 (z) < (2.21)

@1&%<3@DWWO<Af(

under the assumptions:

X@D&@wmﬂ,

(i) ﬁ, D, |E>'> , are kj (z,y) dus (y) -integrable, i -a.e. inx € Qq, j =1,2,3,

(7] 7]

Proof: We also have

A P fi

>, are all pa -integrable.

3 —
u(x ; 9 () x) =
Al”g%<&u>W“)
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/Q1U(x)jli[1q)j <Kjl(:n)/92 k; (z,9)

7 )

/Ql 3U(x) (ﬁ/ﬂ k; (z,y) ®; (‘ﬁ(?ﬁ‘) dusy (y)) dus (z) =
jl;[lKj(w)
(calling 6 (z) := 4@ )
HKJ()

i <y>) dn (2) <

(2.23)
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k3 (x,y) @3 (

7 (y)D dpn (ﬂf)) dps (y) =

) (/Qlem ks (2,9) (Hl/Q ki (2,9) @, ('f?@)\) i <y>)

(2.24)

3 (y)

duy (z)) dus (y) =
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(/Q ki (z,y) @1 (‘ﬁ) (y)D dpz (y)> dpn (ﬂf)) dps (y)] =

(/91 </929($)]f[1kj (z,y) 1 (‘H(Q)D dus (y)) djiy (x)) _ (2.27)

proving the claim. m
For general m € N, the following result is valid.
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Theorem 2.8: Again here we follow Notation 2.5. Assume that the function

u(z) H k;(z.y)

T is integrable on 1, for each y € Qo. Define Ay, on Qs by
[[xw@
w@ [Tk )
Am (y) = /Q = dyy () < oc. (2.29)
' [1%; =)
j=1
Then
5 g; (x)
/Q | u(x)jlj[lcpj ( e > dpn (2) < (2.30)
a“ — —
(H | o (|7 0)]) e <y>) ([ # (|7 o)) wanw).

under the assumptions:

(i) 7;, D 7;'), are kj (x,y) dusa (y) -integrable, py -a.e. inx € Qy, j=1,...,m,
(1) A @1 ( E) ) , Do ( E ) , D3 < E ) UUU (> (‘f?‘), are all po -integrable.

When k (z,y) = ki (z,y) = k2 (z,y) = ... = km (2,y), then K (2) := K; (z) =
Ky () = ... = Ky, (x) . Then from Theorem 2.8 we get:

Corollary 2.9: Assume that the function x — (%W) 1s integrable on 0y,
for each y € Qa. Define Uy, on Qs by

_ u (@) K™ (2,y) 2) < o
Up (y) 1= /Q< K ) >du1( ) < o0. (2.31)
Then
s g9; (z)
/ 1u<x>j|:|1<1>j( 20 )dul (z) < (2.32)

L),

under the assumptions:
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(i) ﬁ, D, < 7; >, are k (x,y) dus (y) -integrable, py -a.e. inx € Qy, j =1,....,m,
(ii) Up, @1 < _1> > , 9 ( E > , O3 < E) ) U i < f—m>‘>, are all po -integrable.

When m = 2 from Corollary 2.9 we obtain

Corollary 2.10: Assume that the function z +— (%W) 1s integrable on

Q1, for each y € Qa. Define Us on Qs by

ulx 2 Xz
Us (y) := /Q (W) duy (x) < oo. (2.33)
Then
g1 (x) g3 (x)
/Qlu(x)<b1 ( e )@2 ( ot D dpn (2) < (2.34)

(.o (

under the assumptions:

h (y)D Uz (y) dpe (y)> :

2 ([, (7

(i) E), E, D, < ﬁ ), Dy ( f;) are all k(x,y)dus (y) -integrable, py -a.e. in
T i,
(11) Ua®yq ( ﬁ > , Do < ﬁ ) , are both uo -integrable.

For m € N, the following more general result is also valid.

Theorem 2.11: Let p € {1,...,m} be fized. Assume that the function x —

m

u(@) Hk (z.9)
ﬁ K;(x)

1s integrable on 1, for each y € Q. Define Ay, on s by

Am (y) == /Q szl du (x) < oo. (2.35)
' [1%; =)
j=1
Then
_ M 9; (z)
I—Alu<x>g¢j(gj())dul<x>g (2:30)
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HOEAY (f =(

under the assumptions:

Q) 7., ( 7

—

fo (y)D Am () dpiz (y)> 1= I,

I/, (

J#p

>, are kj (x,y) dusa (y) -integrable, py -a.e. inx € Qy, j=1,...,m,

(”))\mq)p(?p)>aq)l<ﬁ>vq)2(g>>q)3<ﬁ>>>>q>p<7p>>>>¢)m (‘f—>m>;

—

fo

are all po -integrable, where @, < > means a Missing item.

We make

Remark 1: In the notations and assumptions of Theorem 2.11, replace assump-

>,...,)\m<I>m <'f—>m‘), are all pg -

tion (ii) by the assumption,

(iii) @, ( I ) s B < f_>m’> Am® (

integrable functions.
Then, clearly it holds,

i

<=/ (2.37)

Two general applications of Theorem 2.11 follow for specific ®;.
Theorem 2.12: Here all as in Theorem 2.11. It holds

n

Alu(x)ﬁ<26

=1

95i (@)
Kj(z)

) dp (z) < (2.38)

1 ) )l
11/ @1 y )d”“y) (/Q (Z y)M(y)duQ(y)),

j i=1
J#p

under the assumptions:
n

(i) T;, (Z eff"(y)|>, are kj (z,y)dus (y) -integrable, pi -a.e. in x € Qq, j =
i=1
1,...,m,

(11) Am (Y) (Ze'fpi(y”) and (Zefii(y”) forj # p,j =1,....,m, are all us
i=1

i=1
-integrable.
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m

Proof: Apply Theorem 2.11 with ®; (z1,...,xy,) = Ze‘”i, forallj=1,....,m. m
i=1
We continue with

Theorem 2.13: Here all as in Theorem 2.11 and p > 1. It holds

/ u () ﬁ 9_J> (z) diny (z) < (2.30)
2 j=1 Kj (:B) » -
]1;[1/9 5 ) pdm(y) (/Q o ) p)\m(y)dMQ(y)>’

J#p

under the assumptions:

H
(i) ‘ fill is kj(x,y) dus (y) -integrable, p1 -a.e. inx € Qq, j=1,...,m,
— —
(1) Am ‘ foll Il d#p d=1,...,m, are all py -integrable.
P P

Proof: Apply Theorem 2.11 with ®; (z1,...,2z,) = H?

, T = (x1,...,2p), for
P
allj=1,...m. =

We make

Remark 2: Let fj; be Lebesgue measurable functions from (a,b) into R, such
that (Ig‘jr (\fﬂ])) () e R,Vz e (ab),a; >0,j=1,...m,i=1,...,n, e.g. when
fji € Ly (a,b).

Consider here

gji () = (I:zl—Ji- ji) (), z€(a,b), j=1,....,mi=1,..,n,

we remind

(It fii) (x) = r(laj) /j (z =)™ £ (t) dt. (2.40)

Notice that g;; () € R and it is Lebesgue measurable.
We pick 1 = Qs = (a,b), duy (z) = dx, dus (y) = dy, the Lebesgue measure.
We see that

(t) (= )"

b x
(i g) ) = [ R ar (2:41)

where x stands for the characteristic function.
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So, we pick here

kj (x,t) := (o)) j=1...m. (2.42)
In fact
ki (2,y) = by a<v<a (2.43)
T 0, z<y<b. '
Clearly it holds
a;—1 s
X(aa] () (z —y)™ (z —a)™
Kj(x) = / dy = , 2.44
i T (o) T (a; + 1) (2.44)
a<zxz<b j=1,...,m.
Notice that
ﬁ k] (l',y) _ ﬁ X(a,x)] (y) (I‘ - y)aj ! T (Oéj + 1)
o K@) o I (o) @ —a)®

- X(a,z] (y) (x - y)aj_l Q)
H ( (x —a)™ ) B

J=1

Calling
a::Zaj>O, 7::Haj>0, (2.46)
j=1 j=1
we have that
ﬁ ki (2,9) _ Xaa) ) (@ =)™y (2.47)
j=1 KJ (l’) (ﬂf - a)a ' .

Therefore, for (2.29), we get for appropiate weight u that

a—m

b —
A () = / u(z) %dx < o0, (2.48)

for all a <y < b.
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Let now
u(z)=(r—a), z € (a,b). (2.49)
Then
b a—m+1
a—m Y (b — y)
ly) = _ de=21V"Y 2.
) =7 [ o) de = T (250)

€ (a,b), where o > m — 1.
By Theorem 2.12 we get

1,9 753 ) @|r(a;+1)

/ab (x —a)” ﬁ ” e<( (o > dr < (2.51)

=1 \i=1

m b/ n
b | £5:(v)]
() [T (S ) o

JF#p

(/b (b— y) "+ (Zn:efm(y)> dy> <
<’m> ﬁ (/ (Z emm) ) (2.52)

under the assumptions:
(i)a>m-—1,

(i) (X, e‘fﬂ(y”) is %d@/ -integrable, a.e. in z € (a,b), j=1,....,m

(i) (o0, e|ff'i(y)‘), j =1,...,m, are all Lebesgue integrable on (a,b).
Let p > 1, by Theorem 2.13 we get

o (e @) @
/a(x_a) HW [Ir(a;+1) | dz <

j=1 j=1

p

To-a N ([
( a—m+1 >H<a
7j=1

) dy) : (2.53)
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Above Igé_';_ j = (Igj_fjla ...,Isj_fjn), j = 1, ...,m, etc.

But we see that

() @ -
m arJi | (X < 1 ) m
- = ——a I f ()] . (2.54)
a _ [e H a+J)]
i (r —a) (x —a) e »
P
We have proved that
"1l (=7
/ 11 <Iaifj> ()] | dz <
a ]:1 P
a—m-+1 m b
y(b—a —
( )m 11 (/ 7 () dy> . (2.55)
(a=m+1) (T[T (ag + 1) ) 551 \Ja :
Thus we derive that
1l (a7
11 (L;ifj) <
=1 Pl (ab)
y(b—a)* T+
- 1T/ : (2.56)
(a=m+1) (T T ey + 1) )=l ol )
under the assumptions:
(1)a>m_17p217
S s Xem@@—y Tt : _
(i) || f5 || s Tdy-lntegrable, a.e.in x € (a,b), j=1,...,m,
p
(iii) || fj] , 7 =1,...,m, are all Lebesgue integrable on (a,b).
P

Using the last condition (iii), we derive that fj; € L1 (a,b), for all j =1,...,m;
i =1,...,n and by assuming o; > 1, we obtain that I 7 (| f;;|) is finite on (a,b).

We continue with

Remark 3: Let fj; be Lebesgue measurable functions : (a,b) — R, such that
LY (Ifiil) (x) < o0, ¥V & € (a,b), aj > 0, j = 1,...,m, i = 1,..,n, e.g. when
fji € Ly (a, b) .

Consider here

gji () = (I:_Jfﬂ) (), z€(a,b), j=1,....m,i=1,..,n, (2.57)
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we remind
b
(1% £;1) () = F(la) / fii (8) (¢ — ) d, (2.58)

(x < b).
Notice that g;; () € R and it is Lebesgue measurable.
We pick Q1 = Q9 = (a,b), duy (x) = dz, dus (y) = dy, the Lebesgue measure.
We see that

(I £30) (x)/bx (t)wf..(t)dt (2.59)
b—JJ a [iL‘,b) 1—\ (a]) Jt . .
So, we pick here
t— :E)aj—l
kj (z,t) := X[ap) (1) Tlay) j=1..m. (2.60)
In fact
W <y <,
kj(z,y) =q e (2.61)
0, a<y<uz.
Clearly it holds
(y—a) ! (b—a)v
K;(x :/ Xiz.b) (Y dy = , 2.62
i (@) (a.b) ) (9) I () I'(aj +1) (2.62)

a<x<b j=1,....m.
Notice that

- kj(x7y) o -
jHI Kj () _jHl

— )% D(a;+1
(X“”’b) R —:;:‘”)> )

)aj—l

H (X[a:,b) (y> W) = Xlz,b) (y> (
(b— )

Jj=1

Calling

m m
a::Zaj>O, 7::Haj>0, (2.64)
j=1 7=1
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we have that

ﬁ ki (y) _ Xiww) (W) (y —2)" "y (2.65)
i K; (x) (b—x) ) )
Therefore, for (2.29), we get for appropiate weight u that
Yy _ m
Am (y) = ’Y/ u(x) <y(b_x))dx < 00, (2.66)
for all a <y < b.
Let now
u(z)=(b—x)", z € (a,b). (2.67)
Then
A (y) = /y( gy g = Y= (2.68)
mW =7y [ (== T= T :

€ (a,b), where « > m — 1.
By Theorem 2.12 we get

b m n <|(I§jfji)<z>‘x|f(aj+l)>
/ criEmt o= (2.69)

<a_:n+1> ﬁ/ab (gefmn) d

Jj=1
J#p

(/b (y — a)® ™ <zn: elfm(@/)l) dy) <
<m> ﬁ (/ (Z ef“(y)|> ) (2.70)

under the assumptions:

(i) a>m—1,

(i) (X, e‘fﬂ(y”) is %dy -integrable, a.e. in x € (a,b), j =1,...,m,
(i) (>, e|fﬁ(y)‘), j =1,...,m, are all Lebesgue integrable on (a,b).
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Let p > 1, by Theorem 2.13 we get

b m (ﬂ)(fc) m
/a(b—:r)a -5 [IT(e;+1) | dz <

j=1 (b—a)™ j=1
Y= "N
( a—m+1 ) iy (/a i ) pdy> . =7

But we see that

_ ((b _193) )jf[l“[%fh ), (2.72)

We have proved that

[ (s o,

h— a—m—+1 m b
7(b—a) I1 ( )W dy |- (2.73)
(a—m+1) <HT:1 I'(a; + 1)) j=1 \’e P
Thus we derive that
H (@2 fid)l, <
=t 1,(a,b)
a—m-+1 m
y(b—a —
( )m 1Tl : (2.74)
(@=m+1) (I Tles+1) ) 5= 17 ol
under the assumptions:
(1)a>m_17p217
N F A e Xen @) (y—z)* : : c
(i) || f5 | s Tdy—mtegrable, a.e.in x € (a,b), 7=1,...,m,
(iii) || f; ’ , j =1,...,m, are all Lebesgue integrable on (a,b) .
P

Using the last assumption (iii), we derive again that f;; € Li (a,b), for all j =
1,...,m;i=1,..,n, and by assuming a; > 1, we obtain that Igf (I£5i]) is finite on
(a,b).
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We mention

Definition 2.14: ([1], p. 448) The left generalized Riemann-Liouville fractional
derivative of f of order g > 0 is given by

8 z) = 1 i " r Tz n—pB—1
D@ = (1) [ @ wan @

where n =[] + 1, z € [a,}].

For a,b € R, we say that f € Lj(a,b) has an Lo fractional derivative Dgf
(8> 0) in [a,b], if and only if

(1) DI Frec(ab), k=2,....,n=[8]+1,

(2) D2~ f € AC ([a, )

(3) DI f € Loo (a,b) .

Above we define DOf := f and D;0f := I3, f,if 0 < § < 1.

From [1, p. 449] and [10] we mention and use

Lemma 2.15: Let 5> a >0 and let f € Ly (a,b) have an Lo fractional deriva-
tive Dgf in [a,b] and let Dg_kf (a) =0, k=1,..,[8] + 1, then

Df(x) = | / " (@ — )P DB () dy. (2.76)

'g—a
for all a < x <b.
Here DS f € AC ([a,b]) for B —a > 1, and DY f € C ([a,b]) for B —a € (0,1).
Notice here that

D3 f (2) = (1222 (D2f)) (@), a<w <o, (2.77)

We give

Theorem 2.16: Let fj; € L1 (a,b), o, 55 : B >a; >0,j=1,...,m;i=1,...n.
Here (fji, o, B;) fulfill terminology and assumptions of Definition 2.14 and Lemma
m

m

2.15. Let & := Z (Bj —ay), 7 = H (Bj — aj), assume &@ > m — 1. Then
j=1 j=1

‘ (D:J fji)(r)‘l"(ﬁjfaJJrl)

/ab (a;—a)aﬁ ‘n e( @—a)(P17°7) > dr <

<m) ﬁ (/ab (ie)(pfffji)(y>\> dy> , (2.78)

Proof: Use of (2.51)-(2.52). m
We also give
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Theorem 2.17: All here as in Theorem 2.16, plus p > 1. Then

H D% fj < (2.79)
= Pl (ab)
7 (b _ a)(a—m—i-l) m —>.
m H DY f;
p 1,(a,b)

@-m+1) [ @B —a;+1) | V!
j=1

B, B; B,
Above D’ f; = (Dajfjl, ...,Dajfjn), 7 =1,...,m,etc.

Proof: By (2.56). m
We need

Definition 2.18: ([6], p. 50, [1], p. 449) Let v > 0, n := [v]|, f € AC™ ([a,]).
Then the left Caputo fractional derivative is given by

Diuf (@) = o=y [ =0 1 @

I'n—v

= (1571 (@), (2.80)

and it exists almost everywhere for z € [a, b], in fact DY, f € Ly (a,b), ([1], p. 394).
We have D} f = M ne 7.

We also need

Theorem 2.19: ([4]) Letv > p+1, p >0, v,p ¢ N. Call n := (I/Lm = [;ﬂ
Assume f € AC™ ([a,b]), such that f® (a) = 0, k = m*,m* + 1 ,n—1,
DY f € Ly (a,b). Then D%y f € AC (|a,b]) (where Diyf = ( P pm )
and
_ 1 v _ pn\v—p—1 v
DLuf (@) = o=y | (=" DS ()
= (130 0h) @), (2.81)

V€ la,bl.

We give
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Theorem 2.20: Let (fj,v,pj), 5 = 1,...,m, m > 2,4 = 1,...,n, as in the
m m
assumptions of Theorem 2.19. Set o* := Z (vj —pj), v* = H (vj — pj). Here

j=1 J=1
a,b €R, a<b. Then

/ (x —a)® H Ze (=)t dx <
a i=1

(e (L ema)). e

Proof: Use of (2.51), (2.52). See here that a* >m >m —1. m
We continue with

Theorem 2.21: All as in Theorem 2.20, plus p > 1. Then

H Di’afj < (2.83)
= Pl (ab)
(a*—m+1) m
a
m H ‘ xa 7 )
= ,(a,b
—m 1) [ [[C - pi+1) L{ad)

J=1

Proof: By (2.56). m
We need

Definition 2.22: ([2], [7], [9]) Let & > 0, n := [«], f € AC" ([a,b]). We define
the right Caputo fractional derivative of order o > 0, by

Dy_f (z) := (—1)" 7o £ (), (2.84)
we set E(if = f, ie.
o — (_1)m b o n—a—1 ¢(n)
Dy f(2) =5 —— o) (J — ) £ () dJ. (2.85)

Notice that Dy _f = (=1)" f(®, n € N.
We need
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Theorem 2.23: ([4]) Let f € AC™ ([a,b]), >0, n €N, n:=[a], a>p+1,
p>0,r=1p], ,p ¢ N. Assume f® (b) =0, k=r,r+1,...,n—1, and D, _f €
Lo ([a,b]). Then

Dp_f (@) = (7" (Di-f)) () € AC ([a,b]), (2.86)
that is
Dy f(x)= = / (- gyt (Dy-1) (t) dt (2.87)
R R F A =) |
V x € [a,bl].
We give
Theorem 2.24: Let (fj, aj,p5), j 1,....m, m > 2, 1=1,...n, as in the
assumptions of Theorem 2.23. Set A := Z (aj — H . Here
=1 j=1
a,beR,a<b p>1. Then
11977 < (2.88)
= Pl ab)
B(b—a (A—m+1) m T>
-a) I ‘Dbifj
ol ollia
(A—m+1) H w1 |7 L{ab)
Proof: By (2.56), plus A>m>m—1. =
We continue with
Theorem 2.25: All here as in Theorem 2.24. Then
b 7 n |551fji(1)|<Lw>>
/ (b—a:)A Hln Ze( (b= (23705) dx <
a j=1 i=1
B(b_a)Aierl - b "\ 5%
1 ‘ b—f]l(y)‘ d . 2.
( (A-m+1) ]Hl / . ;e Y (2.89)

Proof: Using Theorem 2.11. m
We give
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Definition 2.26: Let v >0, n:=[v],a:=v—n (0 < a < 1). Let a,b € R,
a<x<b fe C(a,b]). We consider C¥ ([a,d]) := {f € C"([a,b]) : [;7*f™ €
C' ([a,b))}. For f € C¥ ([a,b]), we define the left generalized v-fractional derivative
of f over [a,b] as

AVf = (I;;a <">)', (2.90)

see [1], p. 24, and Canavati derivative in [5].
Notice here AL f € C ([a,]).

So that
AN @) = p e [ @07 O (2.91)
@ I'(l—-a)dzs /, ’ '
V& € la,bl.
Notice here that
Arf=f" nez,. (2.92)

We need
Theorem 2.27: ([4]) Let f € C¥([a,b]), n = [v], such that f® (a) =0, i =
r,r+1,...,n — 1, where r := [p], with 0 < p <v. Then

- - ’ T — v—p—1 v
(86D @) = = [ =07 AL @ (2.93)
(AZf) =157 (ALf) € C([a,]) . (2.94)

Thus f € Cf ([a,b]).

We present
Theorem 2.28: Let (fji,vj,pj), 7 = 1,...,m, m > 2; 4 = 1,...,n, as in the
assumptions of Theorem 2.27. Set A := i(yj —pj), B = ﬁ (vj — pj). Here

j=1 j=1
a,beR,a<b, p>1, and A>m — 1. Then

AP f < (2.95)

Pl ()

m
j=1
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B (b o a)(A*WH’l) ﬁ

(A—m+1) (ﬁ ))) =

Proof: By (2.56). m
We continue with

H
]Azﬂ 7

p 17(a7b)

Theorem 2.29: All here as in Theorem 2.28. Then

b (’Ajf” )|F(”J(:7+:))>
/ T —a) Hln Z A dz <

=1

A—m+1 mn vj
(B(Z n)1+1 ) (]Hl (/ In (;JAJ@@)\)) dy> . (2.96)

Proof: Using Theorem 2.11. m
We need

Definition 2.30: ([2]) Let v >0, n:=[v],a=v—n,0<a <1, f € C([a,b]).
Consider

Ch- ([a,b]) := {f € C" ([a,b]) : 1,~* f") € C" ([a, b))} (2.97)
Define the right generalized v-fractional derivative of f over [a,b], by
A= (g ) (2.98)
We set AY_f = f. Notice that

n—1
N @= it [ ma, e

and Ay_f € C([a,b]).
We also need

Theorem 2.31: ([4]) Let f € CY ([a,b]), 0 < p < v. Assume f) (b) = 0,
i=r,r+1,...n—1, where r :=[p], n:= [v]. Then

b
M) = 5 / (J — 2)" "L (AY_f) (J) d, (2.100)
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Vx € [a,b], ie

A f=L""(A)_f) € C([a,b]), (2.101)
and f € C)_([a,b]).
We give
Theorem 2.32: Let (fji,vj,p), j = 1,....m, m > 2; i =1,..,n, as in the
assumptions of Theorem 2.31. Set A := i(l/j —pj), B = ﬁ (vj — pj). Here

J
a,beR, a<b,p>1, and A>m—1. Then

H Am f] < (2.102)
- 1,(a,b)
B(b—a)Am+D 1
m H Abffj
et ol
(A—m+1) H vi—pi+1)) | | Liab)

Proof: By (2.56). m

Theorem 2.33: All here as in Theorem 2.32. Then

D(vj—pj+1) >
A i) | =
‘ | biz)(w—ﬂj) dx <

i=1

/ab(b—x)A f[lln Ze<
j=

B(b—a)A—m+1> ﬁ(/b <” AV
S elA Wl ay ) ). (2.103)
< A-m+1 j=1 \’a i=1
Proof: Using Theorem 2.11. m

We make

Definition 2.34: [13, p. 99] The fractional integrals of a function f with respect
to given function g are defined as follows:

Let a,b € R, a < b, a > 0. Here g is a strictly increasing function on [a,b] and
g € C*([a,b]). The left- and right-sided fractional integrals of a function f with
respect to another function g in [a, b] are given by

(L840 f) () = F(la)/a v (gxgtzj;(;t));lf_a, x> a, (2.104)
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b
(18, 1) (2) = F(la) /m T e £ b (2.105)

respectively.
We make

Remark 4: Let fj; be Lebesgue measurable functions from (a,b) into R, such
that (151, (If5i]) (z) €R, YV z € (a,b), ; >0, j =1,..,m,i=1,...,n
Consider

gji (@) := (I . f30) (), w € (a,0), j=1,..,m, i=1,..,n. (2.106)

where

(Iatsgfii) () = F(laj)/a (g‘?x())fﬂ((;))l o > a (2.107)

Notice that g;; (x) € R and it is Lebesgue measurable.
We pick 1 = Qg = (a,b), duy (z) = dzx, dus (y) = dy, the Lebesgue measure.
We see that

b X(a,x) (t) g, (t) fji (t)
(Tetiofii) (@ )—/a T (o) (9(2) — g () -dt, (2.108)

where y is the characteristic function.
So, we pick here

kj (z,t) == ‘ — j=1,.,m (2.109)

In fact

9'(y
kj(z,y) = { Mo g -sm) > *SYST (2.110)
0, x<y<hb.

Clearly it holds

b X(az) W) g ()
Kj xTr) = ? — d
) /amaj)(g(a:)— )
xr g/(y) 1 x 2 aJ_l _
/a o) @) —g @) r(an/a (9@ =g )™ dg(y) = (2111)
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Sofora<ax<b,j=1,....m, we get

~ (9(x) —g(a)™
Ky (o) = 5T (2.112)
Notice that
ﬁ ki(z,y) _ 1 X(a.2) () 9 (y) C T(a;+1) _
K@) A\ T(y) (g (@) —g @)™ (9(@) —g (@)™

; (2.113)
()
(9 (z) = g(a)) V=
Calling
a::iaj > 0, ’y::ﬁaj > 0, (2.114)
j=1 j=1

we have that

11 k;((:v(xy)) _ X(aa] (V) (98)@— g_(y)) )"y (2.115)
1 B

im0 (g(x) — g (y) o
X () =7 (9 () /y u (z) 00 =g (@) < (2.116)
forall a <y < b.
Let now
u(x) =(g(x) —g(a)*g (x), € (ab). (2.117)
Then

(g (y))m/ (z—g ) "dz= (2.118)
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(g(b) —g(y)* "
a—m-+1

v (g ()"

with o > m — 1. That is

(g(b) —g(y)* "
a—m-+1

5w =~ )" : (2.119)

a>m-—1,y€ (a,b).
By Theorem 2.11 we get, for p > 1, that

, " (a+gfg<>)r<aj+1>
[ @t —a /@11 | o<

p

%

fi ()

ﬁ/b dy | . (2.120)

Jj=1

a—m+1

<7 Il (o) 9 <:c>>“_m+1>

So we have proved that

. a))®™ m—+1 m b
v llg'll% (g (b) — g (a)) H/ ) , (2.121)

m
—m+1H (aj +1)) J=1
7=1

p

under the asumptions:
(i)p>1, a>m—1, fj; with Ia+g (|fj]) finite, j =1,...,m; i =1,...,n,

(ii) ‘ E) are & X()‘Eg””(g)g g;;ly —-integrable, a.e. in x € (a,b), j =1,...,m
(iii) ‘ fjll are Lebesgue integrable, j =1, ..., m.
P
We need

Definition 2.35: ([12]) Let 0 < a < b < 00, @ > 0. The left- and right-sided
Hadamard fractional integrals of order « are given by

(J2f) (z) = F(la) /j <ln x>a_1 W4 w>a, (2.122)

Y Y
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and

b o
(Jef) () = rla)/ <ln %) ' f;y)dy, z < b, (2.123)

respectively.

Notice that the Hadamard fractional integrals of order « are special cases of left-
and right-sided fractional integrals of a function f with respect to another function,
here g (z) =Inzx on [a,b], 0 < a < b < co.

Above f is a Lebesgue measurable function from (a,b) into R, such that
(72, (1f)) () and/or (J& (If])) () € R, ¥ 2 € (a,b).

We give

Theorem 2.36 : Let (fjir o), j L..,m,i=1,..,n, and Joi f;; as in Defini-

tion 2.85. Set « —Za],’y —Ha],p>1 a>m—1. Then
Jj=1 Jj=1

[1

dx < (2.124)
p

a+] )

)

by (in (2))"" ﬁ / '

I 20
am(a—m—i—l)H(F(aj—i—l)) =1
j=1

p

under the assumptions:
(i) (Joi |fjil) finite, j=1,...,m;i=1,..n,

(i)

are ( X(a.2)(y)dy ) -integrable, a.e. in x € (a,b), j=1,...,m,

Ioy)y(in(2)) ™

_>
(iii) || fj|| are Lebesgue integrable, j =1,...,m.
P

Proof: By (2.121). m
We make

Remark 5: Let fj; be Lebesgue measurable functions from (a,b) into R, such
that ( o (\fﬂy)) (@) ER, Ve (a,b),a;>0,j=1,..mi=1,..n
Consider

gii (x) = (Igj;gfﬁ) (), z€(ab), j=1,.m, i=1,..n, (2.125)
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where

N S L4 ) UL
(157 56) ( )= o) /z G0 =@ T (2.126)

Notice that g;; () € R and it is Lebesgue measurable.
We pick Q1 = Q9 = (a,b), duy (x) = dz, dus (y) = dy, the Lebesgue measure.
We see that

a; N (1) = b X[xb() ()f]l()
()@= [ 5o o s o= 2120

where x is the characteristic function.
So, we pick here

X[ep) (V) 9" (y
kj(z,y) = —, j=1,...,m. (2.128)
’ T (a;) (9 () — g (2))"
In fact
9'(y)
by (@,y) = 4 TG -g@yr—s © <Y <b (2.129)
0, a<y<uwz.

Clearly it holds

b
e [ W ia) g dy= (2.130)

/ (2 — g ()5 dg (y) = (g (b) — g (@)™
g

Sofora<ax<b,j=1,...m, we get

K ()~ @O =g @) .131)

Notice that

ki (ny) 1 Xizp) (¥) 9 (v) Dy +1) )
11 Kj(z) 11 <r(aj) ()7 (g (b)—g(w))“”) -

=1

.
—
<.
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D = (2.132)
>
(9 (0) —g(x)) =
Calling
o= iaj >0, v:= ﬁaj > 0, (2.133)
Jj=1 j=1
we have that
Tk () X @) (6 @) (9 (y) — g (€)Y
ey - (9(®) —9(@)" - 1)

9 () = (N (e W) —g (@ < oo
X () =7 (9 () /a @) e B g % <> (2.135)
for all a <y < b.
Let now
u(z)=(g(b) —g(x)"g (x), =€ (ab). (2.136)
Then
2, () =7 (g W)™ /y J () (g(y) — g (2)* ™ dx =
Y 9(y)
16 )" [0 —a@) g0 =9 (0 )" [ () =) e
a g(a)
(2.137)
_ a a—m+1
N (g (y)a —gn(@?:l 7
with o > m — 1. That is
_ a a—m+1
X () = ( ()" (9 (y) —g(a)) ’ (2.138)

a—m+1
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By Theorem 2.11 we get, for p > 1, that

b " (Tﬂ())r(wﬂ
[ @@= @1l ]| @<

p

7911 (9 () — g (a))a—m“) e
e i | dy . (2.139)
< a—m+1 ]1;[1/(1 J »
So we have proved that
m -
<Ib—];gfj (.%‘)) dr <
7(m - a—m+1 m b
p

(a—m+1)HF(a]~+1) j=17¢
j=1

under the assumptions:

() p>1,a>m—1, fij with ,Y |f;| finite, j = 1,...,m;i=1,...,n

)

(ii) ‘ ?]) are (F(axg””(;ég)igg;g));l?_%) -integrable, a.e. in x € (a,b), j =1,...,m,
p J

(iii) ’ f ’ are Lebesgue integrable, j = 1,...,m.
P

Theorem 2.37: Let (fji,a;),j=1,...,m,i=1,..,n, and J,” fji as in Definition
m m

2.85. Set a := Zaj, v = Haj; p>1, a>m—1. Then
j=1 j=1

dz < (2.141)

under the assumptions:
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(i) (ng_" ]fﬂ|) finite, j=1,...m;i=1,...,n,

%
(it) || fi|| are <F X[“"lb)(%)dyl_aj> -integrable, a.e. in x € (a,b), j=1,...,m,
7 \ W (n(2))
(iii) || fj|| are Lebesgue integrable, j =1,...,m.
P

Proof: By (2.140). =m
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