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1. Introduction

This article is concerned with the following nonlinear fractional integrodifferential
equation with boundary conditions:

Dqx(t) = f
(
t, x(t), (φx)(t), (ψx)(t)

)
, 0 < t < 1, 2 < q < 3,

x(0) = x′(0) = x′(1) = 0,
(1.1)

where Dq denotes the standard Riemann-Liouville fractional derivative, f : [0, 1]×
X ×X ×X → X is a given continuous function, (X,‖ · ‖) is a Banach space and
C = C([0, 1], X) is the Banach space of all continuous functions from [0, 1] → X
endowed with a topology of uniform convergence with the norm denoted by‖ · ‖,
for γ, δ : [0, 1]× [0, 1] → [0, +∞),

(φx)(t) =
∫ t

0
γ(t, s)x(s)ds, (ψx)(t) =

∫ t

0
δ(t, s)x(s)ds. (1.2)

Recently, fractional order differential equations and systems have been of great
interest. For detailed discussion on this topic, refer to the monographs of Kilbas
et al.[10], Podlubny [17], and the papers by Anguraj et al. [1], Ahmad and Alsaedi
[2,3], Cui [4], Guo and Liu [5-9], Kosmatov [11], Lakshmikantham and Vatsala [12],
Li and Deng [13], Li [14], Li and Guérékata [15], Mao et al.[16] and the references
therein.
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Applying Krasnoselskii fixed point theorem and Banach contraction principle,
we obtain theorems of existence and uniqueness of solutions for equation (1.1).

2. Preliminaries

Let us recall some basic definitions on fractional calculus, which can be found in
the literature.

Definition 2.1: The Riemann-Liouville fractional integral of order q is defined
by

Iqf(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds, q > 0, (2.1)

provided the integral exists.

Definition 2.2: The Riemann-Liouville fractional derivaltive of order q is defined
by

Dqf(t) =
1

Γ(n− q)

( d

dt

)n
∫ t

0
(t− s)n−q−1f(s)ds, n− 1 < q ≤ n, q > 0, (2.2)

provided the right-hand side is pointwise defined on (0, +∞).

Lemma 2.3: (see [17]) For q > 0, let x, Dqx ∈ C(0, 1) ∩ L(0, 1). Then

IqDqx(t) = x(t) + c1t
q−1 + c2t

q−2 + · · ·+ cntq−n, (2.3)

where ci ∈ R, i = 1, 2, · · · , n(n is the smallest integer such that n ≥ q).

Lemma 2.4: (see [17]) Let x ∈ L(0, 1). Then
(i) DpIqx(t) = Iq−p, q > p > 0;
(ii) Dqta−1 = (Γ(a)/Γ(a− q))ta−q−1, q > 0, a > 0.

Theorem 2.5 : (Krasnoselskii fixed point theorem, see [18]) Let D be a closed
convex and nonempty subset of a Banach space X, and A, B be two operators
such that

(i) Ax + By ∈ D whenever x, y ∈ D;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
Then there exists z ∈ D such that z = Az + Bz.

Lemma 2.6: Given f ∈ C(0, 1) ∩ L(0, 1), the unique solution of

Dqx(t) = f(t), 0 < t < 1, 2 < q < 3,

x(0) = x′(0) = x′(1) = 0
(2.4)

is

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s)ds−

∫ 1

0

tq−1(1− s)q−2

Γ(q)
f(s)ds. (2.5)
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Proof: It follows from Lemma 2.3 that the fractional differential equation in (2.4)
is equivalent to the integral equation

x(t) = Iqf(t) + c1t
q−1 + c2t

q−2 + c3t
q−3

=
∫ t

0

(t− s)q−1

Γ(q)
f(s)ds + c1t

q−1 + c2t
q−2 + c3t

q−3, (2.6)

where c1, c2, c3 ∈ R. From the boundary conditions for (2.4), we have c2 = c3 = 0
and

c1 = −
∫ 1

0

(1− s)q−2

Γ(q)
f(s)ds, (2.7)

which completes the proof. 2

Now list the following hypotheses for convenience:
(H1) There exist positive functions L1(t), L2(t), L3(t) such that

‖f(t, x1, y1, z1)− f(t, x2, y2, z2)‖
≤ L1(t)‖x1 − x2‖+ L2(t)‖y1 − y2‖+ L3(t)‖z1 − z2‖,

∀t ∈ [0, 1], x1, x2, y1, y2, z1, z2 ∈ X.
(2.8)

Further,

γ0 = sup
t∈[0,1]

∣∣∣
∫ t

0
γ(t, s)ds

∣∣∣, δ0 = sup
t∈[0,1]

∣∣∣
∫ t

0
δ(t, s)ds

∣∣∣,

Iq
L = sup

t∈[0,1]
{|IqL1(t)|, |IqL2(t)|, |IqL3(t)|},

Iq−1L(1) = max{|Iq−1L1(1)|, |Iq−1L2(1)|, |Iq−1L3(1)|}.

(2.9)

(H2) ‖f(t, x, y, z)‖ ≤ µ(t), for all (t, x, y, z) ∈ [0, 1]×X×X×X, µ ∈ L1([0, 1],R+).

3. Main results

In this section, the theorems of uniqueness and existence of a solution for equation
(1.1) will be given.

Theorem 3.1 : Assume that f : [0, 1] × X × X × X → X is jointly continuous
and satisfies (H1) and (H2). If

(1 + γ0 + δ0)Iq−1L(1) < q − 1, (3.1)

then the fractional integrodifferential equation (1.1) has at least one solution.

Proof: Consider Br = {x ∈ C : ‖x‖ ≤ r}, where

r ≥ ‖µ‖L1(2q − 1)
(q − 1)Γ(q + 1)

. (3.2)
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Define two mappings A and B on Br by

(Ax)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f
(
s, x(s), (φx)(s), (ψx)(s)

)
ds,

(Bx)(t) = −
∫ 1

0

tq−1(1− s)q−2

Γ(q)
f
(
s, x(s), (φx)(s), (ψx)(s)

)
ds.

(3.3)

For x, y ∈ Br, by (H2), we obtain

‖(Ax)(t) + (By)(t)‖

≤
∫ t

0

(t− s)q−1

Γ(q)

∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)∥∥ds

+
∫ 1

0

tq−1(1− s)q−2

Γ(q)

∥∥f
(
s, y(s), (φy)(s), (ψy)(s)

)∥∥ds

≤‖µ‖L1

∫ t

0

(t− s)q−1

Γ(q)
ds + ‖µ‖L1

∫ 1

0

(1− s)q−2

Γ(q)
ds

=‖µ‖L1

( tq

Γ(q + 1)
+

1
(q − 1)Γ(q)

)

≤ ‖µ‖L1(2q − 1)
(q − 1)Γ(q + 1)

≤ r,

(3.4)

which means Ax + By ∈ Br.
It is claimed that A is compact and continuous. Continuity of f implies that

(Ax)(t) is continuous. (Ax)(t) is uniformly bounded on Br as

‖Ax‖ ≤ ‖µ‖L1

Γ(q + 1)
. (3.5)

Since f is bounded on the compact set [0, 1] × Br × Br × Br, let
sup(t,x,φx,ψx)∈[0,1]×Br×Br×Br

‖f(t, x, φx, ψx)‖ = fmax. Then, for t1, t2 ∈ [0, 1], we
get

‖(Ax)(t2)− (Ax)(t1)‖

=
1

Γ(q)

∥∥∥
∫ t1

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
f
(
s, x(s), (φx)(s), (ψx)(s)

)
ds

+
∫ t2

t1

(t2 − s)q−1f
(
s, x(s), (φx)(s), (ψx)(s)

)
ds

∥∥∥

≤fmax

Γ(q)

∣∣∣− (t2 − t1)q

q
+

tq2
q
− tq1

q
+

(t2 − t1)q

q

∣∣∣

≤ fmax

Γ(q + 1)

∣∣tq2 − tq1
∣∣,

(3.6)
which is independent of x. Therefore, A is relatively compact on Br. By Arzela-
Ascoli’s Theorem, A is compact on Br.
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For x, y ∈ Br and t ∈ [0, 1], by (H1), we have

‖(Bx)(t)− (By)(t)‖

≤
∫ 1

0

tq−1(1− s)q−2

Γ(q)

∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)

− f
(
s, y(s), (φy)(s), (ψy)(s)

)∥∥ds

≤
∫ 1

0

(1− s)q−2

Γ(q)

(
L1(s)‖x− y‖+ L2(s)‖φx− φy‖+ L3(s)‖ψx− ψy‖

)
ds

≤ 1
q − 1

∫ 1

0

(1− s)q−2

Γ(q − 1)

(
L1(s) + γ0L2(s) + δ0L3(s)

)
‖x− y‖ds

≤ 1
q − 1

(
Iq−1L1(1) + γ0I

q−1L2(1) + δ0I
q−1L3(1)

)‖x− y‖

≤ (1 + γ0 + δ0)Iq−1L(1)
q − 1

‖x− y‖.

(3.7)

It follows from (3.1) that B is a contraction mapping. Thus, by Krasnoselskii fixed
point theorem, (1.1) has at least one solution. 2

Theorem 3.2 : Assume that f : [0, 1] × X × X × X → X is jointly continuous
and satisfies (H1). If

λ = (1 + γ0 + δ0)
(
Iq
L +

Iq−1L(1)
q − 1

)
< 1, (3.8)

then the fractional integrodifferential equation (1.1) has a unique solution.

Proof: Define a mapping F : C → C by

(Fx)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f
(
s, x(s), (φx)(s), (ψx)(s)

)
ds

−
∫ 1

0

tq−1(1− s)q−2

Γ(q)
f
(
s, x(s), (φx)(s), (ψx)(s)

)
ds, t ∈ [0, 1].

(3.9)

Let supt∈[0,1] |f(t, 0, 0, 0)| = M , and choose

r ≥ M(2q − 1)
(1− λ)(q − 1)Γ(q + 1)

. (3.10)

It is claimed that FBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. In fact, for x ∈ Br,
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by (3.8), (3.10) and (H1), we obtain

‖(Fx)(t)‖ ≤
∫ t

0

(t− s)q−1

Γ(q)

∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)∥∥ds

+
∫ 1

0

tq−1(1− s)q−2

Γ(q)

∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)∥∥ds

≤
∫ t

0

(t− s)q−1

Γ(q)

(∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)− f(s, 0, 0, 0)
∥∥

+ ‖f(s, 0, 0, 0)‖
)
ds

+
∫ 1

0

tq−1(1− s)q−2

Γ(q)

(∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)

− f(s, 0, 0, 0)
∥∥ + ‖f(s, 0, 0, 0)‖

)
ds

≤
∫ t

0

(t− s)q−1

Γ(q)

(
L1(s)‖x(s)‖+ L2(s)‖(φx)(s)‖

+ L3(s)‖(ψx)(s)‖+ M
)
ds

+
∫ 1

0

(1− s)q−2

Γ(q)

(
L1(s)‖x(s)‖+ L2(s)‖(φx)(s)‖

+ L3(s)‖(ψx)(s)‖+ M
)
ds

≤
∫ t

0

(t− s)q−1

Γ(q)

(
L1(s)‖x(s)‖+ γ0L2(s)‖x(s)‖

+ δ0L3(s)‖x(s)‖+ M
)
ds

+
1

q − 1

∫ 1

0

(1− s)q−2

Γ(q − 1)

(
L1(s)‖x(s)‖+ γ0L2(s)‖x(s)‖

+ δ0L3(s)‖x(s)‖+ M
)
ds

≤(
IqL1(t) + γ0I

qL2(t) + δ0I
qL3(t)

)
r +

Mtq

Γ(q + 1)

+
1

q − 1
(
Iq−1L1(1) + γ0I

q−1L2(1) + δ0I
q−1L3(1)

)
r

+
M

Γ(q)

∫ 1

0
(1− s)q−2ds

≤Iq
L(1 + γ0 + δ0)r +

M

Γ(q + 1)
+

Iq−1L(1)
q − 1

(1 + γ0 + δ0)r

+
M

(q − 1)Γ(q)
= λr +

M(2q − 1)
(q − 1)Γ(q + 1)

≤ λr + (1− λ)r = r.

(3.11)

It is declared that F is a contraction mapping. For x, y ∈ C and t ∈ [0, 1], by (3.8)
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and (H1), we have

‖(Fx)(t)− (Fy)(t)‖

≤
∫ t

0

(t− s)q−1

Γ(q)

∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)

− f
(
s, y(s), (φy)(s), (ψy)(s)

)∥∥ds

+
∫ 1

0

tq−1(1− s)q−2

Γ(q)

∥∥f
(
s, x(s), (φx)(s), (ψx)(s)

)

− f
(
s, y(s), (φy)(s), (ψy)(s)

)∥∥ds

≤
∫ t

0

(t− s)q−1

Γ(q)

(
L1(s)‖x− y‖+ L2(s)‖φx− φy‖+ L3(s)‖ψx− ψy‖

)
ds

+
∫ 1

0

(1− s)q−2

Γ(q)

(
L1(s)‖x− y‖+ L2(s)‖φx− φy‖

+ L3(s)‖ψx− ψy‖
)
ds

≤
∫ t

0

(t− s)q−1

Γ(q)

(
L1(s) + γ0L2(s) + δ0L3(s)

)
‖x− y‖ds

+
1

q − 1

∫ 1

0

(1− s)q−2

Γ(q − 1)

(
L1(s) + γ0L2(s) + δ0L3(s)

)
‖x− y‖ds

≤(
IqL1(t) + γ0I

qL2(t) + δ0I
qL3(t)

)‖x− y‖

+
1

q − 1
(
Iq−1L1(1) + γ0I

q−1L2(1) + δ0I
q−1L3(1)

)‖x− y‖

≤(1 + γ0 + δ0)
(
Iq
L +

Iq−1L(1)
q − 1

)
‖x− y‖

=λ‖x− y‖.

(3.16)

λ < 1 ensures that F is contractive. Therefore, the conclusion of the theorem
follows from the contraction mapping principle. 2
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