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A nonlinear fractional integrodifferential equation with boundary conditions is studied in
this article, and some sufficient conditions for existence and uniqueness of a solution for the
equation is established by Krasnoselskii fixed point theorem and Banach contraction principle,
respectively.
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1. Introduction

This article is concerned with the following nonlinear fractional integrodifferential
equation with boundary conditions:

Diz(t) = f(t, z(t), (¢2)(t), (Wz)(t)), 0<t<1, 2<q<3,

(1.1)
(0) = 2/(0) = /(1) =0,

where DY denotes the standard Riemann-Liouville fractional derivative, f : [0, 1] X

X x X x X — X is a given continuous function, (X, || - ||) is a Banach space and

C = C([0,1], X) is the Banach space of all continuous functions from [Q1] — X

endowed with a topology of uniform convergence with the norm denoted by]|| - ||,

for v,4 :[0,1] x [0,1] — [0, +00),

(</593)(t)=/0 (t, s)a(s)ds, (W)(t):/o O(t, s)x(s)ds. (1.2)

Recently, fractional order differential equations and systems have been of great
interest. For detailed discussion on this topic, refer to the monographs of Kilbas
et al.[10], Podlubny [17], and the papers by Anguraj et al. [1], Ahmad and Alsaedi
[2,3], Cui [4], Guo and Liu [5-9], Kosmatov [11], Lakshmikantham and Vatsala [12],
Li and Deng [13], Li [14], Li and Guérékata [15], Mao et al.[16] and the references
therein.
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Applying Krasnoselskii fixed point theorem and Banach contraction principle,
we obtain theorems of existence and uniqueness of solutions for equation (1.1).

2. Preliminaries

Let us recall some basic definitions on fractional calculus, which can be found in
the literature.

Definition 2.1: The Riemann-Liouville fractional integral of order ¢ is defined
by

() = F(lq)/o (t— )7 f(s)ds, q >0, (2.1)

provided the integral exists.

Definition 2.2: The Riemann-Liouville fractional derivaltive of order ¢ is defined
by

DIf(t) = F(nlq)(jt)"/o (t— )" f(s)ds, n—1<q<n, ¢>0, (22)

provided the right-hand side is pointwise defined on (0, +00).
Lemma 2.3: (see [17]) For ¢ > 0, let x, D%z € C(0,1) N L(0,1). Then

19D (t) = x(t) + crt?™ ! +eatt™2 4o et (2.3)

where ¢; € R,i=1,2,--- ,n(n is the smallest integer such that n > q).

Lemma 2.4: (see [17]) Let x € L(0,1). Then
(i) DPI9(t) = [9°P, ¢ > p > 0;
(ii) D9t~ = (I'(a) /T(a — @))t*" 971, ¢ > 0,a > 0.

Theorem 2.5: (Krasnoselskii fived point theorem, see [18]) Let D be a closed
conver and nonempty subset of a Banach space X, and A, B be two operators
such that

(i) Ax + By € D whenever z,y € D;

(i) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z € D such that z = Az + Bz.

Lemma 2.6: Given f € C(0,1) N L(0,1), the unique solution of

Diz(t) = f(t), 0<t<l, 2<¢g<3,

2'(0) =2'(1) =0 24
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Proof: It follows from Lemma 2.3 that the fractional differential equation in (2.4)
is equivalent to the integral equation

z(t) = TUf(t) + et + cpt?™2 4 36973

‘ (t — S)qil q—1 q—2 q—3
= Fif(s)ds + 1t + ot 4 st (2.6)
0 (q)

where c1, ¢g,c3 € R. From the boundary conditions for (2.4), we have ¢; = c3 =0
and

L b1 —s)a2 S\ds
¢ = Amwf”d’ (2.7)

which completes the proof. O
Now list the following hypotheses for convenience:
(H1) There exist positive functions Lj(t), La(t), L3(t) such that

ILf(t, x1, 91, 21) — f(t, 22,2, 22) ||
< Ly(t)[|o1r — @2l + La(t)[lyr — y2ll + La(®) |21 — 22, (2.8)
YVt € [0, 1],x1,x2,y1,y2,21,22 € X.

Further,

t
Yo = sup ‘/ v(t, s)ds|,

dg = sup )/5258(15
t€0,1]

te[0,1]

12 = sup {|I9L1(8)], |19La(t)], | T7L3(t) (2.9)
t€(0,1]

197 L(1) = mac{[ 19 Ly (1), 119 Lo(1)], 119 Ly (D).

(H2) || f(t, 2,9, 2)| < u(t), forall (t,z,y,2) € [0,1]x X x X x X, u € L*([0,1],RT).

3. Main results

In this section, the theorems of uniqueness and existence of a solution for equation
(1.1) will be given.
Theorem 3.1: Assume that f :[0,1] x X x X x X — X is jointly continuous
and satisfies (H1) and (H2). If

(1+70+60) 9 L(1) < ¢ — 1, (3.1)

then the fractional integrodifferential equation (1.1) has at least one solution.

Proof: Consider B, = {z € C : ||z|| < r}, where

[pllz: (2¢ — 1)
T (¢—-Dl(g+1)

(3.2)
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Define two mappings A and B on B, by

t — s q—1
(Az)(t) = /0 “m))ﬂs,x(s), (62)(s), () (s)) ds

(3.3)
1yq=1(1 _ g)a—2
()t = - | t(;(q))f(s, £(s), (62)(s), () (5)) ds
For z,y € B,, by (H2), we obtain
1(Az)(t) + (By) (1)
(t— sy
< / gy 1 (5. 26), (406, (W ) s
t1=1(1 — s)4
+/0 THf(s (s), (69)(s), (Wy)(s)) | ds
(3.4)

s)e— 1 1 — s q—2
<l [ s+ s [ G

Y (e —
PAT(g+1) " (g DT(g)
SHMM%%—l)_n
(¢—1I'(g+1)
which means Az + By € B,.

It is claimed that A is compact and continuous. Continuity of f implies that
(Az)(t) is continuous. (Az)(t) is uniformly bounded on B, as

[l
Azl < . .

Since f is bounded on the compact set [0,1] x B, x B, x B,, let
SUD (¢ 2, ¢, ipx)€[0,1] X By X Br. X B, Hf(t7$v¢x7ww)|| = fmax. Then, for t;,t3 € [07 1]7 we
get

e~ s
il [ =9 = =) (s (0)(0). () (9) s

+ / (t2 = 5"~ (5, (s), (62)(s), (V) (5))ds

Sfmax _ (tQ_tl)q_‘_g_ﬁ_i_ (tQ_tl)q‘
I'(q) q ¢ q q
fmax q
SR \ﬂ—t\

(3.6)
which is independent of x. Therefore, A is relatively compact on B,. By Arzela-
Ascoli’s Theorem, A is compact on B,..
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For x,y € B, and t € [0,1], by (H1), we have

|(B2)(t) — (By)(®)]
tl(1
< /0 THf(sa: (63)(s), (2)(5))
— F(s,9(s), (6y)(s), (¥y)(s))||ds
2

(1=s?
< [P O (0ol ol + Lato)lor — ol + )l — vl
1

< p i 1 /0 (;(q _) ) (Ll(S) + y0La(s) + (50L3(s)) |z —y|ds
1

<—— (197 Ly (1) +70I% ' Lo(1) + 017 ' Ly(1)) ||z — y||

< dtr0+ o) 17 1L(1)
< T—1

s

[z =yl
It follows from (3.1) that B is a contraction mapping. Thus, by Krasnoselskii fixed

point theorem, (1.1) has at least one solution. O

Theorem 3.2: Assume that f :[0,1] x X x X x X — X is jointly continuous
and satisfies (H1). If

I971L(1)
_ q
A= (1490 + 80) (1] + i )<1, (3.8)
then the fractional integrodifferential equation (1.1) has a unique solution.
Proof: Define a mapping F' : C — C by
(Fa)(0) = [ T (500, (00)(5), (6)() ds
0 (9) (3.9)
Lga-1(1 — )42 '
—/ —f(s,x(s), (¢px)(s), (wx)(s))ds, t €[0,1].
0 I'(q)
Let sup;ejo,1) 1 f(2,0,0,0)] = M, and choose
r> M(2q —1) . (3.10)

(1=M(g-1T(g+1)

It is claimed that F B, C B,, where B, = {z € C : ||z|| < r}. In fact, for x € B,,
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by (3.8), (3.10) and (H1), we obtain

t _Sqfl
|(Fr) )| < /0 t ) 17 (5, 2(5), (62)(s), ()(5)) | ds

a4 1(1—3
+/0 THf(sac (82)(s), () (5)) | ds

S/0 <f;s (Hfsa: ), (¢2)(s), (¥z)(s)) = f(5,0,0,0)]|

+17(5,0,0,0)| ) ds

t1=1(1 — s)
+ /O T(Hf(sx (67)(s), (¥)(5))

— f(5,0,0,0)]| + | £ s,0,0,0)||)ds

bt —s)at
< [ (1)l + L@l )]

+ Ly(s)[(62)(s)]| + M ) ds

1 (1—5)172
+/0 o (L1() 23] + La(s)[(62)(s)
+ Ly(s)]| (W) (3)]] + M ) ds

bt —s)at
< [ = (OO + L@l

+ doLa(s) 2(s)]| + M ) ds

1 (] _ gya-2
- q i 1 /0 (11“(q _) 1) (Ll(s)Hx(S)H +v0La2(s) ||z (s)|

+ doLs(s) 2(s) | + M ) ds

Mt

<(FLa () + 70T La(t) + 00T "L (1)) + 1~ 1)

1
+ —1(14*1L1(1) + 7019 Lo(1) 4 G171 Ly(1))r
7—

M [ o
+F(q)/0(1s)q ds

M 1971L(1)
<q
_IL(1+70+50)7“+F(Q+1)+ 1 (1 +~0+do)r
M M(2q — 1)
4 = Ar + <A+ (1-=-XNr=r
@~ 1)) (- DT(g+1) =%

63

(3.11)

It is declared that F' is a contraction mapping. For z,y € C' and ¢ € [0, 1], by (3.8)
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and (H1), we have
[(Fx)(t) — (Fy) ()]l
bt —s)at
SUA s o I CEONCRIONCRIO)
— f(s,9(9), (dy)(s), (Wy)(s))| ds
(

1yg=1(1 _ S)q72
g a6, 60)(9), wa)6)

~ F(5,5(5), (60) (), (¥9)(5)) | ds
t _Sq—l
SA(tH$(m@mx—w+Lﬂﬁww—mm+Lﬁ$Ww—wwD%

1 (1—s)a72
n /0 ST (L1(s)llz =yl + Lo(s)lléw — oy

+ Ly(s) |z — dy| ) ds

t _Sqfl
< [ (1166 20Late) + duLae)) e = ylds

1 — s q—2
bt [ (B k) 4 8oLa(@)le = vlds (316
S(ITLA(t) + 20l La(t) + 0 1Ls(t)) ||z — yl|

1

o1 (197" Ly (1) + yoI9 La(1) 4 6197 Ly(1)) ||z — y|

I97'L(1
< +0+00) (11 + ) oy

Az — Il

A < 1 ensures that F' is contractive. Therefore, the conclusion of the theorem
follows from the contraction mapping principle. O
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