
Bulletin of TICMI
Vol. 17, No. 1, 2013, 19–27

The Solutions of the Boundary Value Problems of the Theory of

Thermoelasticity with Microtemperatures for an Elastic Circle

Ivane Tsagarelia∗

aI.Vekua Institute of Applied Mathematics

of Iv. Javakhishvili Tbilisi State University,

University Str. 2, Tbilisi 0128, Georgia

In the present work, using absolutely and uniformly convergent series, the 2D boundary value
problems of statics of the linear theory of thermoelasticity with microtemperatures for an
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is investigated.
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1. Introduction

Together with generalization and development along several paths, the linear the-
ory of thermoelasticity with microtemperatures has recently attracted considerable
effort directed toward mathematical research and construction of explicit solutions
for boundary value problems in specific domains. Of the publications devoted to
such problems, we note [1,2], which also contain historical and bibliographic infor-
mation.

2. Basic equations and boundary value problem

Consider a circle D of radius R with boundary S. Find a regular vector U =
(u1, u2, u3, w1, w2), (U ∈ C1(D) ∩ C2(D), D = D ∪ S) satisfying in the circle D a
system of equations [1,2]:

µ∆u(x) + (λ+ µ)graddivu(x) = βgradu3(x),

k∆u3(x) + k1divw(x) = 0,

k6∆w(x) + (k4 + k5)graddivw(x)− k3gradu3(x)− k2w(x) = 0,

(1)

and on the circumference S one of the following conditions:
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I. u(z) = f(z), u3(z) = f3(z), T
′′(∂z, n)w(z) = p(z);

II. u(z) = f(z), k
∂u3(z)

∂n(z)
+ k1w(z)n(z) = f3(z), T

′′(∂z, n)w(z) = p(z); (2)

III. T ′(∂z, n)u(z)− βu3(z)n(z) = f(z), u3(z) = f3(z), T
′′(∂z, n)w(z) = p(z),

where u(x) is the displacement vector of the point x, u = (u1, u2);w = (w1, w2) is
the microtemperatures vector; u3 is temperature measured from the constant abso-
lute temperature T0; n is the external unit normal vector to S; f = (f1, f2), p =
(p1, p2), f1, f2, f3-are the given functions on S; λ, µ, β, k, k1, k2, k3, k4, k5, k6 are
constitutive coefficients [1,2]; T ′u is the stress vector in the classical theory of
elasticity; T ′′w is stress vector for microtemperatures [2]:

T ′(∂x, n)u(x) = µ
∂u(x)

∂n
+ λn(x)divu(x) + µ

2∑
i=1

ni(x)gradui(x),

T ′′(∂x, n)w(x) = (k5 + k6)
∂w(x)

∂n
+ k4n(x)divw(x) + k5

2∑
i=1

ni(x)gradwi(x).

(3)

Separately we will study the following problems:

1. Find in a circle D solution u(x) of equation (1)1, if on the circumference S
there are given the values:
of the vector u (problem A1);
of the vector T ′(∂x, n)u(x)− βu3(x)n(x) (problem A2).

2. Find in the circle D solutions u3(x) and w(x) of the system of equations (1)2
and (1)3, if on the circumference S there are given the values:
of the function u3(z) and the vectorT ′′(∂z, n)w(z) (problem K1);

of the function k
∂u3(z)

∂n(z)
+ k1w(z)n(z) and the vector T ′′(∂z, n)w(z) (problem K2).

Thus the above-formulated problems of thermoelasticity with microtemperatures
can be considered as a union of two problems: I- (A1,K1), II- (A1,K2) and III-
(A2,K1).

3. Uniqueness theorems

Let (u′, u′3, w
′) and (u′′, u′′3, w

′′) be two different solutions of any of the problems
I, II, III. Then the differences u = u′ − u′′, u3 = u′3 − u′′3 and w = w′ − w′′ of
these solutions, obviously, satisfy the homogeneous system (1)0 and zero boundary
conditions (2)0. For a regular solutions of equation (1)1 and equations (1)2 and
(1)3 the Green’s formulas [2,3]:
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∫
D
[E1(u(x), u(x))− βu3(x)divu(x)]dx =

∫
S
u(y)[T ′(∂y, n)u(y)− βu3(y)n(y)]dyS,

∫
D
[T0E2(w(x), w(x)) + k | gradu3 |2 +(k1 + k3T0)wgradu3 + k2T0 | w(x) |2]dx =

∫
S
u3(y)[k

∂u3(y)

∂n(y)
+ k1w(y)n(y)] + T0w(y)[T

′′(∂y, n)w(y)]dyS, (4)

is valid [2], where

E1(u, u) = (λ+ µ)
(∂u1
∂x1

+
∂u2
∂x2

)2
+ µ

(∂u1
∂x1

− ∂u2
∂x2

)2
+ µ

(∂u1
∂x2

+
∂u2
∂x1

)2
;

E2(w,w) =
1
2(2k4 + k5 + k6)

(∂w1

∂x1
+
∂w2

∂x2

)2
+ (k6 + k5)

(∂w1

∂x1
− ∂w2

∂x2

)2

+(k6 + k5)
(∂w1

∂x2
+
∂w2

∂x1

)2
+ (k6 − k5)

(∂w2

∂x1
− ∂w1

∂x2

)2
,

under the conditions that: λ+ µ, µ > 0, 2k4 + k5 + k6 > 0, k6 ± k5 > 0, E1 and E2

are nonnegative quadratic forms [3].
Taking into account formula (4)2 and the homogeneous boundary conditions for

the problemsKi, (i = 1, 2), we obtain E2(w,w) = 0, gradu3 = 0, u3 = 0, w = 0.
The solution of the above equations has the form: u3(x) = const, w = 0.
The following theorems are valid.

Theorem 3.1 : The difference of two arbitrary solutions of problem K1 is equal
to zero: w(x) = 0, u3(x) = 0, x ∈ D.
The difference of two arbitrary solutions of problem K2 may differ only by an

arbitrary constant: w(x) = 0, u3(x) = const, x ∈ D.

Taking into account Theorem 3.1 and formula (4)1, under the homogeneous
boundary conditions for the problems I, II and III we obtain E1(u, u)−βu3divu =
0. The solution of the above equation, when u3 = 0 or u3 = const, has the form

u1(x) = −c1x2 + q1, u2(x) = c1x1 + q2, (5)

where c1, q1 and q2 are arbitrary constants.
The following theorems are valid.

Theorem 3.2 : The difference of two arbitrary solutions of problem I is the vector
U(u1(x), u2(x), u3(x), w1(x), w2(x)), where u1 = u2 = 0, u3 = 0, w1 = w2 = 0.

Theorem 3.3 : The difference of two arbitrary solutions of problem II is the
vector U(u1(x), u2(x), u3(x), w1(x), w2(x)), where u1 = u2 = 0, u3 = c, w1 =
w2 = 0; c is an arbitrary constant.

Theorem 3.4 : The difference of two arbitrary solutions of problem III is the
vector U(u1(x), u2(x), u3(x), w1(x), w2(x)), where u1 and u2 are expressed by for-
mulas (5), and u3 = 0, w1 = w2 = 0.
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4. Solutions of the Problems

On the basis of the system [(1)2, (1)3], we can write

△(△+ s21)u3 = 0, △(△+ s21)divw = 0.

Solutions of these equations are represented in the form [4]:

u3(x) = φ1(x) + φ2(x),

w1(x) = a1
∂φ1(x)

∂x1

+ a2
∂φ2(x)

∂x2

− a3
∂φ3(x)

∂x2

, (6)

w2(x) = a1
∂φ1(x)

∂x2

+ a2
∂φ2(x)

∂x1

+ a3
∂φ3(x)

∂x1

,

where △φ1 = 0, (△+ s21)φ2 = 0, (△+ s22)φ3 = 0, s21 = −kk2 − k1k3
kk7

,

s22 = −k2
k6
, a1 = −k3

k2
, a2 = − k

k1
, a3 =

k6
k7

; k7 = k4+k5+k6; k, k2, k6, k7 > 0 [2].

Problem K1. Taking into account formulas:
∂

∂x2
= n2

∂

∂r
+
n1
r

∂

∂ψ
,

∂

∂x1
=

n1
∂

∂r
− n2

r

∂

∂ψ
, we rewrite the representations (6) and the boundary conditions

of the problemK1 in the tangent and normal components:

u3(x) = φ1(x) + φ2(x),

wn(x) = a1
∂

∂r
φ1(x) + a2

∂

∂r
φ2(x)− a3

1

r

∂

∂ψ
φ3(x),

ws(x) = a1
1

r

∂

∂ψ
φ1(x) + a2

1

r

∂

∂ψ
φ2(x) + a3

∂

∂r
φ3(x); (7)

φ1(z) + φ2(z) = f3(z), k7

[
∂wn

∂r

]
R

+
k4
R

[
∂ws

∂ψ

]
R

= pn(z),

k6

[
∂ws

∂r

]
R

+
k5
R

[
∂wn

∂ψ

]
R

= ps(z), (8)

where wn = (w ·n), ws = (w ·s), pn = (p ·n), ps = (p ·s), n = (n1, n2), s = (−n2, n1),
∂

∂n
=

∂

∂r
.

The harmonic function φ1 and metaharmonic functions φ2 and φ3 are represented
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in the form of series in the circle [5]:

φ1(x) =
1

2
Y01 +

∞∑
m=1

( r
R

)m
(Ym1 · νm(ψ)),

φ2(x) = I0(s2r)Y02 +

∞∑
m=1

Im(s2r)(Ym2 · νm(ψ)), (9)

φ3(x) = I0(s3r)Y03 +

∞∑
m=1

Im(s3r)(Ym3 · sm(ψ)),

respectively, where Ymk are the unknown two-component constants vectors,
νm(ψ) = (cosmψ, sinmψ), sm(ψ) = (− sinmψ, cosmψ), k = 1, 2,m = 0, 1, ....
Let the functions pn, ps and f3 expand into the Fourier series:

pn(z) =
α0

2
+

∞∑
m=1

(αm · νm(ψ)), ps(z) =
β0
2

+

∞∑
m=1

(βm · sm(ψ)),

f3(z) =
γ0
2

+

∞∑
m=1

(γm · νm(ψ)),

(10)

where

αm = (αm1, αm2), βm = (βm1, βm2), γm = (γm1, γm2),

αm1 =
1

π

2π∫
0

pn(θ) cos(mθ)dθ,

αm2 =
1

π

2π∫
0

pn(θ) sin(mθ)dθ, βm1 =
1

π

2π∫
0

ps(θ) cos(mθ)dθ,

βm2 =
1

π

2π∫
0

ps(θ) sin(mθ)dθ,

γm1 =
1

π

2π∫
0

f3(θ) cos(mθ)dθ, γm2 =
1

π

2π∫
0

f3(θ) sin(mθ)dθ.

We substitute (9) into (7) and then the obtained expression and (10) into (8).
Passing to the limit, as r → R, for the unknowns Ymk we obtain a system of
algebraic equations:

1

2
Y01 + I0(s2R)Y02 =

γ0
2
, k7a2s

2
2I

′′
0 (s2R)Y02 =

α0

2
, k6a3s

2
3I

′′
0 (s3R)Y03 =

β0
2
; (11)
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Ym1 + Im(s2R)Ym2 = γm,

a1m[(k7 − k4)m− k7]Ym1 + a2[k7s
2
2I

′′
m(s2R)R

2 − k4m
2a1Im(s2R)]Ym2

+a3m[k7[s3RI
′
m(s3R)− Im(s3R)]− k4Rs3I

′
m(s3R)]Ym3 = αmR

2,

a1m[(k6 + k5)m− k6]Ym1 (12)

+a2m[k6[s2RI
′
m(s2R)− Im(s2R)] + k5Rs2I

′
m(s2R)]Ym2

+a3[k6R
2s23I

′′
m(s3R) + k5a3m

2Im(s3R)] = βmR
2, m = 1, 2, ....

Relying on the theorem on the uniqueness of a solution of the problem we can
conclude that the principal determinants of systems (11) and (12) are other than
zero. Substituting the solutions of systems (11) and (12) into (9) and then into (6),
we can find values of the functions u3(x), w1(x) and w2(x).

Problem K2. Taking into account formulas (6), the boundary conditions of the
problem K2 can be rewritten as:

k

[
∂u3
∂r

]
R

+ k1[wn]R = f3(z), k7

[
∂wn

∂r

]
R

+
k4
R

[
∂ws

∂ψ

]
R

= pn(z),

k6

[
∂ws

∂r

]
R

+
k5
R

[
∂wn

∂ψ

]
R

= ps(z).

(13)

We substitute (9) into (7), then the obtained expression and (10) into (13).
Passing to the limit, as r → R, from (13) we obtain the system of linear algebraic
equations with regard to the unknowns Ymk for every value m:

k7a2s
2
2I

′′
0 (s2R)Y02 =

α0

2
, k6a3s

2
3I

′′
0 (s3R)Y03 =

β0
2
,

s2I
′
0(s2R)(k + k1a2)Y02 =

γ0
2
;

(14)

m(k + k1a1)Ym1 + s2I
′
m(s2R)(k + k1a2R)Ym2 + a3mIm(s3R)Ym3 = γmR,

a1m[(k7 − k4)m− k7]Ym1 + a2[k7s
2
2I

′′
m(s2R)R

2 − k4m
2a1Im(s2R)]Ym2

+a3m[k7[s3RI
′
m(s3R)− Im(s3R)]− k4Rs3I

′
m(s3R)]Ym3 = αmR

2,

a1m[(k6 + k5)m− k6]Ym1 (15)

+a2m[k6[s2RI
′
m(s2R)− Im(s2R)] + k5Rs2I

′
m(s2R)]Ym2

+a3[k6R
2s23I

′′
m(s3R) + k5a3m

2Im(s3R)] = βmR
2, m = 1, 2, ....

From equation (1)2, taking into account the boundary conditions (2) and formu-
lae (10) we can write

∫
D
[k∆u3(x) + k1divw(x)]dx =

∫
S
[k
∂u3(y)

∂n(y)
+ k1w(y)n(y)]dyS = 0,
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γ01 =
1

π

2π∫
0

f3(θ)dθ = 0.

For the Y02 we obtain: Y02 = 0; then

α01 =
1

π

2π∫
0

pn(θ)dθ = 0, β01 =
1

π

2π∫
0

ps(θ)dθ = 0; Y03 = 0, Y01 = const.

Problem A1. A solution (1)1 is sought in the form

u(x) = v0(x) + v(x), (16)

where v0 is a particular solution of equation (1)1, and v is a general solution of the
corresponding homogeneous equation (1)1. Direct checking shows that v0 has the
form

v0(x) =
β

λ+ 2µ
grad[− 1

s21
φ2(x) + φ0(x)], (17)

where φ0 is a biharmonic function: △φ0 = φ1.
A solution v(x) = (v1(x), v2(x)) of the homogeneous equation corresponding to

(1)1:
µ△v(x) + (λ+ µ)graddivv(x) = 0
is sought in the form

v1(x) =
∂

∂x1
[Φ1(x) + Φ2(x)]−

∂

∂x2
Φ3(x),

v2(x) =
∂

∂x2
[Φ1(x) + Φ2(x)] +

∂

∂x1
Φ3(x),

(18)

where

∆Φ1(x) = 0, ∆∆Φ2(x) = 0, ∆∆Φ3(x) = 0,

(λ+ 2µ)
∂

∂x1
∆Φ2(x)− µ

∂

∂x2
∆Φ3(x) = 0,

(λ+ 2µ)
∂

∂x2
∆Φ2(x) + µ

∂

∂x1
∆Φ3(x) = 0,

(19)

Φ1, Φ2, Φ3 are the scalar functions.
Taking into account (16) condition (2)1, we can write

v(z) = Ψ(z), (20)

where Ψ(z) = f(z)− v0(z) is the known vector, v0 is defined by formula (17), and
φ1 and φ2 by equalities (9), where the value of the Ymk vectors is defined by means
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of systems (11) and (12). The function φ0 is a solution of the equation △φ0 = φ1;
it has the form

φ0(x) =
R2

4

∞∑
m=0

1

m+ 1

( r
R

)m+2
(Ym1 · νm(ψ)), (21)

where Ym1 are defined from (11) and (12).
In view of (19), we can represent the harmonic function Φ1 and biharmonic

functions Φ2 and Φ3 in the form

Φ1(x) =
∞∑

m=0

( r
R

)m
(Xm1 · νm(ψ)), Φ2(x) =

∞∑
m=0

( r
R

)m+2
(Xm2 · νm(ψ)),

Φ3(x) =
R2(λ+ 2µ)

µ

∞∑
m=0

( r
R

)m+2
(Xm2 · sm(ψ)),

(22)

where Xmk are the unknown two-component vectors, k = 1, 2.
Substituting (22) into (18), the obtained expressions into (20), we obtain the

system of algebraic equations for every m, whose solution is written as follows:

X01 =
η0R

4
, X02 =

ς0R

4(λ+ 2µ)
, Xm1 =

ηmR

m
− (ςm − ηm)R

2(λ+ µ)m
,

Xm2 = µ
(ςm − ηm)R

2(λ+ µ)m
, m = 1, 2, . . . ;

(23)

where ηm and ςm are the Fourier coefficients of the function Ψ(z):

ηm = (ηm1, ηm2), η0 = (η01, 0), ςm = (ςm1, ςm2), ς0 = (ς01, 0),

ηm1 =
1

π

2π∫
0

Ψn(θ) cosmθdθ, γm2 =
1

π

2π∫
0

Ψs(θ) sinmθdθ,

ςm1 =
1

π

2π∫
0

Ψs(θ) cosmθdθ, δm2 =
1

π

2π∫
0

Ψn(θ) sinmθdθ;

(24)

Ψn and Ψs are normal and tangential components of the function Ψ(z), respectively.
Thus the solution of problem A1 is represented by the sum (16) in which v(x) is
defined by means of formula (18), and v0(x) by formula (17).

Problem A2. Taking into account (16) condition (2)3, we can rewrite it as

T ′(∂z, n)v(z) = Ψ(z), (25)

where Ψ(z) = f(z)+βu3(z)n(z)−T ′(∂z, n)v0(z) is the known vector, Ψ = (Ψ1,Ψ2).
We substitute (22) first into (18) and then into (25). For the unknowns Xm1 and

Xm2 we obtain a system of algebraic equations whose solution has the form
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X01 =
η0R

2

4(λ+ 2µ)
, X02 =

ς0R
2

4(λ+ 2µ)
, Xm1 =

R2

c3
ςm − c4R

2

c2c3 − c1c4
(µηm − c1ςm),

Xm2 =
c4R

2

c2c3 − c1c4
(µηm − c1ςm),

where c1 = µ[2(λ+µ)m2− (λ+2µ)m], c2 = 2(λ+µ)(λ+3µ)m2+(λ+2µ)[(3λ+
5µ)m+2µ], c3 = mµ(2µ−1), c4 = 2(λ+3µ)m(2m+3)+2(λ+2µ),m = 1, 2, ....
ηm and ςm are the Fourier coefficients of respectively normal and tangential com-
ponents of the function Ψ(z).
Having solved problems A1, A2,K1 and K2, we can write solutions of the initial

problems I, II and III.
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