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In this paper we shall introduce a quarter-symmetric non-metric connection in a pseudosym-
metric Kenmotsu manifold and find out some of its properties. We shall show the existence of
quarter-symmetric non-metric connection on Kenmotsu manifold. Also we state the definitions
of Weyl-pseudosymmetric Kenmotsu manifold and Ricci pseudosymmetric Kenmotsu mani-
fold with respect to quarter-symmetric non-metric connection. Next we show some results on
Weyl-pseudosymmetric Kenmotsu manifold and partially Ricci pseudosymmetric Kenmotsu
manifold with respect to quarter-symmetric non-metric connection and n-Einstein manifold.
At the end we show an example of pseudosymmetric Kenmotsu manifold with respect to
quarter-symmetric non-metric connection.
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1. Introduction

In 1987, M.C. Chaki and B. Chaki [11] studied pseudosymmetric manifolds with
semisymmetric connection and many authors studied properties on this manifold.
Also R. Deszcz et. al. studied Ricci-pseudosymmetric manifolds and pseudosym-
metric manifolds [2], [3], [6], [7]. The conceptions of pseudosymmetric manifold
are different with the above authors. In 2008, C. S. Bagewadi and et. al. studied
pseudosymmetric Lorentzian a—Sasakian manifolds in the Deszcz sense [10]. We
shall study the properties of pseudosymmetric Kenmotsu manifolds and Riccci-
pseudosymmetric Kenmotsu manifolds with respect to quarter-symmetric non-
metric connection in the Deszcz sense.

A Riemannian manifold (M, g) of dimension n is called pseudosymmetric if the
Riemannian curvature tensor R satisfies the conditions [1], [4], [7]

L (R(X,Y).R)(U,V,W) = Lg[(X NY) o R)(U,V,W)] (1)
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for all vector fields X,Y,U,V,W on M , whereLr € C*(M), R(X,Y)Z =
Vixy1Z — [Vx,Vy]Z and X AY is an endomorphism defined by

(X AY)Z =g(Y,2)X — g(X,Z)Y (2)

2. (R(X,Y).R)(U,V,W)=R(X,Y)(R(U,V)W)
—R(R(X,Y)U,V)W — R(U, R(X,Y)V)W — R(U,V)(R(X,Y)W),  (3)

3. (XAY).R)(U,V,W)= (X AY)(R(U, V)W)
—R(X AY)U,V)W — R(U,(X AY)V)W = RU,V)(X AY)W).  (4)

M is said to be pseudosymmetric of constant type if L is constant. A Riemannian
manifold (M, g) is called quarter-symmetric if R.R = 0, where R.R is the derivative
of R by R.

Remark 1: From [4], [5] we know that the (0, k+2) tensor fields R.T and Q(g,T)
are defined by
(RT)(X1, . X X,Y) = (R(X,Y).T)(X1, .., Xp)
=-T(R(X,Y)X1,.... X)) — .. —T(X1,..., R(X,Y)X})
=T(XANY)Xy,.. . Xp)+ ...+ T (X1, ..., ( X ANY)Xy), where T is a (0, k)
tensor field.

Let S and r denote the Ricci tensor and the scalar curvature tensor of M respec-
tively. The operator @ and the (0,2)—tensor S? are defined by

S(X,Y) =g(QX,Y) (5)
and
S2(X,Y) =S(QX,Y) (6)

The Weyl conformal curvature operator C' is defined by

C(X,Y) = R(X,Y) XAQY + QX AY — ﬁX/\Y]. (7)

-2

If C =0,n >4 then M is called conformally flat. If the tensor R.C' and Q(g,C)
are linearly dependent then M is called Weyl-pseudosymmetric. This is equivalent
to

RO(U.V.W: X.Y) = Lel(X A Y).O)U, V)W), ®)
holds on the set Us = {x € M : C # 0 at =}, where L¢ is defined on Ug. If

R.C = 0, then M is called Weyl-semi-symmetric. If VC' = 0, then M is called
conformally symmetric [10].
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2. Preliminaries:

Let M be an almost contact metric manifold of dimension 2n + 1 with an almost
contact metric structure (¢, &, n, g) where ¢ is (1, 1) tensor field, £ is a contravariant
vector field, n is a 1-form and ¢ is an associated Riemannian metric such that,

¢*=—-I+1®E, 9)
n) =1, »§ =0, no¢ =20, (10)
9(dX,8Y) = g(X,Y) —n(X)n(Y) (11)
and
9(X,§) = n(X), (12)

V X, Y e x(M), then M is called a Kenmotsu manifold provided,
(Vxo)(Y) = —g(X, Y )§ = n(Y)pX (13)
and
Vx&=X-n(X)§) (14)
holds, where V is affine connection on M [8], [9].

On a Kenmotsu manifold, it can be shown that

(VXU)Y = g(QbXa d)Y)v (15)

where F'(X,Y) = g(¢X,Y), is a fundamental 2-form.

Further on a Kenmotsu manifold the following relations hold, [§]

n(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X), (17)
R(&X)Y =n(Y)X —g(X,Y)¢, (18)
R(X,Y)E=n(X)Y —n(Y)X, (19)

56, X) = S(X,§) = —2nn(X), (20)
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Q¢ = —2n¢. (21)

3. Quarter-symmetric non-metric connection on Kenmotsu manifold:

Let M be a Kenmotsu manifold with Levi-Civita connection V and X, Y € x(M).
We define a linear connection D on M by

DxY = VxY +3(Y)p(X), (22)

where 7 is a 1—form and ¢ is a tensor field of type (1,1). D is said to be quarter
symmetric connection if 7', the torsion tensor with respect to the connection D,
satisfies

T(X,Y) =n(Y)¢X —n(X)pY. (23)
D is said to be non-metric connection if (Dg) # 0. Using (16) we have

(Dxg)(Y, Z) = ={n(Y)g(¢X, Z) + n(2)g(¢X,Y)}. (24)

A linear connection D is said to be a quarter-symmetric non-metric connection if
it satisfies (22), (23) and (24).

Now we shall show the existence of the quarter-symmetric non-metric connection
D on a Kenmotsu manifold M.

Theorem 3.1: Let X,Y,Z be any wvectors fields on a Kenmotsu manifold
M with an almost structure (¢,&,m,¢). Let us define a connection D by

+9([X, Y], Z) — g([Y, 2], X) + g([Z, X],Y)
T9((Y)pX —n(X)Y, Z) + g(n(X)oZ
—(2)¢X,Y) + gn(Y)opZ + n(Z)pY, X). (25)
Then D is a quarter-symmetric non-metric connection on M.

Proof: It can be verified that D : (X,Y) — DxY satisfies the following
equations:

Dx(Y+Z)=DxY +DxZ (26)
Dx+yZ =DxZ+ DyZ (27)
DixY = fDxY (28)

Dx(fY) = f(DxY)+ (Xf)Y (29)
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for all X,Y,Z € x(M) and for all f, all differentiable functions on M.

From (26), (27), (28) and (29) we can conclude that D is a linear connection on
M. From (25) we have,

DY — Dy X — [X,Y] = 5(¥Y)6X — 5(X)6¥

or,

T(X,Y) =n(Y)¢X —n(X)oY. (30)

Again from (25) we get,
29(DxY,Z) 4+ 29(Dx 2,Y')

=2Xg(Y, Z) + 2(Y)g(oX, Z) + 2n(Z2)g(¢ X, Y)

(Dxg)(Y, Z) = ={n(Y)g(¢X, Z) + n(Z2)g(¢X,Y)}. (31)

This shows that D is a quarter-symmetric non-metric connection on M.

<

Theorem 3.2: Let D be a linear connection on a Kenmotsu manifold M,
given by

DxY =VxY + H(X,Y), (32)

where H(X,Y) is a (1,2) tensor field and V is Levi-Civita connection, satisfying
(24). Then H(X,Y) = n(Y)$(X).

Proof: Using (32) in the definition of torsion tensor, we get
T(X,Y)=H(X,Y)-H(Y,X). (33)
From (32), we have
g(H(X,Y),Z) + g(H(X, Z),Y) = =(Dxg)(Y, Z). (34)

From (24), (32), (33) and (34) we have

9(I(X,Y),Z2) +9(T(2,Y), X) + 9(T(%,X),Y)

= QQ(H(va)v Z) - (DZQ)(va) + (DYQ)(Xv Z) + (ng)(K Z)'
We get from the above equation, -
g(H(X,Y), Z) = %[Q(T(Xv Y)7 Z) + g(T(Z,Y),X)
- +9(T(Z, X),Y)] + n(Y)g(¢X, Z) + n(X)g(¢Y, Z)].
us, we get
H(X,Y) = 3[T(X,Y) + T(X,Y) + T(Y, X)] + [n(Y)$X +n(X)oY],

where T is a tensor field of type (1,2) defined by

Thus H(X,Y) =n(Y)¢X.
Hence DxY = VxY +n(Y)pX. <&
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4. Curvature tensor and Ricci tensor with respect to quarter-symmetric
non-metric connection D in a Kenmotsu manifold

Let R(X,Y)Z and R(X,Y)Z be the curvature tensors on a Kenmotsu manifold M
with respect to the quarter-symmetric non-metric connection D and with respect
to the Riemannian connection V respectively. A relation between the curvature
tensors of M with respect to the quarter-symmetric non-metric connection D and
the Riemannian connection V is given by

R(X,Y)Z =R(X,Y)Z +21n(Z)g(¢X,Y )¢

+9(X, 2)9Y —g(Y, Z)pX. (35)

Also from (35) we obtain

S(X,)Y)=9(X,Y)+9(¢X,Y), (36)

where S and S are the Ricci tensors of the connections D and V respectively.
Contracting (36), we get

r=r, (37)

where 7 and r are the scalar curvature with respect to the connection D and V
respectively.

Let C be the conformal curvature tensors on Kenmotsu manifolds with respect

to the connections D. Then - B B
C(X,Y)Z = R(X,Y)Z - ;5[S(Y, 2)X — 9(X, Z)QY +¢(Y, Z)QX

n—2

_ 7

*S(XvZ)Y]+m[Q(K2)X*Q(X,Z)Y]a (38)

where @ is the Ricci operator with the connection D on M and

g(X7Y) :g(Qva)a (39)

S%(X,Y) = S(QX,Y). (40)
Now we shall prove the following theorem.

Theorem 4.1: Let M be a Kenmotsu manifold with respect to the quarter-
symmetric non-metric connection D, then the following relations hold:

R(§, X)Y =n(Y)X — g(X,Y)E +n(Y)dX, (41)

n(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X) + 29(¢X, Y)n(Z), (42)
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R(X,Y)§ =n(X)Y —=n(Y)X —n(Y)oX +n(X)oY +29(¢X, Y)¢, (43)
S(X,€) = 8(§, X) = —2nn(X), (44)

QX = QX + ¢X, (45)

S2(X,€) = §%(6, X) = 4n’n(X), (46)

Q& = —2n¢. (47)

Proof: Since M is a Kenmotsu with respect to the quarter-symmetric non-metric
connection D,

then replacing X = ¢ in (35) and using (10) and (18) we get (41).

Using (10) and (17), from (35) we get (42).

To prove (43), we put Z = ¢ in (35) and then we use (19).

Replacing Y = ¢ in (36) and using (20) we get (44).

Using (36) and (39) we get (45).

Using (40), (44) and (45) we get (46).

Putting X = £ in (45) we obtain (47). &

5. Kenmotsu manifold with respect to the quarter-symmetric non-metric
connection D satisfying the condition C.S = 0.

In this section we shall find out the characterization of Kenmotsu manifold with
respect to the quarter-symmetric non-metric connection D satisfying the condition
C.S=o.

We define C.S = 0 on M by

where X, Y, Z, W € x(M).
Theorem 5.1: Let M be a Kenmotsu manifold with respect to the quarter-

symmetric non-metric connection D. If C.S = 0, then

SHX,Y) = ~{gEg +n = 218X, Y) + 2n{; 5y + 0+ 2hg(X,Y)]

—2n(2n — L)n(X)n(Y) — (n — 2)S(¢X,Y) (49)

Proof: Let us consider M to be a Kenmotsu manifold with respect the quarter-
symmetric non-metric connection D satisfying the condition C.S = 0. Then from
(48), we get

S(C(X,Y)Z,W)+8(Z,C(X,Y)W) =0, (50)
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where XY, Z, W € x(M). Now putting X = £ in (50), we get

S(C(&, X)Y, Z) + S(v,C(¢, X)Z) = 0. (51)
Using (41) and (44) we have
S(C(& XY, Z) = [ty — L2 [2nn(2)g(X,Y) + n(Y)S(X, 2)]
Fa()SOX, 2) + - Pan(ZD)S(X,Y) + (X Z¥)] (32
and B _
S(C(E XY, Z) = [ty — L2 2nn(Y)9(X,) + n(2)S(X,Y)]

NZ)S(OX,Y) + — 52m(V)S(X, 2) + S*(X, Y )n(Z)). (53)

Using (52) and (53) in (51) we get
20| iy — S N(2)9(X, ) + n(V)g(X, 2)} + n(2)S(6X,Y)

n—2

Himttmmy + HN(Z)S(X,Y) +0(V)S(X. 2)} +n(Y)S(6X, 2)

1

——(2)S*(X, V) + (X, Z)n(Y)], (54)

+

Replacing Z = § in (54) and using (44) and (46) we get
SAX,Y) = {5ty +n—2}5(X,Y) + 2n{ ;5 +n + 2}g(X,Y)]

n—

—2n(2n — 1)n(X)n(Y) — (n — 2)S(¢X,Y). &

A Kenmotsu manifold M with the quarter-symmetric non-metric connection D
is said to be n—FEinstein if its Ricci tensor S is of the form

S(X,Y) = Ag(X,Y) + Bn(X)n(Y), (55)
where A and B are smooth functions on M.
Now putting X =Y =¢;,i = 1,2,...,2n + 1 in (55) and taking summation for
1 <41 < n we get,
A2n+1)+B=r. (56)
Again replacing X =Y = ¢ in (55) we have
A+ B = —2n. (57)

Solving (56) and (57) we obtain
A=g-+1and B=—[5- +2n+1].
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Thus the Ricci tensor of an n—Einstein manifold with the quarter-symmetric
non-metric connection D is given by

S(X,Y) = [% +1]g(X,Y) - [% +2n + 1Un(X)n(Y). (58)

6. mn—Einstein Kenmotsu manifold with respect to the quarter-symmetric
non-metric connection D satisfying the condition C.S = 0.

Theorem 6.1: Let M be an n—Einstein Kenmotsu manifold with the restriction
U=Y =& in x(M). Then C.S =0 iff

9(X,Z) =n(X)n(Z), where X, Z € x(M).

Proof: Let M be an n—Einstein Kenmotsu manifold with respect to the
quarter-symmetric non-metric connection D satisfying C.S = 0. Using (48) in
(58), we get

n(C(X,Y)Z)n(W) +n(C(X,Y)W)n(Z) = 0.

Using (38), (42), (44) and (58) in the above equation we obtain
49(oU, X)n(Y)n(Z) = L m}[ g(U, Y )n(X)n(Z)
+9(U, Z)n(X)n(Y) = g(X, Y)n(U)n(Z) — g(X, Z)n(Y)n(U)]. (59)

Putting U =Y = ¢ in (59) we get
9(X, Z) = n(X)n(2).
Conversely,

C.S = 4g(oU, X)n(Y)n(Z) - 15 {snm i Ho (U Y)n(X)n(2)

+9(U, Z)n(X)n(Y) — g(X,Y)n(U)n(Z) — g(X, Z)n(Y)n(U)].
Putting U =Y = £ in the above equation we get
C.5=—g(X,Z) +n(X)n(Z).

Thus C.S = 0. o

7. Ricci pseudosymmetric Kenmotsu manifolds with quarter-symmetric
non-metric connection D

Theorem 7.1: A Ricci pseudosymmetric Kenmotsu manifold M with quarter-
symmetric non-metric connection D with restriction Y = W = £ € x(M) and

Lg = —1 is an n—FEinstein manifold.

Proof: Kenmotsu manifold M with quarter-symmetric non-metric connec-
tion D is called a Ricci pseudosymmetric Kenmotsu manifold if

(R(X,Y).9)(Z,W) = Lg[(X ANY).S)(Z,W)], (60)

or,

S(R(X,Y)Z, W)+ S(Z,R(X,Y)W)

= Lg[S(X AY)Z, W)+ S(Z,(X ANY)W)]. (61)
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Putting Y = W = ¢, in (61) and using (2), (41) and (44), we have

(s + 1[5, X) + 209(7, X)] = —5(7,6X). (62)
Then for Lg = —1, (62) becomes
S(Z,6X) = 0.
Then (36) implies that M is an n—Einstein manifold. &

Corollary 7.1: If M is a Ricci semi-symmetric a-Sasakian manifold with
quarter-symmetric non-metric connection D with restriction Y = W = ¢, then
S(Z,X)+2ng(Z,X)+ S(Z,¢X) =0.

Proof: Sine M is a Ricci semi-symmetric Kenmotsu manifold with quarter-
symmetric non-metric connection D, then Ls = 0. Putting Ls = 0 in (62) we get
S(Z,X)+2ng(Z,X)+ S(Z,¢X) =0. &

8. Pseudosymmetric Kenmotsu manifold and Weyl- pseudosymmetric
Kenmotsu manifold with quarter-symmetric non-metric connection

In the present section we shall give the definition of pseudosymmetric Kenmotsu
manifold and Weyl-pseudosymmetric Kenmotsu manifold with quarter-symmetric
non-metric connection and discuss some of there properties.

Definition 8.1: A Kenmotsu manifold M with quarter-symmetric non-metric
connection D is said to be pseudosymmetric Kenmotsu manifold with quarter-
symmetric non-metric connection if the curvature tensorR of M with respect to
D satisfies the conditions

(R(X,Y) o R)(U,V,W) = Lg[((X AY) 0 R)(U,V,W)], (63)
where (R(X,Y) o R)(U,V,W) = R(X,Y)(R(U, V)W)
—R(R(X,Y)U V)W — R(U,R(X,Y)V)W — R(U,V)(R(X,Y)W), (64)
and (XAY)o R)Y(U,V,W) = (X AY)(RU V)W)
~R(X AU V)W — R(U,(X AY)V)W — R(U,V)((X AY)W). (65)
Definition 8.2: A Kenmotsu manifold M with quarter-symmetric non-metric con-
nection D is said to be Weyl-pseudosymmetric Kenmotsu manifold with quarter-

symmetric non-metric connection if the curvature tensorR of M with respect to D
satisfies the conditions

(R(X,Y) o O) U, V,W) = La[((X AY) 0 O)(U,V, W), (66)
where (R(X,Y) o C)(U,V,W) = R(X,Y)(C(U, V)W)

~C(R(X, VYU V)W — C(U,R(X,Y)V)W — C(U,V)(R(X,Y)W), (67)
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and (X AY)oO)U,V,W) = (X AY)CU,V)W)
—C((X AU, VIW — C(U, (X AYIV)W — C(U, V(X AY)W). (68)

Theorem 8.1: Let M be a Kenmotsu manifold. If M is Weyl-pseudosymmetric
with the connection D then M 1is either conformally flat and n— Finstein manifold
or L = —1.

Proof: Let M be a Weyl-pseudosymmetric Kenmotsu manifold and
X,Y,U,V,W € x(M). Then using (67) and (68) in (66), we have
R(X Y)(C(U VW) — C’(R(X YU V)W
—~C(U,R(X,Y)V)W —C(U,V)(R(X,Y)W)
= La[(X AY)(CUVIW) - C(X AY)U, V)W

—C(U, (X AY)V)W — C(U, V(X AY)W)). (69)

Replacing X with & in (69) we obtain
R(EY)(C(U V)W) = C(R(E,Y)U,V)W
C(U,R(EY)V)W = C(U,V)(R(,Y)W)
:L@[(gAy)( 2(U, ) )= CUEAYIU, V)W

—CU,EANY)V)W = C(U,V)(EAY)W)]. (70)

Using (2), (41) in (70) and taking the inner product of (70) with £, we get
—C(U,V,WY) +n(C(U,V)W)n(Y) — g(Y,U)n(C(E V)W)
g(Y, V)n(CU, )W) +n(V)n(C(U,Y)W)
U)n(C(sY, VIW) +n(V)n(C(U, oY )W)
{ — (Y, W)n(C(U,V)¢) .
= LelCUV,WY)  — ¥ )n(CUVIW) + g, UnCEVIW) -
Vn(C(U, W) —n(V)n(CU,Y)W)—n(W)n(C(U, V)Y )+

g(Y, W)n(C(U, V)§)].
Then putting Y = U = &, we get

Lo+ 1n(C(&, V)W) = 0. (71)
Now (71) gives either n(C(£, V)W) =0or Ly = —1.

Now Ls # —1, then n(C(&, V)W) = 0, and we have that M is conformally
flat which gives

S(V.W) = Ag(V, W) + By(V)n(W),

where A = )

and B = —| ).

This shows that M is an n—Einstein manifold.

If n(C(&, V)W) # 0, then we have Ly = —1. &

Theorem 8.2: Let M be a Kenmotsu manifold. If M is pseudosymmetric
then either M is a spece of constant curvature and g(X,Y) = n(X)n(Y) or
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L =-1, for X,Y € x(M).

Proof: Let M be a pseudosymmetric Kenmotsu manifold and X,Y,U,V,W €
X(M). Then using (64) and (65) in (63), we have

R(X Y)(R(U VW) — R(R(X,Y)U, V)W

~R(U,R(X, Y)V)W — R(UV)R(X,Y)W)

= Lp[(X AY)(R(U, V)W) — R(X AY)U, V)W

“R(U, (X AY)V)W — R(U,V)((X ANY)W)). (72)

Replacing X with & in (72) we obtain
(5 Y)(R(U,V)W) = R(R(,Y)U, V)W
(U R(EY)V)W — R(U,V)(R (& Y)W)
LRENY)(R(U, V)W) = R((EAY)U, V)W

—R(U, (EANY)V)W — R(UV)(EAY)W)). (73)

Using (2), (41) in (70) and taking the inner product of (73) with £, we get
_R(U7 V?I/V7Y) +77(R(U7 V)W) (Y) - ( ) ( (§ _V) )
+n(U)n(R(Y, V)W) — g(Y,V)n(R(U, W) + ( ) (R(U.Y)W)
+?7(W) (RU, VYY) +nU)n(R(¢Y, V)W) +n(V)n(RU, Y )W)
+n(W)n(R(U,V)pY) — g(Y, W)n(R(U, V)é) )
Li[R(U,V,W,Y) —n(Y)n (R(va)W)Jrg(YU) (R(& V)W
nU)n(R(Y, V)W + g(Y,V)n(RU, W) —n(V)n(R(U,Y )W )
—U(W) (R(U,V)Y) + g(Y,W)n(R(U,V)E)].

Then putting Y = U = &, we get

[Le + 1n(R(E, V)W) = 0. (74)
Now (71) gives either n(R(¢, V)W) =0or Ly = —1.

Now Lp # —1, then n(R(§,V)W) = 0, and we have that M is a space of
constant curvature and n(R(&, V)W) = 0 gives
gV, W) =n(V)n(W).

If n(R(&, V)W) # 0, then we have L = —1. &

9. Example of pseudosymmetric Kenmotsu manifold with
quarter-symmetric non-metric connection D

Let wus consider the three dimensional manifold M = {(x1,2z2,x3)
€ R® : x1,m9,23 € R}, where (v1,72,73) are the standard coordinates of
R3. We consider the vector fields

el = x18%3, ey = :1:13%2 and eg = —:Ula%l.

Clearly, {e1,e2,e3} is a set of linearly independent vectors for each point of M
and hence a basis of M. The non-metric g is defined by
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(81,83) = 07
(e3,e3) = 1.

(62, 63)
(e2, e2)

gler,e2) =g =g
gler,e1) =g =g
Let 1 be the 1—form defined by n(Z) = g(Z,e3), for any Z € x(M) and the
(1,1)— tensor field ¢ is defined by
pe1 = ez, pea = —eq, pe3z = 0.

From the linearity of ¢ and g, we have

n(es) =1,

#*(X) = —X +n(X)es and

96X, 6Y) = g(X,Y) — n(X)n(Y), for any X € x(M).

Then for e3 = &, the structure (¢,&,7,9) defines an almost contact metric
structure on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we have
[e1,e2] = 0, [e1, e3] = ex, [e2, 3] = ea.

Koszul’s formula is defined by
29VxY,Z)=Xg(Y,Z)+Yg(Z,X) - Zg(X,Y)
Then from the above formula we can calculate the following,

Ve, €1 = —e3, Ve,e2 =0, Ve, €3 = €1,
V6261 = 0, V62€2 = —e3, V3263 = €9,
V63€1 = 0, v63€2 = O, V8363 =0.

Hence the structure (¢,&,7,¢g) is a Kenmotsu manifold. [8]

Using (22), we find D, the quarter-symmetric non-metric connection on M

D, e1 = —es3, D, ex =0, D, e3 = e + ea,
D.,e1 =0, De,es = —e3, D.,e3 = ez — ey,
Degel = 0, D6362 = 0, D6363 =0.

Using (23), the torson tensor T, with respect to quarter-symmetric non-metric
connection D as follows:

Also (D¢, g)(e2,e3) = —1, (De,g)(es,e1) =1

and (De,g)(e1,e2) = 0.

Thus M is a 3-dimensional Kenmotsu manifold with quarter-symmetric non-metric
connection D.

1\_Iow we calculate curvature tensor R and Ricci tensors S as follows:

R(e1,e2)es =0, R(e1,e3)es = —(e1 + e2),
R(es, ea)ea = —eg, R(es,e1)e1 = —es,
R(ez,e1)er = e1 — ey, R(ez,e3)e3 = e1 — eq,
R(el,eg)eg = —(61 + 62).

From the definition of S, S(X,Y) = X;g(R(ei, X)Y, €;), i = 1,2, 3, we get

ig
S(el,el) = 5(62,62) = 5(63763) = —2, 5(61,62) = 1,
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5’(61, 63) = 5(62, 6’3) =0.

Again using (2) we get

(e1,e2)e3 =0, (e; A ei)ej =0, Vi,j=12,3,

(61 AN 62)62 = (61 VAN 63)63 = e, (62 AN 61)61 = (62 VAN 63)63 = e9,
(63 AN 62)62 = (63 AN 61)61 = e3.

Now R(e1,e2)(R(es, e1)ez) =0, R(R(e1,e2)es, e1)ea =0,
R(es, R(e1,e2)e1)e2 = —es,

(R(es,e1)(R(e1, e2)e2) = es.

Then (R(e1,e2).R)(es, e1,e2) = 0.

Again (e1 A e2)(R(es, e1)e2) =0, R((e1 Nez)es,er)es =0,
R(63, (61 A\ 62)61)62 = e3,

R(63, 61)((61 A 92)62) = —e3.
Then ((e1,e2).R)(es3, e1,e2) = 0.

Thus

(R(el, 62).R)(€3, €1, 62) = LR[((el, 62).R)(63, €1, 62)],

for any function Ly € C*°(M).

Similarly, we can show any combination of eq, eo and e3 (60).

Hence M is a pseudosymmetric Kenmotsu manifold with quarter-symmetric non-
metric connection.
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