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In this paper we shall introduce a quarter-symmetric non-metric connection in a pseudosym-
metric Kenmotsu manifold and find out some of its properties. We shall show the existence of
quarter-symmetric non-metric connection on Kenmotsu manifold. Also we state the definitions
of Weyl-pseudosymmetric Kenmotsu manifold and Ricci pseudosymmetric Kenmotsu mani-
fold with respect to quarter-symmetric non-metric connection. Next we show some results on
Weyl-pseudosymmetric Kenmotsu manifold and partially Ricci pseudosymmetric Kenmotsu
manifold with respect to quarter-symmetric non-metric connection and η-Einstein manifold.
At the end we show an example of pseudosymmetric Kenmotsu manifold with respect to
quarter-symmetric non-metric connection.
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1. Introduction

In 1987, M.C. Chaki and B. Chaki [11] studied pseudosymmetric manifolds with
semisymmetric connection and many authors studied properties on this manifold.
Also R. Deszcz et. al. studied Ricci-pseudosymmetric manifolds and pseudosym-
metric manifolds [2], [3], [6], [7]. The conceptions of pseudosymmetric manifold
are different with the above authors. In 2008, C. S. Bagewadi and et. al. studied
pseudosymmetric Lorentzian α−Sasakian manifolds in the Deszcz sense [10]. We
shall study the properties of pseudosymmetric Kenmotsu manifolds and Riccci-
pseudosymmetric Kenmotsu manifolds with respect to quarter-symmetric non-
metric connection in the Deszcz sense.
A Riemannian manifold (M,g) of dimension n is called pseudosymmetric if the

Riemannian curvature tensor R satisfies the conditions [1], [4], [7]

1. (R(X,Y ).R)(U, V,W ) = LR[((X ∧ Y ) ◦R)(U,V,W )] (1)
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for all vector fields X,Y,U, V,W on M , whereLR ∈ C∞(M), R(X,Y )Z =
∇[X,Y ]Z − [∇X ,∇Y ]Z and X ∧ Y is an endomorphism defined by

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y (2)

2. (R(X,Y ).R)(U, V,W ) = R(X,Y )(R(U, V )W )

−R(R(X,Y )U, V )W −R(U,R(X,Y )V )W −R(U, V )(R(X,Y )W ), (3)

3. ((X ∧ Y ).R)(U, V,W ) = (X ∧ Y )(R(U, V )W )

−R((X ∧ Y )U, V )W −R(U, (X ∧ Y )V )W −R(U, V )((X ∧ Y )W ). (4)

M is said to be pseudosymmetric of constant type if L is constant. A Riemannian
manifold (M,g) is called quarter-symmetric if R.R = 0, where R.R is the derivative
of R by R.

Remark 1 : From [4], [5] we know that the (0, k+2) tensor fields R.T and Q(g, T )
are defined by
(R.T )(X1, ...,Xk;X,Y ) = (R(X,Y ).T )(X1, ...,Xk)

= −T (R(X,Y )X1, ...,Xk)− ...− T (X1, ..., R(X,Y )Xk)
Q(g, T )(X1, ...,Xk;X,Y ) = −((X ∧ Y ).T )(X1, ...,Xk)

= T ((X ∧ Y )X1, ...,Xk) + ...+ T (X1, ..., (X ∧ Y )Xk), where T is a (0, k)
tensor field.

Let S and r denote the Ricci tensor and the scalar curvature tensor of M respec-
tively. The operator Q and the (0, 2)−tensor S2 are defined by

S(X,Y ) = g(QX,Y ) (5)

and

S2(X,Y ) = S(QX,Y ) (6)

The Weyl conformal curvature operator C is defined by

C(X,Y ) = R(X,Y )− 1

n− 2
[X ∧QY +QX ∧ Y − r

n− 1
X ∧ Y ]. (7)

If C = 0, n ≥ 4 then M is called conformally flat. If the tensor R.C and Q(g,C)
are linearly dependent then M is called Weyl-pseudosymmetric. This is equivalent
to

R.C(U, V,W ;X,Y ) = LC [((X ∧ Y ).C)(U, V )W ], (8)

holds on the set UC = {x ∈ M : C ̸= 0 at x}, where LC is defined on UC . If
R.C = 0, then M is called Weyl-semi-symmetric. If ∇C = 0, then M is called
conformally symmetric [10].
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2. Preliminaries:

Let M be an almost contact metric manifold of dimension 2n+ 1 with an almost
contact metric structure (ϕ, ξ, η, g) where ϕ is (1, 1) tensor field, ξ is a contravariant
vector field, η is a 1-form and g is an associated Riemannian metric such that,

ϕ2 = −I + η ⊗ ξ, (9)

η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (10)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) (11)

and

g(X, ξ) = η(X), (12)

∀ X, Y ∈ χ(M), then M is called a Kenmotsu manifold provided,

(∇Xϕ)(Y ) = −g(X,ϕY )ξ − η(Y )ϕX (13)

and

∇Xξ = X − η(X)ξ) (14)

holds, where ∇ is affine connection on M [8], [9].

On a Kenmotsu manifold, it can be shown that

(∇Xη)Y = g(ϕX, ϕY ), (15)

F (X,Y ) = −F (Y,X), (16)

where F (X,Y ) = g(ϕX, Y ), is a fundamental 2-form.

Further on a Kenmotsu manifold the following relations hold, [8]

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X), (17)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (18)

R(X,Y )ξ = η(X)Y − η(Y )X, (19)

S(ξ,X) = S(X, ξ) = −2nη(X), (20)
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Qξ = −2nξ. (21)

3. Quarter-symmetric non-metric connection on Kenmotsu manifold:

Let M be a Kenmotsu manifold with Levi-Civita connection ∇ and X, Y ∈ χ(M).
We define a linear connection D on M by

DXY = ∇XY + η(Y )ϕ(X), (22)

where η is a 1−form and ϕ is a tensor field of type (1, 1). D is said to be quarter
symmetric connection if T̄ , the torsion tensor with respect to the connection D,
satisfies

T̄ (X,Y ) = η(Y )ϕX − η(X)ϕY. (23)

D is said to be non-metric connection if (Dg) ̸= 0. Using (16) we have

(DXg)(Y,Z) = −{η(Y )g(ϕX,Z) + η(Z)g(ϕX, Y )}. (24)

A linear connection D is said to be a quarter-symmetric non-metric connection if
it satisfies (22), (23) and (24).

Now we shall show the existence of the quarter-symmetric non-metric connection
D on a Kenmotsu manifold M.

Theorem 3.1: Let X,Y,Z be any vectors fields on a Kenmotsu manifold
M with an almost structure (ϕ, ξ, η, g). Let us define a connection D by
2g(DXY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

+g([X,Y ], Z)− g([Y,Z],X) + g([Z,X ], Y )

+g(η(Y )ϕX − η(X)ϕY,Z) + g(η(X)ϕZ

−η(Z)ϕX, Y ) + g(η(Y )ϕZ + η(Z)ϕY,X). (25)

Then D is a quarter-symmetric non-metric connection on M.

Proof: It can be verified that D : (X,Y ) → DXY satisfies the following
equations:

DX(Y + Z) = DXY +DXZ (26)

DX+Y Z = DXZ +DY Z (27)

DfXY = fDXY (28)

DX(fY ) = f(DXY ) + (Xf)Y (29)
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for all X,Y, Z ∈ χ(M) and for all f, all differentiable functions on M.
From (26), (27), (28) and (29) we can conclude that D is a linear connection on
M. From (25) we have,
DXY −DYX − [X,Y ] = η(Y )ϕX − η(X)ϕY
or,

T̄ (X,Y ) = η(Y )ϕX − η(X)ϕY. (30)

Again from (25) we get,
2g(DXY,Z) + 2g(DXZ, Y )

= 2Xg(Y,Z) + 2η(Y )g(ϕX,Z) + 2η(Z)g(ϕX, Y )

(DXg)(Y,Z) = −{η(Y )g(ϕX,Z) + η(Z)g(ϕX, Y )}. (31)

This shows that D is a quarter-symmetric non-metric connection on M.
3

Theorem 3.2: Let D be a linear connection on a Kenmotsu manifold M,
given by

DXY = ∇XY +H(X,Y ), (32)

where H(X,Y ) is a (1, 2) tensor field and ∇ is Levi-Civita connection, satisfying
(24). Then H(X,Y ) = η(Y )ϕ(X).

Proof: Using (32) in the definition of torsion tensor, we get

T̄ (X,Y ) = H(X,Y )−H(Y,X). (33)

From (32), we have

g(H(X,Y ), Z) + g(H(X,Z), Y ) = −(DXg)(Y,Z). (34)

From (24), (32), (33) and (34) we have
g(T̄ (X,Y ), Z) + g(T̄ (Z, Y ),X) + g(T̄ (Z,X), Y )

= 2g(H(X,Y ), Z)− (DZg)(X,Y ) + (DY g)(X,Z) + (DXg)(Y,Z).
We get from the above equation,
g(H(X,Y ), Z) = 1

2 [g(T̄ (X,Y ), Z) + g(T̄ (Z, Y ),X)

+g(T̄ (Z,X), Y )] + [η(Y )g(ϕX,Z) + η(X)g(ϕY,Z)].
Thus, we get
H(X,Y ) = 1

2 [T̄ (X,Y ) + T̃ (X,Y ) + T̃ (Y,X)] + [η(Y )ϕX + η(X)ϕY ],

where T̃ is a tensor field of type (1,2) defined by

g(T̃ (X,Y ), Z) = g(T̄ (Z,X), Y ).
Thus H(X,Y ) = η(Y )ϕX.
Hence DXY = ∇XY + η(Y )ϕX. 3
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4. Curvature tensor and Ricci tensor with respect to quarter-symmetric
non-metric connection D in a Kenmotsu manifold

Let R̄(X,Y )Z and R(X,Y )Z be the curvature tensors on a Kenmotsu manifold M
with respect to the quarter-symmetric non-metric connection D and with respect
to the Riemannian connection ∇ respectively. A relation between the curvature
tensors of M with respect to the quarter-symmetric non-metric connection D and
the Riemannian connection ∇ is given by
R̄(X,Y )Z = R(X,Y )Z + 2η(Z)g(ϕX, Y )ξ

+ g(X,Z)ϕY − g(Y,Z)ϕX. (35)

Also from (35) we obtain

S̄(X,Y ) = S(X,Y ) + g(ϕX, Y ), (36)

where S̄ and S are the Ricci tensors of the connections D and ∇ respectively.
Contracting (36), we get

r̄ = r, (37)

where r̄ and r are the scalar curvature with respect to the connection D and ∇
respectively.

Let C̄ be the conformal curvature tensors on Kenmotsu manifolds with respect
to the connections D. Then
C̄(X,Y )Z = R̄(X,Y )Z − 1

n−2 [S̄(Y,Z)X − g(X,Z)Q̄Y + g(Y,Z)Q̄X

− S̄(X,Z)Y ] +
r̄

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ], (38)

where Q̄ is the Ricci operator with the connection D on M and

S̄(X,Y ) = g(Q̄X, Y ), (39)

S̄2(X,Y ) = S̄(Q̄X, Y ). (40)

Now we shall prove the following theorem.

Theorem 4.1: Let M be a Kenmotsu manifold with respect to the quarter-
symmetric non-metric connection D, then the following relations hold:

R̄(ξ,X)Y = η(Y )X − g(X,Y )ξ + η(Y )ϕX, (41)

η(R̄(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X) + 2g(ϕX, Y )η(Z), (42)
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R̄(X,Y )ξ = η(X)Y − η(Y )X − η(Y )ϕX + η(X)ϕY + 2g(ϕX, Y )ξ, (43)

S̄(X, ξ) = S̄(ξ,X) = −2nη(X), (44)

Q̄X = QX + ϕX, (45)

S̄2(X, ξ) = S̄2(ξ,X) = 4n2η(X), (46)

Q̄ξ = −2nξ. (47)

Proof: Since M is a Kenmotsu with respect to the quarter-symmetric non-metric
connection D,
then replacing X = ξ in (35) and using (10) and (18) we get (41).
Using (10) and (17), from (35) we get (42).
To prove (43), we put Z = ξ in (35) and then we use (19).
Replacing Y = ξ in (36) and using (20) we get (44).
Using (36) and (39) we get (45).
Using (40), (44) and (45) we get (46).
Putting X = ξ in (45) we obtain (47). 3

5. Kenmotsu manifold with respect to the quarter-symmetric non-metric
connection D satisfying the condition C̄.S̄ = 0.

In this section we shall find out the characterization of Kenmotsu manifold with
respect to the quarter-symmetric non-metric connection D satisfying the condition
C̄.S̄ = 0.
We define C̄.S̄ = 0 on M by

(C̄(X,Y ).S̄)(Z,W ) = −S̄(C̄(X,Y )Z,W )− S̄(Z, C̄(X,Y )W ), (48)

where X,Y,Z,W ∈ χ(M).

Theorem 5.1: Let M be a Kenmotsu manifold with respect to the quarter-
symmetric non-metric connection D. If C̄.S̄ = 0, then
S̄2(X,Y ) = −{ r

(n−1) + n− 2}S̄(X,Y ) + 2n{ r
n−1 + n+ 2}g(X,Y )]

−2n(2n− 1)η(X)η(Y )− (n− 2)S̄(ϕX, Y ) (49)

Proof: Let us consider M to be a Kenmotsu manifold with respect the quarter-
symmetric non-metric connection D satisfying the condition C̄.S̄ = 0. Then from
(48), we get

S̄(C̄(X,Y )Z,W ) + S̄(Z, C̄(X,Y )W ) = 0, (50)
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where X,Y,Z,W ∈ χ(M). Now putting X = ξ in (50), we get

S̄(C̄(ξ,X)Y,Z) + S̄(Y, C̄(ξ,X)Z) = 0. (51)

Using (41) and (44) we have

S̄(C̄(ξ,X)Y,Z) = [ r̄
(n−1)(n−2) −

(n+2)
n−2 ][2nη(Z)g(X,Y ) + η(Y )S̄(X,Z)]

+ η(Y )S̄(ϕX,Z) +
1

n− 2
[2nη(Z)S̄(X,Y ) + S̄2(X,Z)η(Y )] (52)

and
S̄(C̄(ξ,X)Y,Z) = [ r̄

(n−1)(n−2) −
(n+2)
n−2 ][2nη(Y )g(X, ) + η(Z)S̄(X,Y )]

+ η(Z)S̄(ϕX, Y ) +
1

n− 2
[2nη(Y )S̄(X,Z) + S̄2(X,Y )η(Z)]. (53)

Using (52) and (53) in (51) we get

2n[ r
(n−1)(n−2) −

(n+2)
n−2 ]{η(Z)g(X,Y ) + η(Y )g(X,Z)}+ η(Z)S̄(ϕX, Y )

+[ r
(n−1)(n−2) + 1]{η(Z)S̄(X,Y ) + η(Y )S̄(X,Z)}+ η(Y )S̄(ϕX,Z)

+
1

n− 2
[η(Z)S̄2(X,Y ) + S̄2(X,Z)η(Y )], (54)

Replacing Z = ξ in (54) and using (44) and (46) we get
S̄2(X,Y ) = −{ r

(n−1) + n− 2}S̄(X,Y ) + 2n{ r
n−1 + n+ 2}g(X,Y )]

−2n(2n− 1)η(X)η(Y )− (n− 2)S̄(ϕX, Y ). 3

A Kenmotsu manifold M with the quarter-symmetric non-metric connection D
is said to be η−Einstein if its Ricci tensor S̄ is of the form

S̄(X,Y ) = Ag(X,Y ) +Bη(X)η(Y ), (55)

where A and B are smooth functions on M.
Now putting X = Y = ei, i = 1, 2, ..., 2n + 1 in (55) and taking summation for
1 ≤ i ≤ n we get,

A(2n+ 1) +B = r. (56)

Again replacing X = Y = ξ in (55) we have

A+B = −2n. (57)

Solving (56) and (57) we obtain
A = r

2n + 1 and B = −[ r
2n + 2n+ 1].
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Thus the Ricci tensor of an η−Einstein manifold with the quarter-symmetric
non-metric connection D is given by

S̄(X,Y ) = [
r

2n
+ 1]g(X,Y )− [

r

2n
+ 2n+ 1]η(X)η(Y ). (58)

6. η−Einstein Kenmotsu manifold with respect to the quarter-symmetric
non-metric connection D satisfying the condition C̄.S̄ = 0.

Theorem 6.1: Let M be an η−Einstein Kenmotsu manifold with the restriction
U = Y = ξ in χ(M). Then C̄.S̄ = 0 iff

g(X,Z) = η(X)η(Z), where X,Z ∈ χ(M).

Proof: Let M be an η−Einstein Kenmotsu manifold with respect to the
quarter-symmetric non-metric connection D satisfying C̄.S̄ = 0. Using (48) in
(58), we get

η(C̄(X,Y )Z)η(W ) + η(C̄(X,Y )W )η(Z) = 0.

Using (38), (42), (44) and (58) in the above equation we obtain
4g(ϕU,X)η(Y )η(Z) = n+1

n−2{
r

2n(n−1)+1}[g(U, Y )η(X)η(Z)

+g(U,Z)η(X)η(Y )− g(X,Y )η(U)η(Z)− g(X,Z)η(Y )η(U)]. (59)

Putting U = Y = ξ in (59) we get
g(X,Z) = η(X)η(Z).
Conversely,
C̄.S̄ = 4g(ϕU,X)η(Y )η(Z)− n+1

n−2{
r

2n(n−1)+1}[g(U, Y )η(X)η(Z)

+g(U,Z)η(X)η(Y )− g(X,Y )η(U)η(Z)− g(X,Z)η(Y )η(U)].
Putting U = Y = ξ in the above equation we get
C̄.S̄ = −g(X,Z) + η(X)η(Z).
Thus C̄.S̄ = 0. 3

7. Ricci pseudosymmetric Kenmotsu manifolds with quarter-symmetric
non-metric connection D

Theorem 7.1: A Ricci pseudosymmetric Kenmotsu manifold M with quarter-
symmetric non-metric connection D with restriction Y = W = ξ ∈ χ(M) and
LS̄ = −1 is an η−Einstein manifold.

Proof: Kenmotsu manifold M with quarter-symmetric non-metric connec-
tion D is called a Ricci pseudosymmetric Kenmotsu manifold if

(R̄(X,Y ).S̄)(Z,W ) = LS̄ [((X ∧ Y ).S̄)(Z,W )], (60)

or,
S̄(R̄(X,Y )Z,W ) + S̄(Z, R̄(X,Y )W )

= LS̄ [S̄((X ∧ Y )Z,W ) + S̄(Z, (X ∧ Y )W )]. (61)
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Putting Y =W = ξ, in (61) and using (2), (41) and (44), we have

[LS̄ + 1][S̄(Z,X) + 2ng(Z,X)] = −S̄(Z, ϕX). (62)

Then for LS̄ = −1, (62) becomes
S̄(Z, ϕX) = 0.
Then (36) implies thatM is an η−Einstein manifold. 3

Corollary 7.1: If M is a Ricci semi-symmetric α-Sasakian manifold with
quarter-symmetric non-metric connection D with restriction Y =W = ξ, then
S̄(Z,X) + 2ng(Z,X) + S̄(Z, ϕX) = 0.

Proof: Sine M is a Ricci semi-symmetric Kenmotsu manifold with quarter-
symmetric non-metric connection D, then LC̄ = 0. Putting LC̄ = 0 in (62) we get
S̄(Z,X) + 2ng(Z,X) + S̄(Z, ϕX) = 0. 3

8. Pseudosymmetric Kenmotsu manifold and Weyl- pseudosymmetric
Kenmotsu manifold with quarter-symmetric non-metric connection

In the present section we shall give the definition of pseudosymmetric Kenmotsu
manifold and Weyl-pseudosymmetric Kenmotsu manifold with quarter-symmetric
non-metric connection and discuss some of there properties.

Definition 8.1: A Kenmotsu manifold M with quarter-symmetric non-metric
connection D is said to be pseudosymmetric Kenmotsu manifold with quarter-
symmetric non-metric connection if the curvature tensorR̄ of M with respect to
D satisfies the conditions

(R̄(X,Y ) ◦ R̄)(U, V,W ) = LR̄[((X ∧ Y ) ◦ R̄)(U, V,W )], (63)

where (R̄(X,Y ) ◦ R̄)(U, V,W ) = R̄(X,Y )(R̄(U, V )W )

−R̄(R̄(X,Y )U, V )W − R̄(U, R̄(X,Y )V )W − R̄(U, V )(R(X,Y )W ), (64)

and ((X ∧ Y ) ◦ R̄)(U, V,W ) = (X ∧ Y )(R̄(U, V )W )

−R̄((X ∧ Y )U, V )W − R̄(U, (X ∧ Y )V )W − R̄(U, V )((X ∧ Y )W ). (65)

Definition 8.2: A Kenmotsu manifoldM with quarter-symmetric non-metric con-
nection D is said to be Weyl-pseudosymmetric Kenmotsu manifold with quarter-
symmetric non-metric connection if the curvature tensorR̄ of M with respect to D
satisfies the conditions

(R̄(X,Y ) ◦ C̄)(U, V,W ) = LC̄ [((X ∧ Y ) ◦ C̄)(U, V,W )], (66)

where (R̄(X,Y ) ◦ C̄)(U, V,W ) = R̄(X,Y )(C̄(U, V )W )

−C̄(R̄(X,Y )U, V )W − C̄(U, R̄(X,Y )V )W − C̄(U, V )(R(X,Y )W ), (67)
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and ((X ∧ Y ) ◦ C̄)(U, V,W ) = (X ∧ Y )(C̄(U, V )W )

−C̄((X ∧ Y )U, V )W − C̄(U, (X ∧ Y )V )W − C̄(U, V )((X ∧ Y )W ). (68)

Theorem 8.1: Let M be a Kenmotsu manifold. If M is Weyl-pseudosymmetric
with the connection D then M is either conformally flat and η−Einstein manifold
or LC̄ = −1.

Proof: Let M be a Weyl-pseudosymmetric Kenmotsu manifold and
X,Y, U, V,W ∈ χ(M). Then using (67) and (68) in (66), we have

R̄(X,Y )(C̄(U, V )W )− C̄(R̄(X,Y )U, V )W
−C̄(U, R̄(X,Y )V )W − C̄(U, V )(R(X,Y )W )
= LC̄ [(X ∧ Y )(C̄(U, V )W )− C̄((X ∧ Y )U, V )W

−C̄(U, (X ∧ Y )V )W − C̄(U, V )((X ∧ Y )W )]. (69)

Replacing X with ξ in (69) we obtain
R̄(ξ, Y )(C̄(U, V )W )− C̄(R̄(ξ, Y )U, V )W
−C̄(U, R̄(ξ, Y )V )W − C̄(U, V )(R(ξ, Y )W )
= LC̄ [(ξ ∧ Y )(C̄(U, V )W )− C̄((ξ ∧ Y )U, V )W

−C̄(U, (ξ ∧ Y )V )W − C̄(U, V )((ξ ∧ Y )W )]. (70)

Using (2), (41) in (70) and taking the inner product of (70) with ξ, we get
−C̄(U, V,W, Y ) + η(C̄(U, V )W )η(Y )− g(Y,U)η(C̄(ξ, V )W )
+η(U)η(C̄(Y, V )W )− g(Y, V )η(C̄(U, ξ)W ) + η(V )η(C̄(U, Y )W )
+η(W )η(C̄(U, V )Y ) + η(U)η(C̄(ϕY, V )W ) + η(V )η(C̄(U, ϕY )W )
+η(W )η(C̄(U, V )ϕY )− g(Y,W )η(C̄(U, V )ξ)
= LC̄ [C̄(U, V,W, Y ) − η(Y )η(C̄(U, V )W ) + g(Y,U)η(C̄(ξ, V )W ) −
η(U)η(C̄(Y, V )W+g(Y, V )η(C̄(U, ξ)W )−η(V )η(C̄(U, Y )W )−η(W )η(C̄(U, V )Y )+
g(Y,W )η(C̄(U, V )ξ)].
Then putting Y = U = ξ, we get

[LC̄ + 1]η(C̄(ξ, V )W ) = 0. (71)

Now (71) gives either η(C̄(ξ, V )W ) = 0 or LC̄ = −1.

Now LC̄ ̸= −1, then η(C̄(ξ, V )W ) = 0, and we have that M is conformally
flat which gives
S̄(V,W ) = Ag(V,W ) +Bη(V )η(W ),
where A = n+ 2 + r̄

n−1

and B = −[3n+ 2 + r̄
n−1 ].

This shows that M is an η−Einstein manifold.

If η(C̄(ξ, V )W ) ̸= 0, then we have LC̄ = −1. 3

Theorem 8.2: Let M be a Kenmotsu manifold. If M is pseudosymmetric
then either M is a spece of constant curvature and g(X,Y ) = η(X)η(Y ) or
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LR̄ = −1, for X,Y ∈ χ(M).

Proof: Let M be a pseudosymmetric Kenmotsu manifold and X,Y,U, V,W ∈
χ(M). Then using (64) and (65) in (63), we have

R̄(X,Y )(R̄(U, V )W )− R̄(R̄(X,Y )U, V )W
−R̄(U, R̄(X,Y )V )W − R̄(U, V )(R(X,Y )W )
= LR̄[(X ∧ Y )(R̄(U, V )W )− R̄((X ∧ Y )U, V )W

−R̄(U, (X ∧ Y )V )W − R̄(U, V )((X ∧ Y )W )]. (72)

Replacing X with ξ in (72) we obtain
R̄(ξ, Y )(R̄(U, V )W )− R̄(R̄(ξ, Y )U, V )W
−R̄(U, R̄(ξ, Y )V )W − R̄(U, V )(R(ξ, Y )W )
= LR̄[(ξ ∧ Y )(R̄(U, V )W )− R̄((ξ ∧ Y )U, V )W

−R̄(U, (ξ ∧ Y )V )W − R̄(U, V )((ξ ∧ Y )W )]. (73)

Using (2), (41) in (70) and taking the inner product of (73) with ξ, we get
−R̄(U, V,W, Y ) + η(R̄(U, V )W )η(Y )− g(Y,U)η(R̄(ξ, V )W )
+η(U)η(R̄(Y, V )W )− g(Y, V )η(R̄(U, ξ)W ) + η(V )η(R̄(U, Y )W )
+η(W )η(R̄(U, V )Y ) + η(U)η(R̄(ϕY, V )W ) + η(V )η(R̄(U, ϕY )W )
+η(W )η(R̄(U, V )ϕY )− g(Y,W )η(R̄(U, V )ξ)
= LR̄[R̄(U, V,W, Y )− η(Y )η(R̄(U, V )W ) + g(Y,U)η(R̄(ξ, V )W )
−η(U)η(R̄(Y, V )W + g(Y, V )η(R̄(U, ξ)W )− η(V )η(R̄(U, Y )W )
−η(W )η(R̄(U, V )Y ) + g(Y,W )η(R̄(U, V )ξ)].
Then putting Y = U = ξ, we get

[LC̄ + 1]η(R̄(ξ, V )W ) = 0. (74)

Now (71) gives either η(R̄(ξ, V )W ) = 0 or LR̄ = −1.

Now LR̄ ̸= −1, then η(R̄(ξ, V )W ) = 0, and we have that M is a space of
constant curvature and η(R̄(ξ, V )W ) = 0 gives
g(V,W ) = η(V )η(W ).

If η(R̄(ξ, V )W ) ̸= 0, then we have LR̄ = −1. 3

9. Example of pseudosymmetric Kenmotsu manifold with
quarter-symmetric non-metric connection D

Let us consider the three dimensional manifold M = {(x1, x2, x3)
∈ R3 : x1, x2, x3 ∈ R}, where (x1, x2, x3) are the standard coordinates of
R3. We consider the vector fields

e1 = x1
∂

∂x3
, e2 = x1

∂
∂x2

and e3 = −x1 ∂
∂x1

.

Clearly, {e1, e2, e3} is a set of linearly independent vectors for each point of M
and hence a basis of M. The non-metric g is defined by
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g(e1, e2) = g(e2, e3) = g(e1, e3) = 0,
g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1−form defined by η(Z) = g(Z, e3), for any Z ∈ χ(M) and the
(1, 1)− tensor field ϕ is defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.
From the linearity of ϕ and g, we have

η(e3) = 1,
ϕ2(X) = −X + η(X)e3 and
g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), for any X ∈ χ(M).

Then for e3 = ξ, the structure (ϕ, ξ, η, g) defines an almost contact metric
structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have
[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Koszul’s formula is defined by
2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).
Then from the above formula we can calculate the following,

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,
∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Hence the structure (ϕ, ξ, η, g) is a Kenmotsu manifold. [8]

Using (22), we find D, the quarter-symmetric non-metric connection on M
De1e1 = −e3, De1e2 = 0, De1e3 = e1 + e2,
De2e1 = 0, De2e2 = −e3, De2e3 = e2 − e1,
De3e1 = 0, De3e2 = 0, De3e3 = 0.
Using (23), the torson tensor T̄ , with respect to quarter-symmetric non-metric
connection D as follows:

T̄ (ei, ei) = 0, ∀i = 1, 2, 3
T̄ (e1, e2) = 0, T̄ (e1, e3) = e2, T̄ (e2, e3) = −e1.

Also (De1g)(e2, e3) = −1, (De2g)(e3, e1) = 1
and (De3g)(e1, e2) = 0.
ThusM is a 3-dimensional Kenmotsu manifold with quarter-symmetric non-metric
connection D.

Now we calculate curvature tensor R̄ and Ricci tensors S̄ as follows:
R̄(e1, e2)e3 = 0, R̄(e1, e3)e3 = −(e1 + e2),
R̄(e3, e2)e2 = −e3, R̄(e3, e1)e1 = −e3,
R̄(e2, e1)e1 = e1 − e2, R̄(e2, e3)e3 = e1 − e2,
R̄(e1, e2)e2 = −(e1 + e2).

From the definition of S̄, S̄(X,Y ) = Σig(R̄(ei,X)Y, ei), i = 1, 2, 3, we get
S̄(e1, e1) = S̄(e2, e2) = S̄(e3, e3) = −2, S̄(e1, e2) = 1,
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S̄(e1, e3) = S̄(e2, e3) = 0.

Again using (2) we get
(e1, e2)e3 = 0, (ei ∧ ei)ej = 0, ∀i, j = 1, 2, 3,
(e1 ∧ e2)e2 = (e1 ∧ e3)e3 = e1, (e2 ∧ e1)e1 = (e2 ∧ e3)e3 = e2,
(e3 ∧ e2)e2 = (e3 ∧ e1)e1 = e3.

Now R̄(e1, e2)(R̄(e3, e1)e2) = 0, R̄(R̄(e1, e2)e3, e1)e2 = 0,
R̄(e3, R̄(e1, e2)e1)e2 = −e3,
(R̄(e3, e1)(R̄(e1, e2)e2) = e3.
Then (R̄(e1, e2).R̄)(e3, e1, e2) = 0.

Again (e1 ∧ e2)(R̄(e3, e1)e2) = 0, R̄((e1 ∧ e2)e3, e1)e2 = 0,
R̄(e3, (e1 ∧ e2)e1)e2 = e3,
R̄(e3, e1)((e1 ∧ e2)e2) = −e3.
Then ((e1, e2).R̄)(e3, e1, e2) = 0.

Thus

(R̄(e1, e2).R̄)(e3, e1, e2) = LR̄[((e1, e2).R̄)(e3, e1, e2)],

for any function LR̄ ∈ C∞(M).
Similarly, we can show any combination of e1, e2 and e3 (60).
Hence M is a pseudosymmetric Kenmotsu manifold with quarter-symmetric non-
metric connection.
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