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Gat, Goginava and Nagy proved that the maximal operator o*>* of Marcinkiewicz-Fejér means
of Walsh-Kaczmarz-Fourier series, is bounded from the dyadic Hardy space H), into the space
L, for p > 2/3 [4]. Moreover, Goginava and Nagy showed that o™ * is not bounded from the
Hardy space Hj,3 to the space Lg,3 [8]. The main aim of this paper is to investigate the
endpoint case p = 2/3. In the present work we give necessary and sufficient conditions for the
convergence of Walsh-Kaczmarz-Marcinkiewicz means in terms of modulus of continuity on
the Hardy space Hy 3.
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1. Introduction

In 1948, Sneider [17] introduced the Walsh-Kaczmarz system and showed that the
inequality

DH/
lim sup D) >C>0
n—00 ogn

holds a.e. In 1974, Schipp [14] and Young [21] proved that the Walsh-Kaczmarz
system is a convergence system. In 1981, Skvortsov [16] showed the uniform con-
vergence of the Fejér means with respect to the Walsh-Kaczmarz system for any
continuous functions f. Gét [2] proved, that the Walsh-Kaczmarz-Fejér means of
an integrable function converge almost everywhere to the function. He showed that
the maximal operator o"* of Walsh-Kaczmarz-Fejér means is weak type (1, 1) and
of type (p,p) for all 1 < p < oco. Gét’s result was generalized by Simon [15], he
showed that the maximal operator ¢"™* is of type (Hp, L,) for p > 1/2. In the
endpoint case p = 1/2 Goginava [5] proved that the maximal operator ¢"* is not
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bounded from the dyadic Hardy space Hj/, to the space Lj/,. Moreover, Weisz
[24] showed that the maximal operator is of weak type (Hy 2, L1/2).

In [5, 18] it was proved that the maximal operators o;,"" defined by
|om|

TR,
OP

:= sup
neN (n + 1)1/P=210g21/27) (5 4 1)

)

(where 0 < p < 1/2 and [z] denotes the integer part of x) are bounded from

the Hardy space H,, to the space L,. Moreover, it was proved that the sequence
{(n+ 1)Y/P=210g201/247) (4 1) o° , can not be weakened.

The second author [19] (see also [20]) found a necessary and sufficient condition
for the convergence oy, f — f in H), norm, in terms of modulus of continuity of the
martingale f € H,,.

In particular, it was proved that if

wH, (1/2k,f> =0 (2k(1/p_2) 10g2[1/2+p] k) , as k — oo,
then
lonf = fllg, = 0,asn—o00, (0<p<1/2). (1)
Moreover, there exists a martingale f € H,, (0 < p < 1/2), for which

w (1/2’“, f)H =0 <2k(1/p_2) 10g2[1/2+p] k:) , ask— o0

p

and
||aﬁf—pr+>0, as n — 0o.

In 1939, for the two-dimensional trigonometric Fourier partial sums S;;f
Marcinkiewicz [9] has proved that the means

n

onf = %Zsj,jf

=1

converge a.e. to f as n — oo for any f € Llog L([0,27]?). Zhizhiashvili [25] im-
proved this result for f € Li([0, 27]?).

In 2006, the a.e. convergence of Walsh-Kaczmarz-Marcinkiewicz means was
proved by the first author [10]. He also proved that the maximal operator

1 n
o"™* f :=sup|oy f| = sup — ZSfjf
neP neP 1 |73 ’

is of weak type (1,1) and of type (p,p) for all 1 < p < co. In [4] it was proved that
the maximal operator o™* is bounded from the Hardy space H), to the space L,
for p > 2/3. In the paper [8] Goginava and the first author showed that, o"* is
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not bounded from the Hardy space Hy/3 to the space Ly 3. This means that, it is
interesting to discuss what does happen at the endpoint p = 2/3. Recently, it was

showed in [11] that the maximal operator 6"* f := sup,,cp %

from the Hardy space Hy/3 into the space Ly 3. Moreover, it was proved that the

, is bounded

sequence {log3/ 2(n + 1)}22, can not be weakened. That is, the order of deviant

behaviour of the n-th Walsh-Kaczmarz-Marcinkiewicz mean is exactly log®/ 2(n+1)
in the endpoint case p = 2/3. As a corollary we get that

n=1

o5 fllzss < clog®?(n + )| |z, s (2)

for all f € Hy3.

The main aim of this paper is to continue the investigations at the endpoint
p = 2/3. We give necessary and sufficient conditions for the convergence of Walsh-
Kaczmarz-Marcinkiewicz means in terms of modulus of continuity on the Hardy
space Hy 3. That is, we give the two-dimensional version of the result of the second
author [19] (see equation (1)).

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [1, 13].

Let P denote the set of positive integers, N := PU{0}. Denote by Z5 the discrete
cyclic group of order 2, that is the elements of Z5 are 0,1, and the group operation
is the modulo 2 addition. Let every subset be open. The Haar measure on 75 is
given such that u({0}) = wu({1}) = 1/2. Let G be the complete direct product
of the countable infinite copies of the compact groups Zs. The elements of G are
sequences of the form z = (xg, x1, ..., Tk, ...) with coordinates x; € {0,1} (k € N).
The group operation on G is the coordinate-wise addition, the measure (denoted by
) is the product measure and the topology is the product topology. The compact
Abelian group G is called the Walsh group.

The dyadic intervals are defined by

Iy (z) :=G, I, (x) := L, (x0, ooy Tn—1) = {Y € G : Yy = (T0, e Tn—1, Yn, Yn+1s --) } »

where (z € G,n € N). They form a base for the neighbourhoods of G. Let 0 =
(0:3€N) € G denote the null element of G, and I, := I,, (0) (n € N). Set e, :=
0,...,0,1,0,...) € G, the n-th coordinate of which is 1 and the rest are zeros
(neN).

For k € N the k-th Rademacher function is defined by

ri (z) = (=1)", (x = (20,21, ., T, ...) € Q)

If n € N, then n can be expressed in the number system of base 2. That is,
= .
n = Y. n;2" can be written, where n; € {0,1} (i € N). Denote the order of n by
i=0
In| := max{j € N :n; # 0}. We immediately have that 2"l <n < 2/7/+1,
The Walsh-Paley system is defined as the product system of Rademacher func-
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tions:
o} . lnzlflnkl‘k
wy, (x) := H (i ()™ = 7y () (=1) #=0 (xeGnepP).
k=0

The Walsh-Kaczmarz functions are defined by k9 = 1 and for n > 1

[n]—1
k(@) = rpy (@) [ (rpagoan(@)™ = T\n|($)(—1)25€@51"”‘"'*H.
k=0

It is well-known that the set of Walsh-Kaczmarz functions and the set of Walsh-
Paley functions are equal in dyadic blocks. Namely,

{kn : 28 <n < 21} = {w, : 2F < < 2FF1}

for all £k € P and k¢ = wy.
Define the transformation 74 : G — G by

TA(Z) 1= (TA-1, TA—2y ooy T1, 0, TA, LA+, ---)
for A € N. Skvortsov [16] gave a relation between the function x,, and w,,. Namely,
Fon (@) = 7| (2)Wp—gini (T (2)) - (n € N,z € G). 3)

The Dirichlet kernels are defined by

n—1
Dy = Z Qs
k=0

where a,, = wy, (for all n € P) or &, (for all n € P), D§ := 0. The 2"-th Dirichlet
kernels have a closed form (see e.g. [13])

0, ifaxéel,,
2 ifx € I,.

DY (x) = Dj.(2) = Do () = { (4)

The norm (or quasi-norm) of the space L,(G?) (for the simplicity we write L)
is defined by

1/p
I, = ([ @l autenen) 0 <p<).

The space weak — L,, consists of all measurable functions f for which

£l pear—z, = sup A (f > M) < +oo.
A>0
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The o-algebra generated by the 2-dimensional cube of measure 272% will be
denoted by Fj (k € N). Denote by f = (f(”), n e D\I) the one-parameter martingale
with respect to (Fy,,n € N) (for details see e. g. [22, 23]). The maximal function of

a martingale f is defined by f* = sup ’ fn ‘ For 0 < p < oo the Hardy martingale
neN

space H,(G?) consists of all martingales for which 1A, = [If*ll, < oo (for
simplicity we use the notation H,).

The Kronecker product (apm, :n,m € N) of two Walsh-(Kaczmarz) system is
said to be the two-dimensional Walsh-(Kaczmarz) system. That is, o, (21, 2?%) =

o (21 am (22) .

If f € Ly, then the number f (n,m) := f fonm (n,m €N) is said to be the

(n, m)-th Walsh-(Kaczmarz)-Fourier coefﬁment of f. We can extend this definition
for martingales in the usual way (see Weisz [22, 23]). Denote the (n, m)-th rect-
angular partial sum of the Walsh-(Kaczmarz)-Fourier series of a martingale f by
Sp.m- Namely,

n—1m-—1
S,‘f,mf(ac :ZZ O‘kza;“xl z?).

k=0 =0

The Marcinkiewicz-Fejér means of a martingale f are defined by
ol f (a! ,x?) = ZSk of (zh, 2?

The two-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are de-
fined by

n

1
DY (2", 2?) == D () Df(a?), K2(z',2?) = ZDkkx 2

3

During the proof of our main theorem we will use the following bellow estimation
of Marcinkiewicz-Fejér kernels on the special indices, which was proved in [7]:

Lemma 2.1 (Goginava [7]): Let
z' € 144 (0,...,0, 25, = 1,0,...,0,25 = 1,2, 1, ., Tha_q)
and
2% € Iyp (0, 0,22 = 1,:L‘41u+1...,w}lq_1, 1-— xiq,xiqﬂ, ...,miA_l) .
Then

nA_ I‘KnA 1 (ac T )} >24q+4l+4m 3
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where
ng =244 2t4~1 401420,
The concept of modulus of continuity in H, (0 < p < 1) is given by
wr, (1/2%, f) == |f = Sanon fll g, -
Let the maximal operators o"* and ¢"# be defined by

o f =suplopf|, oF f=suplos. f|.
n>1 neN

For the maximal operator o"# Gét, Goginava and Nagy [3] proved that the
following is true:

Theorem 2.2 (Gat, Goginava and Nagy [3]):  The mazimal operator o™% is
bounded from the Hardy space H, to the space L, when p > 1/2.

Later, it was shown that the maximal operator o"# is not bounded from the
Hardy space H), to the space L, for 0 < p < 1/2. Moreover, the maximal operator
"7 is bounded from the Hardy space H; /2 to the space weak-L, /5 (see [6]).

For the martingale

f= i (f<n> . f(m))
n=0

the conjugate transforms are defined as
FO =3 @) (£ = 50
n=0

where t € G is fixed. Note that }’E = f. It is well-known (see [22]) that

J©]

g, =W W7~ [ O] )

As a consequence, we have that the conjugate transform of the n-th Marcinkievicz
means of a function f coincides with the n-th Marcinkievicz means of the conjugate
transform of f.

3. Formulation of main results

Our main result reads as follows:

Theorem 3.1: a) Let

1 1
w(2k,f>H2/3:o<k3/2), as k — oo. (6)
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Then

lonf = flla,,, — 0, when n — oo.

b) There exists a martingale f € Hy;3, for which

1 1
_ ~0 (o), ask—
w (22k f> Has (23k/2> as o0

and

o f = Fllajs = 0 as n— oo.

Proof: During the proof we follow the method of the second author in [19] (for
dimension 1), but for the completeness we give the details. Moreover, the proof
is based on the result of the first author [11] (see inequality (2)) and the method
of Weisz [22] improved for conjugate transforms (see equality (5)). Combining (2)
and (5) we have

——||?/3 —12/3
o, = [ @) Ca= [ o] o
[0,1) 2/3 [0,1) 2/3
—12/3
< clog(n+1)/ Hf(t)‘ dt
[0,1) Hy /s

—clog(n+1) [ IfI3, de
[0,1)

2/3
= clog(n+ 1) | £%2 .

Let 2V < n < 2N+1

lonf = FI5S, < llowf = oo on 302+ l|oSav o f = Sov on [0,

+|[Sav o f = £II772,

The inequality (7) gives immediately

2/3

o f = oo an F1577 4 1aw o f = FI777 < o (Sawan f = £) |

+Sav n f = Fl e

1
< c(log(n+1) + 1)w?? (QNf)H
2/3
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For [|o7:Sov ox f = Son ov f |37 we will show that

N\ 2/3
HU Son on f — Son 2Nf}|§{/23/3 = (n> HSQN;?N (o3 f = f)Hst

<o f = FI312, =0, while n = 00 (8)

That is, we get that if

1 B 1
w 27,]" =o0 3 , asn — 0o,
Hjys

then

low f = fllg,,, = 0, while n — oo.

At last, we have to show inequality (8). We write

07 Son on f — Sonon f = = ZSMSMVH— Z Sk Saw v f — Sow o f
k=2N+4+1

2N

= = (o5 f — Son on f)
2N

(SQN 2N UQNf SQN 2N f)

2N
fS2N 2N (Ugwf f)

Combining (5), Theorem 2.2 and following the steps of estimation (7) we get in-
equality (8). It completes the proof of the first part of our theorem.

Now, we prove the second part of Theorem 3.1. We use the martingale con-
structed in [12]. We set

az‘(xlaxQ) = 2% (D22i+1($1) — Daai (xl)) (Dzz'iﬂ(fUQ) — Daai (xz))

and

n az(

232/2

1=1

In the paper [12], it is shown that the martingale f satisfies the conditions of the sec-
ond part of Theorem 3.1. That is, f € Hy/3 and w (2%, f)H =0 (23k/2) , as k —

0.
Now, we show that

|05 = Fllajs = 0 as n — oo,
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It is easy to calculate the Fourier coefficients

2 X . 2
~ 2 if (iy)) € {22", 225 1} Ck=01,..
[, ) = 50 2 9)
0, it (4,5) ¢ U {22’“,...,22”1 —1} .
k=0
Set mga—e = 242077 4 9420774 L4 o4 4 90 927 | 9204 4 9d 4 90 4gip
Lemma 1.
2of, f 1 e 22'f n f
K 22 K 2k-2—1
o 1
Uan*zf f Nok—2 + TNok—2 Z Sjj Nok—2 Nok—2 ( O)
j=22F 41

Let 22" < j < ngs—1. Using equations (3) and (9) we have

S“f(x .1'2) SQQk 22kf zt «T Z Z f Hvs ’ 2)

v=22F g=22%

2k j— 22" —1j5— 22 1

_ 1 2
= Syt g f (2, 07 NPEE Z Z oyt (21) gy 00 (2%)

L, 22k7’2k LE +CL‘ ] —92* 192" )
= 22}97221@]{‘ (:c , T ) + 93k/2 Z Z Wy Tzk Wy (Tzk ($ ))
2% rou (2! +22) DY, (7or (1)) DY i (72e (22))
= 22k722kf (-"L‘l,fL‘2) + = k23k/2 L )

Hence, we write the following

Nok—2 1

"‘Z an—2_1522k 722kf (m ,m2)
Nor—2 Nok—2

22’“+1

22" o (! + 22) "2
) S D e o) D e ()

j=1

n2k72_15’22k 22k f (l’l, 1'2)

Nok—2

22 pou (2 4 2%) o s 1KY, (7ar (21) e (22))
ngk—223k/2 '

_l’_
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Equality (10) yields
2/3 c 2/3
lof o f = F1375 > gelinzsa K3, o (72 x720) I35
K\ 2/3
22 2/3
- <n2k_2) ”ngkf - fHQ?S,

Tok-2_1 2/3 2/3
-\ ”522k,22kf - sz/g

Nok—2

For a fixed 2% we give a subset of G2 as the following disjoint union:

2k—3 2kF—2 2k_—1

GXGQU U U (JQ”Z’IXLZQ’E’),

m=1l=m+1 q=I+1

where
J;z’l = {xl eG: x%,_l =..= $%k74m =0,
x%"‘—4m—1 = 1’x%’“—4m—2 == x%k—4m—4l = O’Iék—4l—1 = 1}
and
Lé’g = {a:2 eG: m%k—l =..= xg;_y =0,

2 _ 1 1 2 _ 1
Ton_g1 = 1, Tok_gy_95 s Lok _4qs Tok_4q—1 = 1- x2’°—4q—1} .

Notice that, for any (acl, ac2) € J;f’l X Lg’g, by the definition of 5+ and Lemma 1
we have

n2k7271

K;fzkf2,1 (7'2k (581) ) Tok (wZ))‘ > 9dgq+4l+4m—3

This immediately yields

/(”IKﬁf (e (1), mor (@) ) 3dp (", %)
G2 -

2)@—2_3 2k—2_2 2k—2_1

ey >, D, (nov2 1| K2, (roe(a), 7o (22))?/ Pdpalat, 22)

mly 7l
m=1 [l=m+1 g=I+1 Jzk XLz’g

2k—273 2k—272 21«—271

‘ Z Z Z /‘(J;Z’l X Lé’g) o(8g+81+8m)/3

m=1 [l=m+1 gq=I+1

v
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2k232k2 2k2

> e Z Z Z 2(8q+8[+8m)/32 4l2 4q
m=1 [=m+1 g=I+1
2lc 2__ 2k 2_ 2k 2__
> c Z 28m/3 Z 2—4l/3 Z 2—4q/3
l=m+1 q=Il+1
223
>c 1> 2k
m=1

By inequality (11) we have

limsupl|loy  , f— fll2/3 > ¢>0.
k—o0

The proof of Theorem 3.1 is complete. O
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