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On some Properties of Conjugate Fourier-Stieltjes Series
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A theorem of Ferenc Lukdcs [9] states that the partial sums of conjugate Fourier series of a
periodic Lebesgue integrable function f diverge at the logarithmic rate at the points of first
kind discontinuity of f.

The aim of this paper is to investigate analogous problems in terms of Fourier-Stieltjes
series and Abel-Poisson means of the Fourier-Stieltjes series.
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1. Introduction

Let f be a 27w periodic Lebesgue integrable function. The Fourier trigonometric
series of the function f is defined by

D
% +Zl(ai cosix + b;siniz), (1)
1=

where
L[ | Ll
a; = — / f(z)cosizdr and b; = — /f(a:) sinizdz,
T T

are the Fourier coefficients of f. The conjugate series of (1) is defined by

oo

Z(ai sinix — b; cosiz). (2)

=1

Let Si(f;z) be the k-th partial sum of series (2). Lukacs [9] proved the following
theorem.
Theorem 1.1: If f € L(—w, 7| and the finite limit

lim [f(z +1) = f(z —t)] = da(f),

t—0+
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exists at some point x € (—m, 7| then

lim Sk(f,x) :_da:(f)
k—+oco Ink T

B. Golubov obtained a formula for the jump of a function of bounded p-variation
at a given point in terms of derivatives of partial sums of its Fourier series.

R. Riad [13] proved an analogous theorem of the Lukécs theorem in terms of the
conjugate Walsh series.

G. Kvernadze, T. Hagstrom, H. Shapiro ([5]-[8]) investigate how to determined
jumps for class of function generalized variation in terms of Jacobi polynomials,
also they utilize the truncated Fourier series as a tool for the approximation of the
points of discontinuities and the magnitudes of jumps of a 2w-periodic bounded
function in terms of derivative of the partial sums, they also use integrals.

F. Moricz ([10], [11]) generalized Lukdacs’s theorem in terms of the Abel-Poisson
means and proved estimate of the partial derivative of the Abel-Poisson mean of
an integrable function at those points where functions are smooth.

Pinsky [12] generalized Fourier partial sums by using a family of convolution
operators with some classes of kernels.

Q. Shi and X. Shi [14] discuss the concentration factor methods for determination
of jumps in terms of spectral data.

P. Zhou and S. Zhou [19] generalize Lukécs theorem in terms of the linear oper-
ators which satisfy some certain conditions.

D. Yu, P. Zhou and S. Zhou [17] show how jumps can be determined by the
higher order partial derivatives of the of its Abel-Poisson means.

The authors ([20], [21]) examine the analogous theorems for the generalized
Ceséro means, introduced by Akhobadze ([1]-[3]), as well as positive regular linear
means, and consider ([22], [23]) Lukés theorem for the functions and series intro-
duced by Taberski ([15], [16]) as well as generalized Cesaro, positive regular linear
and Abel-Poisson means.

2. Formulation of the results

Our interest is to study same tasks for Fourier-Stiltjes series. Let the function f
be 27 periodic and have bounded variation on the [—; 7], the Fourier coefficients
are defined as

ap = % /cos kxdf (z) by, = % /sin kxdf (z). (3)

By S, (df; ) we define the n-th partial sum of Fourier-Stieltjes series of the f. Also
define

pu(t) = fla+1) + flz—t) = 2f(x) =t (f'(2+) — f'(z-)).
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Theorem 2.1: For any point x where there exist numbers f'(x+), f'(x—) and

(pz) =0(t),  t— 0+, (4)

o<s

we have

iy Snldfim) _ fat) = f'@) (5)

n—+co  Inn s

t
where V (pz) is a variation of the function g (-) on the set [0;t].
0

It is natural to ask: is the analogue of the last statement valid for a Abel-Poisson
summability method?
Abel-Poisson means of the conjugate Fourier-Stieltjes series is defined as

df(r,z) = Zrk(ak sin kx — by coskx) = —;/Q(T,x)d(f(x+t) + f(z—1t)), (6)

keN 0

where

rsint
(1 —7)2+4rsin®(t/2)

Q(r,t) = rk sin kt =
keN

Now we examine the analogous of the theorem 2.1 for Abel-Poisson mean.

Theorem 2.2: For any point x where there exist numbers f'(z+), f'(x—) we
have

o df(r,z)  f(a+) — fl(z-)
i In(l—r) 7r ' (®)

Note that in Theorem 2.2 we omit condition (4). It is natural to ask about con-
dition (4). If the function f is absolutely continuous then the mentioned condition
follows automatically, but in this case we provide the known results in the intro-
duction. Arises a question: is condition (4) equivalent to absolutely continuity of
function f7

Proposition 2.3: There exists function f of bounded variation which is not
absolutely continuous but for which (4) holds.

It is interesting if there is a possibility to replace (4) with a weaker condition.
Our hypothesis is that (4) is the best option to guarantee (5).
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3. Proofs

Proof (of Theorem 2.1):

Sp(df;x) =

>H+—‘

/ Fla+) + fl@—1)
0

|
BN

/ De)d(f(@+1) + flz — 1) — 2f(x) -t (f'(a+) — F'(z—))

_fzt) = MG / Dy(t)dt = — Ay (n) — Ag(n). (9)
0

Let estimate A1(n). By (4) for every € > 0 we can choose § = d(¢) > 0 such that
t
%/(gox) <e-t, t € (0;t). (10)

Let us choose n such that 1/n < §. We get

1/n ) T
Ai(n) :% /+/+/ Dy (t)dpy (t)
0 1/n 6
= By(n) + Ba(n) + Bs(n). (11)

Since | D, (t)| < n for all t, (see [18, Ch. II, (5.11)]), by (10) we have

B1 (TL) §

33
O\g

aVie) < <. (12)

By estimation | D, (t)| < 2/t, t € (0;7], (see [18, Ch. II, (5.11)]) and integration
by parts with respect to ¢ and (10) we have

6 d é
2 1 ¢t 2 1t 2 1
Bs(n) < — / —dV(pg) <e+ — / = Vipz)dt <e+ = / —dt =o(Inn). (13)
us t o T t“ 0 T t
/n /n

1
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By (11)-(14) we get

lim Aj(n)/Inn=0.

n—-+00

It is well known that
/f)n(t)dt ~ Inn,
0

therefore we get

- As(n)

o (P) — )

Combining (9), (15) and the last estimate we prove (5).

Proof (of Theorem 2.2):

™ T

07r) = =+ [ Qe - LD o ayar

0 0

= —Dl(’l”) — DQ(T).

Let us estimate Dy(r). Consider

(271 ln((l _ 7«)2 + 4r Sin2(t/2)))/ = (1 _ 7»)2 :—Siélri’iin%t/Q) .

Therefore we have

f'(z+) = f'(z=)

™

Dy(r) = (27 n((1 — 7)? + 4rsin®(t/2)))|3

FED P ) ) = L@ = P

7T T

In(1 —r).

(14)

(15)

(17)

By definition of the numbers f’(z+) and f’(z—), for any € > 0 we choose § =

d(g) > 0 such that when ¢ € [0; 6] we have

[f(@+1) = fl) = fat) t/t <e/2, [fla—1t)— fla)+ f(z—) - t]/t <e/2.
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Therefore
|flx+1t) = f(x) = fla+) -t <e-t/2, |f(x—1t)— flz)+ flz—) t| <e-t/2.

By definition of ¢, (t) we have

e (®) = [f(z+1) + flz —t) = 2f(2) —t- (f'(a+) — f'(z—)]

<|fle+t) = fl@) =t fllat) +|f@—1) = fl@) +t- flla=) <e-t.  (18)
Consider Dy (r).

T

é
/Q T, x)dpy(t) /Q(r x)dpz(t) = E1 + Es. (19)
0

0

:u~

Integration by parts with respect to ¢ we have

6
B = 2Q(8)ee(0) ~ - [ Qg = Fi + P
We have
Fy = 0(1). (20)

If 5 is a point such that Q'(r,t) changes the sign on it, then by (18) and inte-
grating by parts with respect to ¢ we have

b B s
|Fy| < 5/t~|Q’(r,t)\dt:a/t~Q/(r,t)dt—5/t-Q’(r,t)dt
0 0 B

B 5
=epQ(r, B) a/Qrtdt—séQr6+£BQrﬁ+s/Q
0 B

™

< 2:8Q(r, B) + zg/Q(r, Bt = o(1) + o(In(1 — 7)) = o(ln(1 - 1).  (21)

0

On the other hand, by the representation of Q(r,t) (see [18, Ch. III, (6.3)]) we
have

rsint sint _ lcot(t/Z)
(1 —7)2 +4rsin®(t/2) ~ 4sin?(t/2) 2 '
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Then
|By| < 1/ﬂcot(t/2)dx?( ) < 1/”16“}( ) < 1jd&( y=0(1). (22)
2= o o = ) Rt =5 ¢ = '
é 0 é
Finally, by (16)-(22) we prove (8). Theorem 2.2 is proved. O

Proof (of Proposition 2.3): Let us introduce the set
A=1{1,1/2,1/3,.}. (23)

Now choose some number v > 1 and define the function f

nY—(n+1)77 if z=1

J@) = 0 if ze [n—’7r;7r]\A.

It is easy to see that f is not absolutely continuous, f has bounded variation and
(4) is valid at the point 0. Let as consider g (t) because f/(0) = 0 when ¢t > 0 we

have @o(t) = f(0+1) + f(0 — 1) = 2f(0) — - (f'(0+) = f(0—)) = f(t), then

})}(900)22 Z (7117—(”_&1)7>:2t”:o(t), t—0+4.

Proposition 2.3 is proved. O
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