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A theorem of Ferenc Lukács [9] states that the partial sums of conjugate Fourier series of a
periodic Lebesgue integrable function f diverge at the logarithmic rate at the points of first
kind discontinuity of f .

The aim of this paper is to investigate analogous problems in terms of Fourier-Stieltjes
series and Abel-Poisson means of the Fourier-Stieltjes series.
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1. Introduction

Let f be a 2π periodic Lebesgue integrable function. The Fourier trigonometric
series of the function f is defined by

a0

2
+

∞∑
i=1

(ai cos ix+ bi sin ix), (1)

where

ai =
1

π

π∫
−π

f(x) cos ixdx and bi =
1

π

π∫
−π

f(x) sin ixdx,

are the Fourier coefficients of f. The conjugate series of (1) is defined by

∞∑
i=1

(ai sin ix− bi cos ix). (2)

Let S̃k(f ;x) be the k -th partial sum of series (2). Lukács [9] proved the following
theorem.

Theorem 1.1 : If f ∈ L(−π, π] and the finite limit

lim
t→0+

[f(x+ t)− f(x− t)] = dx(f),
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exists at some point x ∈ (−π, π] then

lim
k→+∞

S̃k(f ;x)

ln k
= −dx(f)

π
.

B. Golubov obtained a formula for the jump of a function of bounded p-variation
at a given point in terms of derivatives of partial sums of its Fourier series.

R. Riad [13] proved an analogous theorem of the Lukács theorem in terms of the
conjugate Walsh series.

G. Kvernadze, T. Hagstrom, H. Shapiro ([5]-[8]) investigate how to determined
jumps for class of function generalized variation in terms of Jacobi polynomials,
also they utilize the truncated Fourier series as a tool for the approximation of the
points of discontinuities and the magnitudes of jumps of a 2π-periodic bounded
function in terms of derivative of the partial sums, they also use integrals.

F. Móricz ([10], [11]) generalized Lukács’s theorem in terms of the Abel-Poisson
means and proved estimate of the partial derivative of the Abel-Poisson mean of
an integrable function at those points where functions are smooth.

Pinsky [12] generalized Fourier partial sums by using a family of convolution
operators with some classes of kernels.

Q. Shi and X. Shi [14] discuss the concentration factor methods for determination
of jumps in terms of spectral data.

P. Zhou and S. Zhou [19] generalize Lukács theorem in terms of the linear oper-
ators which satisfy some certain conditions.

D. Yu, P. Zhou and S. Zhou [17] show how jumps can be determined by the
higher order partial derivatives of the of its Abel-Poisson means.

The authors ([20], [21]) examine the analogous theorems for the generalized
Cesáro means, introduced by Akhobadze ([1]-[3]), as well as positive regular linear
means, and consider ([22], [23]) Lukás theorem for the functions and series intro-
duced by Taberski ([15], [16]) as well as generalized Cesáro, positive regular linear
and Abel-Poisson means.

2. Formulation of the results

Our interest is to study same tasks for Fourier-Stiltjes series. Let the function f
be 2π periodic and have bounded variation on the [−π;π], the Fourier coefficients
are defined as

ak =
1

π

π∫
−π

cos kxdf(x) bk =
1

π

π∫
−π

sin kxdf(x). (3)

By S̃n(df ;x) we define the n-th partial sum of Fourier-Stieltjes series of the f . Also
define

ϕx(t) = f(x+ t) + f(x− t)− 2f(x)− t · (f ′(x+)− f ′(x−)).
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Theorem 2.1 : For any point x where there exist numbers f ′(x+), f ′(x−) and

t
V
0

(ϕx) = o(t), t→ 0+, (4)

we have

lim
n→+∞

S̃n(df ;x)

lnn
= −f

′(x+)− f ′(x−)

π
. (5)

where
t
V
0

(ϕx) is a variation of the function ϕx(·) on the set [0; t].

It is natural to ask: is the analogue of the last statement valid for a Abel-Poisson
summability method?

Abel-Poisson means of the conjugate Fourier-Stieltjes series is defined as

df̃(r, x) =
∑
k∈N

rk(ak sin kx− bk cos kx) = − 1

π

π∫
0

Q(r, x)d(f(x+ t) + f(x− t)), (6)

where

Q(r, t) =
∑
k∈N

rk sin kt =
r sin t

(1− r)2 + 4r sin2(t/2)
. (7)

Now we examine the analogous of the theorem 2.1 for Abel-Poisson mean.

Theorem 2.2 : For any point x where there exist numbers f ′(x+), f ′(x−) we
have

lim
r→1−

df̃(r, x)

ln(1− r)
=
f ′(x+)− f ′(x−)

π
. (8)

Note that in Theorem 2.2 we omit condition (4). It is natural to ask about con-
dition (4). If the function f is absolutely continuous then the mentioned condition
follows automatically, but in this case we provide the known results in the intro-
duction. Arises a question: is condition (4) equivalent to absolutely continuity of
function f?

Proposition 2.3: There exists function f of bounded variation which is not
absolutely continuous but for which (4) holds.

It is interesting if there is a possibility to replace (4) with a weaker condition.
Our hypothesis is that (4) is the best option to guarantee (5).
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3. Proofs

S̃n(df ;x) = − 1

π

π∫
0

D̃k(t)d(f(x+ t) + f(x− t))

= − 1

π

π∫
0

D̃k(t)d(f(x+ t) + f(x− t)− 2f(x)− t · (f ′(x+)− f ′(x−)))

−f
′(x+)− f ′(x−)

π

π∫
0

D̃k(t)dt = −A1(n)−A2(n). (9)

Let estimate A1(n). By (4) for every ε > 0 we can choose δ ≡ δ(ε) > 0 such that

t
V
0

(ϕx) < ε · t, t ∈ (0; t). (10)

Let us choose n such that 1/n < δ. We get

A1(n) =
1

π

 1/n∫
0

+

δ∫
1/n

+

π∫
δ

 D̃k(t)dϕx(t)

= B1(n) +B2(n) +B3(n). (11)

Since |D̃n(t)| ≤ n for all t, (see [18, Ch. II, (5.11)]), by (10) we have

B1(n) ≤ n

π

1/n∫
0

d
t
V
0

(ϕx) <
ε

π
. (12)

By estimation |D̃n(t)| ≤ 2/t, t ∈ (0;π], (see [18, Ch. II, (5.11)]) and integration
by parts with respect to t and (10) we have

B2(n) ≤ 2

π

δ∫
1/n

1

t
d

t
V
0

(ϕx) < ε+
2

π

δ∫
1/n

1

t2
t
V
0

(ϕx)dt < ε+
2ε

π

δ∫
n

1

t
dt = o(lnn). (13)

Proof (of Theorem 2.1):
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B3(n) ≤ 2

π

π∫
δ

1

t
d

t
V
0

(ϕx) ≤ 2

πδ

π∫
δ

d
t
V
0

(ϕx) ≤ 2

πδ

π
V
0

(ϕx) = O(1). (14)

By (11)-(14) we get

lim
n→+∞

A1(n)/ lnn = 0. (15)

It is well known that

π∫
0

D̃n(t)dt ' lnn,

therefore we get

lim
n→+∞

π ·A2(n)

(f ′(x+)− f ′(x−)) · lnn
= 1.

Combining (9), (15) and the last estimate we prove (5). �

df̃(r, x) = − 1

π

π∫
0

Q(r, x)dϕx(t)− f ′(x+)− f ′(x−)

π

π∫
0

Q(r, x)dt

= −D1(r)−D2(r). (16)

Let us estimate D2(r). Consider

(2−1 ln((1− r)2 + 4r sin2(t/2)))′ =
r sin t

(1− r)2 + 4r sin2(t/2)
.

Therefore we have

D2(r) =
f ′(x+)− f ′(x−)

π
(2−1 ln((1− r)2 + 4r sin2(t/2)))|π0

=
f ′(x+)− f ′(x−)

π
(ln(1 + r)− ln(1− r)) ' −f

′(x+)− f ′(x−)

π
ln(1− r). (17)

By definition of the numbers f ′(x+) and f ′(x−), for any ε > 0 we choose δ =
δ(ε) > 0 such that when t ∈ [0; δ] we have

|f(x+ t)− f(x)− f ′(x+) · t|/t < ε/2, |f(x− t)− f(x) + f ′(x−) · t|/t < ε/2.

Proof (of Theorem 2.2):
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Therefore

|f(x+ t)− f(x)− f ′(x+) · t| < ε · t/2, |f(x− t)− f(x) + f ′(x−) · t| < ε · t/2.

By definition of ϕx(t) we have

|ϕx(t)| = |f(x+ t) + f(x− t)− 2f(x)− t · (f ′(x+)− f ′(x−)|

≤ |f(x+ t)− f(x)− t · f ′(x+)|+ |f(x− t)− f(x) + t · f ′(x−)| < ε · t. (18)

Consider D1(r).

D1(r) =
1

π

δ∫
0

Q(r, x)dϕx(t) +
1

π

π∫
δ

Q(r, x)dϕx(t) = E1 + E2. (19)

Integration by parts with respect to t we have

E1 =
1

π
Q(r, δ)ϕx(δ)− 1

π

∫ δ

0
Q′(r, t)ϕx(t)dt = F1 + F2.

We have

F1 = O(1). (20)

If β is a point such that Q′(r, t) changes the sign on it, then by (18) and inte-
grating by parts with respect to t we have

|F2| ≤ ε
δ∫

0

t · |Q′(r, t)|dt = ε

β∫
0

t ·Q′(r, t)dt− ε
δ∫
β

t ·Q′(r, t)dt

= εβQ(r, β)− ε
β∫

0

Q(r, t)dt− εδQ(r, δ) + εβQ(r, β) + ε

δ∫
β

Q(r, t)dt

≤ 2εβQ(r, β) + 2ε

π∫
0

Q(r, t)dt = o(1) + o(ln(1− r)) = o(ln(1− r)). (21)

On the other hand, by the representation of Q(r, t) (see [18, Ch. III, (6.3)]) we
have

r sin t

(1− r)2 + 4r sin2(t/2)
≤ sin t

4 sin2(t/2)
=

1

2
cot(t/2).



128 Bulletin of TICMI

Then

|E2| ≤
1

2π

π∫
δ

cot(t/2)d
t
V
0

(ϕx) ≤ 1

π

π∫
δ

1

t
d

t
V
0

(ϕx) ≤ 1

δπ

π∫
δ

d
t
V
0

(ϕx) = O(1). (22)

Finally, by (16)-(22) we prove (8). Theorem 2.2 is proved. �

A = {1, 1/2, 1/3, ...} . (23)

Now choose some number γ > 1 and define the function f

f(x) =

{
n−γ − (n+ 1)−γ if x = 1

n ,

0 if x ∈ [−π;π]\A.

It is easy to see that f is not absolutely continuous, f has bounded variation and
(4) is valid at the point 0. Let as consider ϕ0(t) because f ′(0) = 0 when t > 0 we
have ϕ0(t) = f(0 + t) + f(0− t)− 2f(0)− t · (f ′(0+)− f ′(0−)) = f(t), then

t
V
0

(ϕ0) = 2

∞∑
n≥1/t

(
1

nγ
− 1

(n+ 1)γ

)
= 2tγ = o(t), t→ 0 + .

Proposition 2.3 is proved. �
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