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1. Introduction

Let H = {h,(z)}32, , z € [0,1] denote the Haar system normalized in L[QOJ} (see

[1]). We recall that the Haar system is a basis in space Lfo,l} , p> 1(see [2], [3]),

i.e. each function f(x) € Lﬁ] ) can be represented by a unique series

ch(f)hn(x) ) (1)
n=1

which converges to f(z) in the L

0,1~ norm. Note that in (1)

1
ealf) = /0 F(@)ha(@)dz 0 > 1, (2)

and the Fourier-Haar series (2) of each function f(x) € L[lO ) converges to f (x)
a.

almost everywhere on [0, 1]
unconditional basis in L[0,1] (see[4]) i.e. there exists a function f(z) € L

e.). It is known that the Haar system is not an
b
whose Fourier-Haar series Y, cx(f)hi(z) can be so rearranged as to become
divergent in L'[0, 1].

A.M. Olevskii [5] has constructed a function f(z) € Li§ 1), whose Fourier-Haar
series > p ; ¢k (f)hi(z) can be so rearranged as to become divergent almost every-
where on [0, 1].

Note that P.L.Ul’yanov and E.M.Nikishin in [6] proved: if Haar series uncon-
ditionally is convergent almost everywhere on [0,1] then it absolutely convergent
almost everywhere.
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The spectrum of f(z) (denoted by A(f) = spec(f)) is the support of the sequence
of Fourier coefficients {ci(f)} of the function f(x) in the Haar’s system, i.e. the
set of integers where ¢ (f) is non-zero.

In this paper we prove the following results, communicated at the International
Conference on Fourier Analysis and Approximation Theory dedicated to the 80th
birthday of Academician Levan Zhizhiashvili (see [20]):

Theorem 1.1: For every € > 0, there exists a measurable set E C [0,1] with
|E| > 1—¢, such that for every function f(x) € Lig 1) one can find a function f(x) €
Loy, f(x)=f(z), © € E, whose Fourier-Haar sem’ef is unconditionally convergent
almost everywhere on [0,1], and the sequence {cy(f) , k € spec(f F(x))} N\ 0(.i.

the nonzero terms of the sequence of Fourier coefficients {cx(f)} of the functzon
f(x) in the Haar system is monotonically decreasing and converges to zero.)

Note that P.L.Ul’yanov in [7] constructed a function fy(x) € L[l0 )» Whose Fourier-
Haar coefficients diverge unboundedly .
Theorem 1 is equivalent to the following:

Theorem 1.2: For every € > 0, there exists a measurable set E C [0, 1] with
|E| > 1—¢, such that for every function f(z) € Liy 1) one can find a function g(x) €
Lipyy; 9(x) = f(x), © € E, whose Fourier-Haar series is absolutely convergent
almost everywhere on [0, 1], and the sequence {cx(g) , k € spec(g)} 0.

Note that Theorems 1 and 2 are not true for the trigonometric system.

For the trigonometric and Walsh systems. interesting results in this direction
were obtained by many mathematicians (see for example [8]-[19]).

The following questions remain open.

Question 1. Is it possible to take the modified function g(x) in theorem 2 such
that its Fourier-Haar series absolutely converges in the L![0, 1] norm?

Question 2. Is it possible to take the modified function f (x) such that its Fourier
series in the trigonometric system unconditionally converges in the L'[0, 1] norm ?

2. Basic lemmas
At first we recall the definition of the Haar system(see [1]). It is a system of functions

H = {hn(2)}3%, , z €[0,1],in which hy(z) =1, € [0,1] and for n = 28 +m; k =
0,1,...; m=1,2,..,2"

ok/2 if mfl <.73< 252;1’
() = B (@) = ho i (x) = § —28/2 if 2l <p<m (3)
0 foracgé[ oF 721»]

The values taken by these functions in the discontinuity points are not essential
in the present work, hence we do not give them.

By A, = A(l), n=2F+i(n> 2) we denote the support of the function h,(z) =
h{(z). Aninterval A, = AP = (1 4y =2k i k=0,1,..;i=1,2,..,2F
is termed a dyadic interval.

For a set E we denote its characteristic function by X, z)-
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Lemma 2.1: For any given numbersy # 0, No > 1, q,q0,(q > qo > 2), § € (0,1)

and interval A C [0,1] of the form A = Agf) = (G, &), i€ [1;2"] there exists

a measurable set G C E C A and a polynomial Q(x) by H of the form

N
Q(z) = Y aphy(x)

k?:N()

which satisfy the conditions:

|E] = (1-279)[A],

)7, T E€E;
Q(x)_{(), x ¢ A.

1
/0 Q)| dz < 27| A

N

S arlhn(a)] < 2%, w € G
k?:NO

|Gl = (1 =27%)|A],

0 <ap <4,

and monzero coefficients in {ak}kN: N, are arranged in the decreasing order.

Proof: Chosen a subsequence {l;} so that

liy1—1;>2 ¥V 1€ N, (4)
and a natural 7 so large that
| ol
l; > 2 logy 5 + logaNo + v, (5)

We define a polynomial Q1 (x) in the following way

Q@ =277 Y W)

s (A ca)

The polynomial@(z) on A takes values v and —y. We denote by E; a set, on
which P;(z) is equal to —~.
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By induction we define polynomials Q2(x),Q3(x),...,Qq4(z) and the sets
Es, Es, ..., E; in the following way

i Lt s
Qi) =277 Y w (), (6)
s (A7, CE)
Ep={teE : Qin(t)#2}, (7)

It is clear that

i lati s 2! Vx € E;.
Q@) =25 || Y |h§><x>,|={ 7 ®)

J+i 0 T ¢ E:
s ) 1°
s (A};licEi)

A
2

EA
and \Ei+1|:’ il for all i=1,2,...,q—1, 9)

| E1 |= 5

and
Eo=ADE DEy...DFE;,D>..DE, (10)

Define a polynomial Q(z) and a sets £ and G as follows

E=A\E, G=A\E,, (12)
From (8)-(12) we have

|G’:’A‘_|EQO|:(1_2_q0)‘A|7
| E=[A| [ Eg[=(1-279)[A],

v, Vr € E.
Qxz) = —(21-1)y, Yz e E,
0,Vaod¢gA

From this we get

1
/0 Q)| dz < 2|
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That is, the statements 1)-3) and 5) of Lemma 2.1 are satisfied.Now we will check
the fulfillment of statement (4) of Lemma 2.1.
Further, by (5),(6) and (11) the polynomial Q(x) is of the form

N

Q) = 3 axhila), a = /0 Q)i (2)da, (13)

k=No

All coefficients in decomposition of polynomials @;(x) are nonnegative; conse-
quently coefficients a; will be also nonnegative. All nonzero coefficients of the
polynomial Q;(z) are equal

Liti—1

2717 |y

and from (4) we have

liti—1

21T |y > 2 |y,

hence nonzero numbers in {ak}iy: N, are arranged in the decreasing order. For
the proof termination it is necessary to notice that (see (5)

Y

275 <27 [y ]<d

Taking relations (8),(10) and (12) for all z € G and each i > ¢y we obtain
QZ(CIZ) =0.

Therefore, by (8)-(11) and (13) for all z € G we have

N q qo0
37 alhi(@)] = D 1Qi) = Y 1Qi(x) < 2%y, z € G
k=Nyp =1 i=1

Lemma 2.1 is proved.

Lemma 2.2: Let numbers kg > 1,e € (0,1) and a Haar polynomial f(x) with

fol |f(z)|dx <1 be given.Then one can find a measurable set G C E C A and a
polynomial P(x) in the Haar system H of the form

k
Q)= Y aphs,(z), s 7,
kmho+1

that satisfy the following conditions:

1) |E|>1-¢

2) |G > 11—/ [} |f(@)dz;
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3) Qx) = f(z) E;
4) €> ay = Q41 >0,k€[k0;]§);

5) Jo Q)| dz < 2 [y |f(x)| dx:

O ko ablhs, (1) < e if @€ G

Proof: Let

Jo Ho
flz) = ijhj(l’) = Z’Yu XA, () (14)
7=0 v=1

where A, are dyadic intervals of the formAf) = (51, 55), i€ [1;27]
Let:

1
1
qo =2 — |logy / |f(z)|dz; | ,q=qo+ |:10g2 e] (15)
0

Ho
v=0_1

in the Haar system of the form

Repeated application of Lemma 1 yields a sequence of measurable sets { £, }
{G,}52 ;and a sequence of polynomials {Q, (z)}/°

v=1
m,—1
Q, = Z ag/)hsk(x), v=1,2,...,u0,mo=ko+1, (16)
k:mu—l
such that
Y, T € Ey;
v = 17
Qul) {07 N a7)
€> agnuy—}z) > .. > a(u—1) > ai(cV+_11) > a%—}l)_l
>al) >z >adl) > el >01<v <, (18)
G, CE,CcA,1<v<p, (19)
|E, = (1-2"9]A,, (20)

Gul = (1 =27")[A,], (21)
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1
/O|Qy<w>|dx<2|%|Ay|,

m,—1 1
(v) 20ty |, 2 € Gy,
> he, (z)| <
ay s (2)] {o, ¢ A,

We put
Mo k
Q(.%’) = ZQV(x) = Z akhnka
v=1 k:k0+1
where

ap = a/](gl/)7k S [mlj—lvmll)u 1 S v S MO(muo - 1)7

Ho Ho
FE = U E, andG = U Go.

v=1 v=1

From this and (24) we obtain

€>ap > agy1 >0, ke (ko k),

1 Vo 1
/0 IQ(x)!dxﬁ;I%HAylﬂ/o f(@)| de

1
B> 16l G 1= [ 5@ ds
0

Taking relations (15),(23)-(25) for all € G we have

k po m,—1
S il @) =5 Y by ()] < —2 SO

hmhg 1 =1 ke S 1f ()] da

Lemma 2.2 is proved.

(25)

(26)
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Proof (of Theorem 1.1): Let e € (0,1)and let

{i fa(@)}nZe, 2z €[0,1) (27)

be a sequence of Haar polynomials with rational coefficients.
Applying Lemma 2.2 consecutively, we can find a sequences {G,}, {E,} of sets
and a sequence of polynomials in the Haar system of the form

Qn(x) = Z as,hs, (x), n>1, m, 7, (as >0, sg ), (28)

SKE[Mp_1,my)

which satisfy the conditions:

Qn(@)= fulz), z € Enn=>1 (29)
|Ep| > 1 —¢-47800F2) (30)

1 1
[ 1@u@lds <2 [ 15w da. (31)

0 0

1
-~ > ag, > s, > as, >0, Vn>1, Vs, 5041 € [my_1,my — 1). (32)
4

> aglhs(2)] < M,Vm € Gpn>1 (33)

sk €1 my) Vo 1 fol@)| da

1
|Gp| > 1— / | fr(x)|dz,n > 1. (34)

0

We put
a; = ask,Vi € [Sk,8k+1),Vk > 1. (35)
and
E=()En (36)
n=1

It is clear (see (30),(34))

’E‘ >1—e,ai\0(ai>0)
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Let f(x) € L'(0,1). It is not hard to see that one can find a subsequence
{fne ()} from sequence (27) such that

1| N
Jim_ i ;fnk(x) — f(z)|dx = 0. (37)
]\}ganfnk (x) = f(x).a.e.on|0,1]. (38)
k=1
and
1
£ . 4-Ak43) < / o (2) do < - 474042 > 9. (39)
0
. o)
Let
By = {x C [0,1]; | fo, (z)] dz < 4—3<’f+2>} k> (40)

From this and (39) we have

10,1)\ By| - 47342 < / (@) do <4740 >0
[0,1)\Bx
Then
|Bi| > 1 —e- 4= k42, (41)
We put
= U ﬂ Br N Ghy,). (42)

From (31), (34), (39), (41) and (42) we obtain

1] o0
k=1

d:r§2§:/1]fnk(x)\d:r<oo (43)
k=10

1B| = 1.
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Let the function f(z) and the series Z dia;pi(x) be defined as follows:

i=1

f(x) = Zan (z) = Z Z as; hs, ().
k=1

k=1 Sje[mﬂrkfl 7mnk)

Zéiaihi(l‘) = Z Z as, hs, ().
i=1

k=1 S;j E[mnk —1 7m’"k)
where

5 — 1, for i=s;, where s; € U [mp,—1,Mn,) -
! 0, otherwise .

From this and (29), (31), (36), (39), (43)-(45) we have

flz) e L'(0,1); f(z) = f(z), z € B,

1 mnkfl
klggo ; ; diahi(x) — f(x)|dz =0

and therefore

dia; = /1 f(@)hi(x)dz,i > 1
0

Let € B . Then for some kg (see (42)) we have x C By NGy, Vk > ko.

From (39), (40) we obtain

4
Z asj |h,5j (.’13)| S - ’fnk (.7))‘
8 €[Mn, —1,mn,) fo | fri ()] d
4.273(k+2)

139

(44)

(45)

Further, from (44), (45), and (43) it follows that the series (45) absolutely (un-

conditionally) converges almost everywhere on [0, 1] to f(ac)

i.e.

> diailhi(z) =) > as, |hs,(z)| < 00,z € B.
=1

k=1s;€[mn, —1,mn,)
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N

A}i_r)noo ; diaihi(x) = f(l‘)

Theorem 1.1 is proved.
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