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In this paper we study some generalization of Rubio de Francia’s theorem in variable exponent
Lebesgue spaces.
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1. Main result

The Lebesgue spaces Lp(')([R”) with variable exponent and the corresponding vari-
able Sobolev spaces W*P()(R") are of interest for their applications to modeling
problems in physics, and to the study of variational integrals and partial differential
equations with non-standard growth condition (see [4], [3]).

Given a measurable function p : R® — [1,00), LP)(R™) denotes the set of
measurable functions f on R™ such that for some A > 0

ACT

This set becomes a Banach function space when equipped with the norm

p(z)
Hpr(.)—inf{)\>0: /n <|f()\$)‘> dxgl}.

Let B(x,r) denote the open ball in R™ of radius r and center x. By |B(z, )|
we denote n—dimensional Lebesgue measure of B(x,r). The Hardy-Littlewood
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maximal operator M is defined on the locally integrable function f on R™ by the
formula

Mf(x) = su / )|d
f() 7'>18‘er| xr ‘y

Define the spherical maximal operator M, by

/ [z —ty)dui(y)
{yeRm:|y|=1}

where u; denotes the normalized surface measure on the sphere of center 0 and
radius ¢ in R™. The Hardy-Littlewood maximal operator M, which involves averag-
ing over balls, is clearly related to the spherical maximal operator, which averages
over spheres. Indeed, by using polar coordinates, one easily verifies the pointwise
inequality M f(z) < Mf(x) for any (continuous) function.

Given a multiplier m € L°°(R™), we define the operators My, t > 0 by
(MO = F(©Om(te) and the maximal multiplier operator My, f(z) =
sup |(M,f)(x)| (which is well defined a priori for the Schwartz function).
>0

M () := sup |p * f(x)] = sup
t>0

t>0

For a > 0, let mq(z) = (1 — |2[2)*1/T(a), where |z| < 1, and mq(z) = 0 if
|z| > 1. With mq ¢ (z) = mqa(z/t)t™", t > 0, we define spherical means of (complex)
order Rea > 0, by

MG f(x) = (ma * [)(x).

Note that the Fourier transform of m,, is given by
Ma(€) = M2 o a(27€)).

The definition of M§* can be extended to the region Reaw < 0 by the analytic
continuation. Indeed for complex « in general we can define the operator M¢ by

(MEFNE) = Ma(tE) F(E), f e CERM).

Define the spherical maximal operator of order a by
M f(x) = sup |[M{ f ()]
t>0

We observe that for « = 0 we have M® f(z) = cM f(x) for appropriate constant
c.

Theorem 1.1 (Rubio de Francia): Ifm(€) is the Fourier transform of a compactly
supported Borel measure and satisfies |m(&)| < (14 [£])~* for some a > 1/2 and
all £ € R™, then the mazimal operator M., maps LP(R™) to itself when p > 2““.

Note that for normalized surface measure of the sphere we have |du1 &) <
C(1 + |£[)~™1/2 and from Theorem Rubio de Francia follows Stein’s theorem
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on boundedness of the spherical maximal operator in LP(R"™) (see [7]). Accord-
ing to Stein’s theorem for the corresponding maximal operator (spherical maximal
operator)

[Mllzerry < Cpll fllLorr)

holds if p > n/(n—1), n > 3, where f is initially taken to be in the class of rapidly
decreasing functions. The two-dimensional version of this result was proved by Bur-
gain [1]. The key feature of the spherical maximal operator is the non-vanishing
Gaussian curvature of the sphere. Indeed, one obtains the same LP bounds if the
sphere is replaced by a piece of any hypersurface in R™ with everywhere non-
vanishing Gaussian curvature (see [2]). More generally, if o is smooth compactly
supported measure in a hypersurface on R™ with k non vanishing principal curva-
tures (k > 1), then |5(¢)] < C(1 + |£])~*/? and from Theorem of Rubio de Francia
follows Greenleaf’s theorem ( see [2], [8]).

Our aim of the paper is to study boundedness properties of the Rubio de Fran-
cia’s maximal multiplier operator M,, in variable Lebesgue spaces. Note that the
boundedness of the spherical maximal operator in variable Lebesgue spaces was
investigated in [5] and [6].

In many applications a crucial step has been to show that the Hardy-Littlewood
maximal operator is bounded on a variable LP space. Note that many classical
operators in harmonic analysis such as singular integrals, commutators and frac-
tional integrals are bounded on the variable Lebesgue space LPC(R™) whenever the
Hardy-Littlewood maximal operator is bounded on LP((R™) (see [3], [4]).

Assume that p_ = essinfycrnp(z) and p; = esssup,cg-p(x). Let B(R™) be the
class of all functions p(-) (1 < p— < py < o) for which the Hardy-Littlewood
maximal operator M is bounded on LP)(R™).

We say that a function p : R™ — (0, 00) is locally log-Hoélder continuous on R™ if
there exists ¢; > 0 such that

1
e+ 1/]z —yl)

Ip(z) —p(y)| < a1 Tog(

for all z,y € R™. We say that p(-) satisfies the log-Holder decay condition if there
exist poo € (0,00) and a constant ca > 0 such that

_ <o
) = poel < 2y (e )

for all z € R™. We say that p(-) is globally log-Holder continuous in R” (p(-) € Plog)
if it is locally log-Ho6lder continuous and satisfies the log-Holder decay condition.

If p: R™ — (1,00) is globally log-Hélder continuous function in R™ and p~ > 1,
then the classical boundedness theorem for the Hardy-Littlewood maximal operator
can be extended to LP() (see(see [3], [4]).

By Byp(R™) (0 < 6 < 1) we denote the class of exponents p(-) such that the
following complex interpolation expansion LP()(R™) = [L?(R™), LP()(R™)]y is valid,
where p(-) € B(R™) (obviously we have p(-) € B(R™)). Note that p(-) € Bg(R") if
and only if %ﬁ;p(.) € B(R™).

Our main results are the following
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Theorem 1.2:  Let m(§) be the Fourier transform of a compactly supported Borel
measure o and |/m(§)] < C(1+ |€])™%, where a > 1/2. If p(-) € By(R™) for some

0<0< 2a2f1_Jr12n, then the maximal operator M,, maps LPC)(R™) to itself.

Theorem 1.3: If m(&) is the Fourier transform of a compactly supported Borel
measure and satisfies Im(§)] < (1 + [£])~* for some a > 1/2 and all § € R". If
p(-) € Piog and

then the maximal operator M., maps Lp(')([R”) to itself.

2. Proofs
Proof (of Theorem 1.2): We set m(&) = gg(f). Obviously m(§) is a C* function.
To study the maximal multiplier operator M,, f(z) we decompose the multiplier

m(§) into radial pieces as follows: we fix a radial C* function ¢g in R"™ such that
©vo(§) =1 when |£] <1 and ¢(§) = 0 when || < 2. For j > 1 we let

©i(€) = po(277¢) — po(2'77¢)

and we observe that ¢; is localized near |¢| ~ 27. Then we have

o0
> wi=1
=0

Set m; = ¢;m for all j > 0. Then m; are C§° functions that satisfy

0o
m = E mj.
=0

Also, the following estimate is valid:
M f <> M;f
=0

where

M;f(@) = sup |F~ (F(&m;(t)) @)]

t>0

Note that for any j > 0 we have (see [8]) the estimate
[M;fllze < C20/22) £ o (21)

for all f € L*(R").
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Note also that since p(-) € B(R™), we have the estimate

1M; flley < €27 fllp, (2.2)

for any j > 0. The proof of estimate (2.2) is based on the estimate

M;f(a) < CPMWMf(x), (2.3)

where M is a Hardy-Littlewood maximal operator.
To establish (2.3), it suffices to show that for any M > n there is a constant
Cy < 0o such that

C92i(n)

|(F~p)) *do) (z)| < A+ )™

(2.4)

Using the fact that ¢ is a Schwartz function, we have for every N > 0,

“(py) xdo) (x " doty)
[(F () ¥ do) ()] < On2 /R 1+ 2z —y|)¥

Let N > M. We split the last integral into the regions

S_1(z) = s {y e R™: 2j]a: —y| <1}
and for k > 0,

Sp(z) =8"1n{yeR": 2% < 2|z —y| < 281}

We obtain the following estimate for the expression |(F~(p;) * do) ()|

j .
Cn2 Jdo / CN2”3do(y)
. 2.6
kZ:_l/sk@) +2Jra:—yr > s L+ 2]z —y) ¥ (2:6)

k=j+1

00
/ XB(O 3)( ) 1 O-(Sk(x))xs(o:zkﬂfj.*.n(aj)
< Cy2v Z 2kN +COn2Y Z okN

k=-1 k=j+1

=141

Using the fact that for y € Si(x) we have |z| < 287177 + 1, we obtain the following
estimate

| ) |
T<Cy2 Yy T Y < one™iy, (@), (2.7)

On the other hand
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o
11 < C§V2nj Z CQ_kNXB(oa’CH—-fH)(x) (28)
k=j+1
00 k—j+2\M
ey (L 2F7012)
< C],V D) kN(—
3 (™

o 9(k—i)(M—N)

/
< Cu Z 9k(N+1—-n)
k=j+1

Cy2
— ()M
where we used that N > M > n. From (2.5)-(2.8) we obtain (2.4) and consequently

(2.3).
From (2.1)-(2.2) we obtain

Ml o) oty < Cl|M; ||L2—>L2 Ml 5o s = 9(1/2=a)(1=0)j9j(n) (2.9)
Using the last estimate we obtain if 0 < 6 < m, then
o0
[Momllpey =D 20270003230 £y <1 f (-
§=0
(Il

To prove Theorem 1.3 we need the following lemma.
Lemma 2.1:  Suppose a > 1/2 and for exponent p : R™ — (1, +00) we have

2n+ 2o —1 2n+2a—1

<p_ < <

n+2a—1 b= =P+
Then there exists exponent p : R™ — (1,400) such that 1 < p_ < py < oo and
L= 1%9 + %' x € R™ for some 6 with property 0 < 6 < QHQJ‘F"Q_O}A.

p(z)
Proof: Note that

2n+2a—1 2n+2a—1
< <2< —
n—+2a—1 n

We have
1 n+2a—1

n 1
—— < inf — < < .
2n+2a—1 xenR” p(x) _f;l%p(:c) 2n+2a -1

Let ﬁ = 1 + r(z). By the assumption we have

n 1 n+2a—1 1
2 < inf r(z) < <t 2.10
mtoa—1 2 <.l @ s sl <ome T =5 (2.10)
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It is easy to see that the equation

_ b 2.11
W@ 2 24y
is equivalent to
1 r(x) 1
1 - 2.12
2770 bla) @12
Using (2.9) we may take small 6 > 0 such that
n 1 n+2a—1 1
——— — — 4§ < inf < —— — — .
ont2a_1 o 0< @ —5;15’"(@ Smt2a-1 2
Then for 4, 0 < 0 < ggj, where 0 = 0 < ggj — 0y, 6y > 0 we have
1 +20—1 _ 1
2n+§zj —3+9 < inf r(x) < sup r(z) < 271+§éj —3—90
stzars — 0o wR 0 Taere 0 Ttzart — 00
2a—1 2a—1
_1 2";22:1;1 —-29 < inf T(.T) g sup T<$) < 1271;;2_0,;1 B 2(5
2 gpza1 — 00 @R 0 Taern 0 255509 — 6
If we take 6y < 26 we obtain
1 ) (z) r(x) 1
—— < inf —= < < = 2.13
2 = sern =R Te T2 (2.13)
From (2.11) and (2.12) we get
1 1
0< inf —— < sup =—— < 1.
zeR" p(x) ~ zern P(T)
Consequently we have 1 < p_ < py < oo. O
Proof (Proof of Theorem 1.3):
As by the assumption
n+2a—-1 <2n+2a—1
(n+ 20 —1)p_ (n)p+
we can find 6 such that
2n + 2o —1 . 2n +2a —1
<f<min|1l,— ).
(n+20—T)p (s
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It is clear, that

2n—|—2a—1<9 <0 <2n—|—2a—1
(n+2a—1) > P-S7P+ n)

As we have that if p(-) € Piog then Op(-) € Piog and by Theorem 1.2 we get that the
operator M,, is bounded in LP()(R™). Using the fact that [L>°(R"), LPO(R™)]y =
LPO(R™), (0 < § < 1) and the operator M,, is bounded in L>(R™) and LP()(R™)
we obtain that the operator M,, is bounded in LP()(R™). O
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