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Summation of Walsh-Fourier Series, Convergence and Divergence
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In this paper the author gives a short rèsume of the recent achievements with respect to
the convergence and divergence of some summation methods of the one and two dimensional
Walsh Fourier series. The discussion of Fejér, Cèsaro and Riesz’s logarithmic means are in-
cluded. One of the most celebrated results of Levan Zhizhiashvili is the almost everywhere
convergence of the Marcinkiewicz means of the trigonometric series of two variable integrable
functions. We discuss a recent generalization of the result of Zhizhiashvili with respect to the
Walsh system.
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1. Introduction

Let the numbers n ∈ N and x ∈ I := [0, 1) be expanded with respect to the binary
number system:

n =

∞∑
k=0

nk2
k, x =

∞∑
k=0

xk2
−k−1,

where if x is a dyadic rational, that is an element of the set {k/2n : k, n ∈ N}, then
we choose the finite expansion. Let (ωn, n ∈ N) represent the Walsh-Paley system.
That is, the n-th Walsh-Paley function is

ωn(x) :=

∞∏
k=0

(−1)nkxk .

The n-th Walsh-Fourier coefficient of the integrable function f ∈ L1(I) is

f̂(n) :=

∫
I
f(x)ωn(x)dx.

The n-th partial sum of the Walsh-Fourier series of the integrable function f ∈
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L1(I):

Snf(y) :=

n−1∑
k=0

f̂(k)ωk(y).

The n-th Fejér or (C, 1) mean of the function f is

σnf :=
1

n

n∑
k=1

Skf.

2. Results - one dimension

In 1955 Fine proved [4] for the Walsh-Paley system the wellknown Fejér-Lebesgue
theorem. Namely, for every integrable function f we have the a.e. relation

σnf → f.

Let us have a look at the situation with the (C,α) means. What are they? Let

Aα
n := (1+α)...(n+α)

n! , where n ∈ N and α ∈ R (−α /∈ N). It is known, that Aα
n ∼ nα.

The n-th (C,α) mean of the function f ∈ L1(I):

σα
n+1f :=

1

Aα
n

n∑
k=0

Aα−1
n−kSkf.

In 1975 Schipp proved [25], that σα
nf → f a.e. for each f ∈ L1(I) and α > 0.

What can be said in the case of the Walsh-Kaczmarz system? What is this Walsh-
Kaczmarz system? This is nothing else, but a rearrangement of the Walsh-Paley
system. Introduce it as follows. If n > 0, then let |n| := max(j ∈ N : nj ̸= 0). The
n-th Walsh-Kaczmarz function is

κn(x) := r|n|(x)(−1)
∑|n|−1

k=0 nkx|n|−1−k ,

as if n > 0, κ0(x) := 1, x ∈ I. Then the elements of the a Walsh-Kaczmarz system
and the Walsh-Paley system are dyadic blockwise rearrangements of each other.
This means that

{κn : 2k ≤ n < 2k+1} = {ωn : 2k ≤ n < 2k+1}.

In 1998 Gát proved [6] the Fejér-Lebesgue theorem for the Walsh-Kaczmarz system.
That is, σnf → f a.e. for each f ∈ L1(I). In 2004 Simon [27] generalized the
result of Gát above for (C,α) summation methods. In other words, the maximal
convergence space of the (C,α) means is the L1 Lebesgue space, that is, the largest
one.
It is also of prior interest what can be said - with respect to this reconstruction

issue (that is, the reconstruction of the function from the partial sums of its Fourier
series)- if we have only a subsequence of the partial sums. In 1936 Zalcwasser [34]
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asked how ”rare” can be the sequence of integers a(n) such that

1

N

N∑
n=1

Sa(n)f → f. (1)

This problem with respect to the trigonometric system was completely solved for
continuous functions (uniform convergence) in [1, 3, 24, 29]. That is, if the sequence
a is convex, then the condition supn n

−1/2 log a(n) < +∞ is necessary and sufficient
for the uniform convergence for every continuous function. For the time being, this
issue with respect to the Walsh-Paley system has not been solved. Only a sufficient
condition is known, which is the same as in the trigonometric case. The paper about
this is written by Glukhov [16]. See the more dimensional case also by Glukhov
[17].
With respect to convergence almost everywhere, and integrable functions the

situation is more complicated. Belinsky proved [2] for the trigonometric system
the existence of a sequence a(n) ∼ exp( 3

√
k) such that the relation (1) holds a.e.

for every integrable function. In this paper Belinsky also conjectured that if the
sequence a is convex, then the condition supn n

−1/2 log a(n) < +∞ is necessary and
sufficient again. So, that would be the answer for the problem of Zalcwasser [34]
in this point of view (trigonometric system, a.e. convergence and L1 functions).
Gát proved [9] that this is not the case for the Walsh-Paley system. See below
Theorem 2.1. On the other hand, differences between the Walsh-Paley and the
trigonometric system are not so surprising. For example Totik [28] proved for the
trigonometric system that for any subsequence a(n) of the natural numbers there
exists an integrable function f such that supn |Sa(n)f | = ∞ everywhere. On the

other hand, let v(n) :=
∑∞

i=0 |ni − ni+1|, (n =
∑∞

i=0 ni2
i) be the variation of the

natural number n expanded in the number system based 2. It is a well-known result
in the literature that for each sequence a tending strictly monotone increasing to
plus infinity with the property supn v(a(n)) < +∞ we have the a.e. convergence
Sa(n)f → f for all integrable functions f . Is it also a necessary condition? This
question of Balashov was answered by Konyagin [18] in the negative. He gave an
example. That is, a sequence a with property supn v(a(n)) = +∞ and he proved
that Sa(n)f → f a.e. for every integrable function f .
In [9] the author of the present paper proved (see Theorem 2.1) that for each

lacunary sequence a (that is a(n+1)/a(n) ≥ q > 1) and each integrable function f
the relation (1) holds a.e. This may also be interesting from the following point of
view. If the sequence a is lacunary, then the a.e. relation Sa(n)f → f holds for all
functions f in the Hardy space H. The trigonometric and the Walsh-Paley case can
be found in [36] (trigonometric case) and [19] (Walsh-Paley case). But, the space
H is a proper subspace of L1. Therefore, it is of interest to investigate relation (1)
for L1 functions and lacunary sequence a.
In paper [9] it is also proved (Theorem 2.2) that for any convex sequence a

(with a(+∞) = +∞ - of course) and for each integrable function the Riesz’s loga-
rithmic means of the function converges to the function almost everywhere. That
is, the Riesz’s logarithmic summability method can reconstruct the correspond-
ing integrable function from any (convex) subsequence of the partial sums in the
Walsh-Paley situation. For the time being there is no result known with respect to
a.e. convergence of logarithmic means of subsequences of partial sums, neither in
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the trigonometric nor in the Walsh-Kaczmarz case.

Theorem 2.1 : Let a : N → N be a sequence with property a(n+1)
a(n) ≥ q > 1 (n ∈

N). Then for all integrable functions f ∈ L1(I) we have the a.e. relation

1

N

N∑
n=1

Sa(n)f → f.

Theorem 2.2 : Let a : N → N be a convex sequence with property a(+∞) = +∞.
Then for each integrable function f we have the a.e. relation

1

logN

N∑
n=1

Sa(n)f

n
→ f.

3. Results - two dimension

What can be said in the two dimensional situation? This is quite a different story.
Define the two-dimensional Walsh-Paley functions in the following way:

ωn(x) := ωn1
(x1)ωn2

(x2),

where n = (n1, n2) ∈ N2, x = (x1, x2) ∈ I2. Let f be an integrable function. The
Fourier coefficients, the rectangular partial sums of its Fourier series:

f̂(n) :=

∫
I2

f(x)ωn(x)dx,

Sn1,n2
f :=

n1−1∑
k1=0

n2−1∑
k2=0

f̂(k1, k2)ωk1,k2
.

Moreover, the two-dimensional Fejér or (C, 1) means of the function f ∈ L1(I2):

σn1,n2
f :=

1

n1n2

n1∑
k1=1

n2∑
k2=1

Sk1,k2
f (n ∈ P2).

In 1931 Marczinkiewicz and Zygmund proved for the two-dimensional trigono-
metric system [21], and in 1992 Móricz, Schipp and Wade verified [22] for the
two-dimensional Walsh-Paley system, that for every f ∈ L log+ L(I2)

σn1,n2
f → f

a.e. as min{n1, n2} → ∞, that is, in the Pringsheim sense.
Since L log+ L(I2) & L1(I2), then it would be interesting to ”enlarge” the con-

vergence space, if possible. In 2000 Gát proved [7], that it is impossible. That is,
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for each measurable function δ : [0,+∞) → [0,+∞), δ(∞) = 0, (that is vanishing
at plus infinity) there exists a function

f ∈ L log+ Lδ(L) such that σn1,n2
f ̸→ f

a.e. (in the Pringsheim sense).
However, what ”positive” can be said about the function of the class L1(I2) in

spite of the fact that the two-dimensional Fejér means are not convergent a.e. in
the Pringsheim sense? That could be the so called restricted convergence. For the
two-dimensional trigonometric system Marcinkiewicz and Zygmund proved [20] in
1939, that

σn1,n2
f → f

a.e. for every f ∈ L1(I2) as if min{n1, n2} → ∞, provided that

2−α ≤ n1

n2
≤ 2α

for some α ≥ 0. In other words, the set of admissible indices (n1, n2) remains in
some cone. This theorem for the two-dimensional Walsh-Paley system was verified
by Móricz, Schipp and Wade in 1992 in the case when n1, n2 both are powers of
two.

σ2n1 ,2n2f → f

a.e. for every f ∈ L1(I2) as if min{n1, n2} → ∞, provided that |n1 − n2| ≤ α for
some α ≥ 0.
The proof of the Marcinkiewicz-Zygmund theorem [20] (with respect to the

Walsh-Paley system) for arbitrary set of indices remaining in some cone is due
to Gát and Weisz [5, 30], separately in 1996.
It is an interesting question whether it is possible to weaken somehow the ”cone

restriction” in a way that a.e. convergence remains for each function in L1. Maybe
for some ”interim space” if not for space L1. The answer is negative both from the
point of view of space and from the point of view of restriction. Namely, in 2001
Gát proved [8] the theorem below:
Let δ : [0,+∞) → [0,+∞) be measurable, δ(+∞) = 0 and let w : N → [1,+∞)

be an arbitrary increasing function such that

sup
x∈N

w(x) = +∞.

Moreover, ∨n := max(n1, n2), ∧n := min(n1, n2). Then, there exists a function
f ∈ L log+ Lδ(L) such that

σn1,n2
f ̸→ f

a.e. as ∧n → ∞ such that the restriction condition ∨n
∧n ≤ w(∧n) is also fulfilled.

That is, there is no ”interim” space. Either we have space L log+ L and ”no restric-
tion at all”, or the ”cone restriction” and then the maximal convergence space is
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L1. As a consequence of this we have

σn1,n2
f → f

a.e. for each f ∈ L(I2) as min{n1, n2} → ∞, provided that

∨n
∧n

≤ w(∧n)

if and only if

supw(x) < ∞.

Another question. What is the situation with the (C,α) summation of 2-
dimensional Walsh-Fourier series?

σα
n1+1,n2+1f =

1

Aα
n1
Aα

n2

n1∑
k1=0

n2∑
k2=0

Aα−1
n1−k1

Aα−1
n2−k2

Sk1,k2
f.

In 1999 Weisz proved [31], that

σα
n1,n2

f → f

a.e. as min{n1, n2} → ∞ for each f ∈ L log+ L(I2) and α > 0.
The question is the same again. That is, is it possible to give a ”larger” conver-

gence space for the (C,α) summability method (α > 0)? Is there such an α? If
α ≤ 1, then there is not. Because for the (C, 1) method one can not give such a
”larger” space.
On the other hand, what is the situation with the (C,α) methods, for α > 1?
What can be said in the case of the Walsh-Kaczmarz system? In 2001 Simon

proved [26], that σn1,n2
f → f a.e. as if min{n1, n2} → ∞ (in the Pringsheim

sense) for every f ∈ L log+ L(I2). He also proved the restricted ”cone” conver-
gence for functions belonging to L1(I2). The divergence result with respect to the
two-dimensional Walsh-Kaczmarz-Fejér means, that is, the fact that the maximal
convergence space for the Pringsheim sense a.e. convergence is the space L log+ L is
due to Getsadze [12]. Although, it is an open question the case of (C,α) summation
with respect to the Kaczmarz system.

4. The Marcinkiewicz means - generalization of the result of Zhizhiashvili

This is another story and also very interesting to discuss the almost everywhere
convergence of the Marcinkiewicz means 1

n

∑n−1
j=0 Sj,jf of integrable functions with

respect to orthonormal systems. Although, this mean is defined for two-variable
functions, in the view of almost everywhere convergence there are similarities with
the one-dimensional case. On the one side, the maximal convergence space for two
dimensional Fejér means (no restriction on the set of indices other than they have to
converge to +∞) is L log+ L ([7, 10]), and on the other side, for the Marcinkiewicz
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means we have a.e. convergence for every integrable functions (for the trigonomet-
ric, Walsh Paley systems).
We mention that the first result is due to Marcinkiewicz [21]. But he proved

”only” for functions in the space L log+ L the a.e. relation tnf → f with respect to
the trigonometric system. The ”L1 result” for the trigonometric, Walsh-Paley, and
the so called Walsh-Kaczmarz systems see the papers of Zhizhiasvili [35] (trigono-
metric system), Weisz [33] (Walsh system), Goginava [13, 14] (Walsh system) and
Nagy [23] (Walsh-Kaczmarz system).
After then, we turn our attention to the generalization of Marcinkiewicz means.

Let α = (α1, α2) : N
2 → N2 be a function. Define the following Marcinkiewicz-like

means:

tαn(x) :=
1

n

n−1∑
k=0

Sα1(|n|,k),α2(|n|,k)f(x
1, x2), (f ∈ L1(I2), n ∈ P).

The following properties will play a prominent role in the a.e. convergence of these
generalized means. (#B denotes the cardinality of set B.) Roughly speaking they
will be necessary and sufficient conditions.

# {l ∈ N : αj(|n|, l) = αj(|n|, k), l < n} ≤ C (k < n, n ∈ P, j = 1, 2) (2)

max {αj(|n|, k) : k < n} ≤ Cn (n ∈ P, j = 1, 2). (3)

More precisely, we proved in [11] the ,,theorem of convergence”:

Theorem 4.1 : Let α satisfy (2) and (3). Then we have tαnf → f for each f ∈
L1(I2).

Condition (2) is clearly a necessary one in the following sense. Let α1(|n|, k) = 0,
α2(|n|, k) = k for every n, k ∈ N. Then (3) is satisfied and (2) is not. It is very
simple to give a function f ∈ L1(I2) such as tαnf → f fails to hold a.e. To construct
an α with (2) which fails to satisfy (3) and a f ∈ L1(I2) such that tαnf does not
converge to f a.e. is more complicated.
The ”theorem of divergence” aims to show that (3) is also a necessary condition

in a certain sense. That is, we proved [11]:

Theorem 4.2 : Let γ : N → N be any function with property γ(+∞) = +∞.
Then there exists a function α satisfying (2),

max {α1(|n|, k) : k < n} ≤ Cn, max {α2(|n|, k) : k < n} ≤ Cnγ(n) (n ∈ P)

and f ∈ L1(I2) such that lim supn∈N |tαnf | = +∞ almost everywhere.

Of course it would have been possible to write the conditions as α1(n) ≤ Cnγ(n)
and α2(n) ≤ Cn. We gave in [11] a corollary of Theorem 4.1.

Corollary 4.3: Let (an) be a lacunary sequence of reals, i.e. an+1 ≥ anq for some
q > 1 (n ∈ N) and α satisfy condition (2) and αj(n, k) ≤ Can (k < an, j = 1, 2)
(modified version of condition (3)). Then for every integrable function f ∈ L1(I2)
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we have

1

an

an−1∑
k=0

Sα1(n,k),α2(n,k)f(x) → f(x)

for a.e. x ∈ I2.

The triangular partial sums of the two-dimensional Walsh-Fourier series are de-
fined as

S△
k f(x, y) :=

k−1∑
i=0

k−i−1∑
j=0

f̂(i, j)ωi(x)ωj(y).

Denote by

D△
k (x, y) :=

k−1∑
i=0

k−i−1∑
j=0

ωi(x)ωj(y)

the n-th triangular Walsh-Dirichlet kernel. For n ∈ P and an integrable function f
the triangular Fejér means of order n of the two-dimensional Walsh–Fourier series
of a function f is given by

σ△
n f(x, y) :=

1

n

n−1∑
j=0

S△
j f(x, y).

It is easy to show that

σ△
n f(x, y) =

∫
I2

f(s, t)K△
n (x+ s, y + t)dµ(s, t),

where

K△
n (x, y) :=

1

n

n−1∑
j=0

D△
j (x, y).

This triangular summability method is rarely investigated in the literature (see

the references in [32]). In [15] it is proved that the maximal operator σ△
#f :=

supn

∣∣∣σ△
2nf

∣∣∣ of the Fejér means of the triangular partial sums of the double Walsh-

Fourier series is bounded from the dyadic Hardy space Hp(I
2) to the Lp(I

2) if
p > 1/2, is bounded from H1/2(I

2) to the space weak- L1/2(I
2) and it is not

bounded from H1/2(I
2) to L1/2(I

2). As a consequence of these assumptions it

is proved in [15] the a.e. convergence σ△
2nf → f for each integrable function f .

We remark that Corollary 4.1. immediately gives the generalization of this result.
Namely,

σ△
a(n)f → f
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for every lacunary sequence a(n) and integrable function f .
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