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On the Generalized Cesaro Means of Trigonometric Fourier Series
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The behavior of generelized Cesdro (C,ap)-means (an, € (—1,d),d > 0) of trigonometric
Fourier series of H¥ classes in the space of continuous functions is studied. The unimprove-
ment of the obtained results is given.

In 1953 Nash [20] introduced the class of functions @. In this paper the behaviour of general-
ized Cesaro (C,a,)-means (a, € (—1,0)) of trigonometric Fourier series of H¥ N & classes
in the space of continuous functions is investigated. The sharpness of the results obtained is
formulated.

Furthermore, analog of theorem (2.9) for the multiple case is given.
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1. Introduction

Let f be a 2m-periodic Lebesgue integrable function and
K s
1 1
a; = — /f(az) cosizdr and b; = — / f(x)sinizdz
T 0
—Tr —Tr

be its Fourier coefficients. Also let
a n
0 . ..
Sn(z, f) = e + E l(ai cosix + b; sinix) (1.1)
1=

be partial sums of the Fourier series of fwith respect to the trigonometric system.
Let C([0,27]) denotes the space of 2m-periodic continuous functions with the norm
||f‘|C([0,27r]) ‘= MAaZgel0,2n]- If fEC[Oa 27T] then

w(0, f) = max{[f(x1) = f(z2)] : 21— 22| <6, 21,22 €0,2n]}

is called the modulus of continuity of f.
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If a modulus of continuity w (see [1]) is given then H“ denotes the class of
functions f € C([0,2x]) for which

w(d, f) <w(d), ¢ €]0,2m).

If w(0)=Cp -0, where Cy is a positive constant, then H* = Lipc, 1.
We consider a generalized Cesaro method (see [2]). Let (av,)and (S,,) be sequences

of real numbers, where ., > —1, n = 1,2, .... Suppose
n
oo = Z A% LS, J A% (1.2)
v=0
where

A% = (o + 1) (0in + 2)..-(0m + k) /K1

If (cv,) is a constant sequence (o, = o, n = 1,2, ...) then o5~ coincides with the
usual Cesaro of-means ([3], Ch.III). If in (1.2) instead of S, we substitute S, (x, f)
(see (1.1)) then the corresponding means o~ are denoted by o8~ (zx, f).

Many authors have considered the convergence behaviour of o¢(z, f) for func-
tions from various classes (Fejér [4], Riesz [5], Zygmund [6], Natanson [7], Izumi [8],
Sato ([9],[10]), Taberski [11], Stechkin [12], Zamansky [13], Efimov [14], Uljanoff
[15], Zhzhiashvili [16], Totik ([17],[18])).

It is well-known (cf. [19] and [3] (Ch. III, Theorem (1.2)) that a summation
method defined by a matrix (a;;) (4,7 =0, 1, ...) is regular if and only if

1. lim a,, =0, v=0,1, ...,

n—oo
2. Ny = |ano| + lani] + - - -+ + |apn] + - - - is abounded sequence,
3. lim any, =0, where A, = apo+ ap1 + - -+ + apn + - - -

n—oo

In particular, the (C, «)-summation method is regular if and only if o > 0 (see [3],
Ch. ITI, Theorem (1.21)).
In 1953 Nash [20] introduced the class of functions @.
Definition 1.1: Let @ be a positive sequence with lim ®(n) = +o00. We say that
n—oo

a function f € C([0,2x]) belongs to the class @ (f € @) if for every real number
a, b (|b — a|] < 27) and uniformly in =

b
1
/f(:L' +t) cosntdt| < )
Nash [20] established the fact that if f € C([0,27]) N & and

lim &(n)/n = +o0

n—oo
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then f = 0. Therefore, it is natural to assume that ®(n) = O(n).

Furthermore, Nash [20] proved the theorem from which various tests for uniform
convergence of Fourier series turn out.

Later Sato [21] (see, also, [22], pp.299-302) gave more precise result and she
established analogous of her early statement for Cesiro summability method of
negative order. In [23] we investigated Satd’s [24] results for Fourier series and for
its conjugate series; studied analagous problems for Cesdro summability method
as well

Theorem 1.2: (cf. [23]). Let f € C([0,27]) N @ and 0 < o < 1. Then there
exists a positive constant c(f) such that

low® o ) = FO)l o < ef) [ (1/n, ) (q@) - /w(;f) »

w/n

The second term on the right side of the last estimation can be omitted (cf. [25]),
i.e. under the conditions of the last theorem the following estimation is valid

oo ) = FOllogosn < o(Fle*(1/n, f) (an)> |

In [25] the unimprovement of this statement is proved.
2. Formulation of the results

Theorem 2.1: Let (o) be any sequence on the interval (—1,d], where d is a real
number (d € R). The summation method defined by (1.2) is a regular method if
and only if

lim inf(ay, Inn) > —oo.
n—oo

Corollary 2.2: If () is any sequence with o, > —C'/Inn, where C' is a positive
constant, then (C, ay) is a reqular method.

Theorem 2.3: If f € HY and o, € (0,1], n = 3,4, ..., then

™

oz (1) = £Olle < Cmax § = Lum), 22 [ <Dt
w/n

where C is an absolute constant.

Corollary 2.4: Let f € HY . Then

lloom (-, f) = f()lle < Cw(l/n)lnn, n=34....
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Corollary 2.5: If f € HY and 0<d < an <1, n=1,2,..., where§ is a
constant, then

low (- f) = fFO)lle < €0, w)w(l/n) In (1/w(1/n)).

Theorem 2.6: Let w be a modulus of continuity and oy, € (0,1], then

sup limsup(||on” (-, f) — f(:)l|lc/dn) > 0
fEH» n—o0

where

™

d,, = max ”a"nan (1/n), n/ w(t) gy

o t2
w/n

Theorem 2.7: Suppose f € H" and for all naturaln 1 < ay, < d (d is a positive
constant). Then

o ) = £) /ﬂ
m/n

It is well-known that in the case where «,, = 1, for all natural n, the correctness
of the last estimation was established by Natanson [7] (see also [15]).

Theorem 2.8: There exists a function f € H™ such that for every sequence
(o) (an € (1,d], n=1,2,..., d>1) and for all natural n

oz () = 10lle > £ [

w/n

where C is a positive constant.
Some of these results were announced in [26] without proof.

Theorem 2.9: Let (a,) be any sequence on the interval (0,1), n =3, 4,...,and
f € HY then

n% —1

o™ (20 = JOlle < Cosl(ifn) == .

(2.1)

For the class of functions Lipc,1 in the case liminfa,, > 0 we can get more
n—oo

precise estimation than the last one is.

Theorem 2.10: If for all natural n oy, € (0,1) and liminfay, > 0. Then for every
n—oo

function f € Lipc,1 there exists a positive infinitesimal sequence (ey,), such that
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En
(1 — ap)nt-on’

o (5 f) = FOlle <

The estimations in theorems 2.9 and 2.10 are senseless if there exist a number
£0(0 < g9 < 1) and a sequence of natural numbers (my) such that

Inlnm
m, > 1 — €0 Fok=1,2,
In my,
Indeed,
mz‘évnk ln mk 1—50 lxiinrrtnk
. m k
1—am, — elnlnm k
My 0 k
_ Inmy mp B (Inmy )= - my,
~ golnlnmy  (elrlmi)®™ oo Inlnmy
Therefore, it is natural to assume
Inlnn
O<a,<1-— , n=3,4,...
Inn

Corollary 2.11: Let f € H¥ and there exists a positive constant C' such that
0<a,<C/Ilnn, n=3,4,..,, ap € (0,1), then

o (. f) = fO)lle < Cow(l/n)Inn.
In particular, if Dini-Lipschitz condition
w(l/n) =o(1/Inn), n — oo,
is fulfilled then

o (. f) = fO)lle =0(1), n — cc.

Therefore, Dini-Lipschitz condition is enough not only for the uniform conver-
gence of the corresponding Fourier series, but it ensures the uniform convergence
of o, *-means for some negative sequence (a,).

Corollary 2.12: If f € H¥and 61/Inn < a,, < 62 < 1, n = 3,4,..., where
01 and d2 are positive constants, then

Qp

o7 (- f) = FOlle < Culbr,62)w(1/m) >

, n=3,4,...

n

Corollary 2.13: Let f € H¥, H“ # Lipc,1 (for any positive constant
Co) and 0 < 61 < ap, < 0y < 1, n = 3,4,..., where 01 and 3 are constants.
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Then

o f) = FO)lle < Cul81,62)w(1/n)n®

The last corollary, for the constant sequence (ay,), implies the well-known
Zygmund [27] statement.
Corollary 2.14: Let f € Lipc,1 and 0 < 01 < oy, < 92 < 1, n = 3,4, ..., where
01 and do are constants. Then

oz (. ) = fOlle = o(n* 1), n — oo

From the Corollary 2.14 it follows our [28] earlier theorem.

Corollary 2.15: If f € HY¥, HY # Lipc,1 (for any positive constant
Co) and0 < < a, < 1, n=3,4, ..., where § is a constant, then

nSn

o (5 ) = FOlle < Cu(9)w(l/n)

1—ay,

Corollary 2.16: Let f € Lipc,1 and 0 < < ap, < 1, n = 3,4, ..., where § is a
constant. Then

o nanfl
o f) = 10l = (1o ) ns o

It is clear that Corollary 2.14 implies directly from Corollary 2.16. Also, from
Corollary 2.12 or from Corollary 2.16 it follows Corollary 2.13.

Formulated results and, in particular, Theorem 2.9 and Theorem 2.10 are the
best possible.

Theorem 2.17: Let o, € (0,1),n € N. If liminfa,, = 0 then
n—oo

oy, (5 f) = FO)lle

sup lim sup —

> 0.
feHvY n—x (]./TL)W

Theorem 2.18: Let (e,) be any positive infinitesimal sequence and 0 < o, <
1, n=12,.... If liminfa,, > 0 then
n—0o0

o f) = FO)lle

nen—1lg,
l—a,,

> 0.

sup limsup
f€Lipc,1 n—oo

Consider the estimations of Corollaries 2.4 and 2.11. They are Dini-Lipschitz
type estimations. It is natural because the following statements are true.
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Theorem 2.19: If —Ci/Inn < ap, < Cy/Inn, n = 2,3,..., ( C1 and Cy are
positive numbers) then o% (-, f) convergence at a point x if and only if Sy(z, f) is
convergent.

Theorem 2.20: If oy, > C/(ep1lnn) where (e,) is a positive null sequence and
C is a positive constant, then there exists a continuous function f for which
a2 (0, f) convergence and Syp(0, f) is a divergent sequence.

Theorem 2.21: If a, < —C/(enlnn) where C is a positive constant, e, > 0

and lim g, = 0. Then there exists a continuous function f such that Sy (0, f)
n—oo

convergence but o~ (0, f) does not.

Remark 1: Using Kolmogorov’s well-known theorem we can conclude that there
exists an integrable 2m-periodic function f generalized o7 (-, f) means (0 < a;, <
C/Inn) of which are divergent at each point.

Theorem 2.22: a) Let (o) be a sequence on the interval (0,1) and f € H* N &.
Then for every sufficiently large natural number n

L N O] (o

b) For every sequence (awy,) of the interval (0,1) and for arbitrary modulus of conti-
nuity w (H* # Lipl) and a positive sequence @ ( lim @(n) = +oo, #(n) = O(n))
n—oo

there are a function fo € HYN @, a sequence (ny) of natural numbers and a positive
constant ¢y , such that

om0 = 0], 2 o (n1k> KW) B 1} |

The case HY = Lip,,1 is studied in [6] (see Theorems 2, 3 and 5).

Corollary 2.23: Under the assumptions of the last theorem we have for a suffi-
ciently large number n :

W) Nozo (1) = 1Olle < G () [(smmiarm)  — 1 #an € O), 0 <
n <1

) llog (- f) = FOllo < St (4) () i an € (11), 0<n <

O Now ()= FO)le < e(@ (#t5) " ane M) 0<n<
v <1

B) oz () = FOllo < eow (1) In goir o lim (gmam) =1

n—oo

3
-2
N—
&
T
Q
3
—
S|=
~—

The proof of Corollary 2.23 is evident.

Corollary 2.24: Let (o) be any sequence on the interval (0,1) and f € H®.
Then for every sufficiently large natural number n (2.1) is correct.
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Proof: It is enough to prove the last statement for function f with | f[, < 1.
Since f € H“ by Lemma 1 of [23] we may enclose that f € &, where ®¢(n) =
¢w/w(1/n). Thus from (2.2) we obtain

o f) = FO)l e < ﬁw <1> [(cw- 1) —1].
Thus

oz () = FO) ¢ € 5w (1) e

an - (1 —ay)
If o, > 1/1In(¢eyn) then for sufficiently large n

1
Ci)/ In(cum)

non > nl/In(con) _ . (Cwn)l/ln(c“’")

I 9
T 1/In(cum) e ]_706'
Cw

Hence in the examined case we obtain the validity of (2.1).
Now let’s examine the case a,, < 1/1In(¢,n). We shall prove that

(cun)® —1<2(n% —1)

1.e.

1

nn

<2—com.

For this purpose we consider the function
flx)=2—-(c,)* =1/n", = >0,

and

Fla) =22 _ () e

nﬁ?

Since f(0) =0 and f’(x) > 0 on the interval (0,1/In(c,n)] for sufficiently large n,
we obtain (2.1). O

Now we shall formulate the analog of Theorem 2.9 for a multiple case. First we
formulate some necessary notations.

Let C([0,27]™) be the space of continuous on 7" = [0, 27]", 27-periodic relative
to each variable functions f with the norm:

I17lle = Ifllogoan = max 1£@).
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Let R™ be an n-dimensional Euclidean space, M = {1,2,...,n} let (n € N, n > 2),
let B be an arbitrary subset of M, and |B| be a number of elements of B.
For any =z = (x1,x2,....,2,) € R" and B C M let xp = (uy,ug,...,u,), where
u; =x;ifi € Band u; =01if i € B’ = M\B. Let B = {s1, s2, ..., -} then

AL (frw, hisy) = o+ hisy) = f(@),

The expression we get by successive application of operations Atst}, . Als} will
be denoted by AP(f,z, hp).
The expression

(“)B((S’f) = sSup ||AB(fa'ahB)||C (51 € (O?ﬂ-])
|hi|§5i;i€B

is called a mixed or a particular modulus of continuity of a function f when |B| €
[2,n] or |B| = 1 respectively. Let wp be mixed or a particular modulus of continuity

(see, for example, [30], Ch. II, 1.1). If 6(B) = {d;,, i,, ..., 6. } then

H(wp,C) = {f :wp(6,f) Swp(6(B)), &, € (0,7], j=1,r};

H(M,C)= () H(ws.C).
BCM

Suppose Sp(z, f) is a rectangular partial trigonometric sums of a function f (see,
for example, [30], Ch. II, 2.1) and

n X -1 m n ;
0% (2, f) = (H Afiff?> ST AS S, £,
i=1 p>0i=1

1 2
where m = {my, ma,....,mn}, Qm = {a&},afﬂl, ...,a,(ﬁZ}, p = {p1,p2,...,pn} and

AL =1+ 1)1 +2)...(1+k)/E.

Notation p > 0 means that p; > 0, i = 1, n.

Theorem 2.25: Let f € H(M,C) and oy, = {a,(ﬁﬁ,a,(ﬁl, ...,(17(772} is a sequence
in R"™, au, € (0;1), i = 1,n. There exists a positive constant (which doesn’t depend
on f and the sequence (o) ) such that

||om<-,f>—f<->|ycgcwZMB( Lo )

) PR
BCM 11 12 (28
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Corollary 2.26: If f € C([0,27]") and for some ig (1 <ip < n)

1 e -
wy; ,f) —_————— — 0, k—)oo,

{io} <l<: a](;(’)(l ~ a,(;“))

and
1 g 1 \"
v ,f):o (=T, i #io)
{3} (k oz,(;)(l ag))

then

Ho'mam( 7f) _f( )HC — 0, m; — oo, (Z :7)
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