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Consider the differential and difference equations

x′(t) +
m∑
i=1

pi(t)x
(
τi(t)

)
= 0 (1)

and

∆u(k) +

m∑
i=1

qi(k)u(σi(k)) = 0, (2)

where pi ∈ C(R+, R+), τi ∈ C(R+, R), τ(t) ≤ t, lim
t→+∞

τi(t) = +∞; ∆u(k) = u(k+1)−u(k),

qi : N → R+, σi : N → N , σi(k) ≤ k − 1 and lim
t→+∞

σi(k) = +∞ i = 1, . . . ,m).

Sufficient oscillation conditions are presented for differential (1) and difference (2) equa-
tions.

1. Differential equations

Consider the differential equation

x′(t) +

m∑
i=1

pi(t)x
(
τi(t)

)
= 0, t ≥ t0, (1.1)

where the functions pi; τi ∈ C([t0,+∞);R+), for every i = 1, 2, . . . ,m (here R+ =
[0,+∞)),

τi(t) ≤ t for t ≥ 0, lim
t→+∞

τi(t) = +∞.
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Let t∗ ∈ [t0,+∞), τ(t) = min{τi(t) : i = 1, . . . ,m} and τ(−1)(t) = sup{s : τ(s) ≤ t}.
Under a solution of the equation we understand u ∈ C([t0,+∞);R) function a
continuously differentiable on [τ(−1)(t∗),+∞) and satisfying (1.1) for t ≥ τ(−1)(t∗).
Such a solution is called oscillatory if it has arbitrary large zeros, and otherwise it
is called nonoscillatory.
In the special case, where m = 1, equation (1.1) is reduced to the equation

x′(t) + p(t)x
(
τ(t)

)
= 0. (1.2)

The first systematic study for the oscillation of all solutions to the equation (1.2)
was made by Myshkis [1]. He proved that any solutions of equation (1.2) oscillate
if

lim sup
t→+∞

(
t− τ(t)

)
< +∞ and lim inf

t→+∞

(
t− τ(t)

)
lim inf
t→+∞

p(t) >
1

e
.

In 1972, Ladas, Lakshmikantan and Papadakis [2] proved that if τ is a non-
decreasing function and

lim sup
t→+∞

∫ t

τ(t)
p(s) ds > 1,

then all solutions of equation (1.2) oscillate.
In 1979, Ladas [3] proved that, if τ(t) = t−∆ and

lim inf
t→+∞

∫ t

t−∆
p(s) ds >

1

e
,

then all solutions of equation (1.2) oscillate, while in 1982, Koplatadze and Chan-
turia [4] established the following

Theorem 1.1 : If

lim inf
t→+∞

∫ t

τ(t)
p(s) ds >

1

e
,

then all solutions of equation (1.2) oscillate and if there exists t0 ≥ 0 such that∫ t

τ(t)
p(s) ds ≤ 1

e
for t ≥ t0,

then equation (1.2) has a non-oscillatory solution.

In 1993, Koplatadze and Kvinikadze [5] proved

Theorem 1.2 : Let for some k ∈ N

lim sup
t→+∞

∫ t

τ(t)
p(s) exp

{∫ τ(t)

τ(s)
p(ξ)ψk(ξ) dξ

}
> 1,
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where ψ1(t) = 0,

ψi(t) = exp

{∫ t

τ(t)
p(ξ)ψi−1(ξ) dξ

}
(i = 1, . . . , k).

Then all solutions of equation (1.2) oscillate.

Corollary 1.3: Let

lim sup
t→+∞

∫ t

τ(t)
p(s) ds > 1− α(p∗).

Then all solutions of equation (1.2) oscillate, where

p∗ = lim inf
t→+∞

∫ t

τ(t)
p(s) ds and α(p∗) =

1− p∗ −
√

1− 2p∗ − p2∗
2

,

0 ≤ p∗ ≤
1

e
.

Corollary 1.4: Let

lim inf
t→+∞

∫ t

τ(t)
p(s) ds >

1

e
.

Then all solutions of equation (1.2) oscillate.

Concerning the constants 1 and 1
e which appear in the above conditions Berezan-

sky and Brawerman [7] established the following

Theorem 1.5 : For any α ∈
(
1
e , 1

)
there exists a nonoscillatory equation

x′(t) + p(t)x(t− τ) = 0,

where τ > 0, p(t) ≥ 0 and

lim sup
t→+∞

∫ t

t−τ
p(s) ds = α.

Also, Brawerman and Karpuz [8] proved that for any k ≥ 0 there exists equation
(1.2) such that

lim sup
t→+∞

∫ t

t−τ
p(s) ds > k,

but equation (1.2) has a non-oscillatory solution.
In 2004, Berikelashvili, Jokhadze and Koplatadze [6] proved
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Theorem 1.6 : Let there exist a function µ ∈ C([t0,+∞), (0,+∞)) such that

1

µ(t)

∫ t

τ(t)
exp

(
µ(s)

)
p(s) ds ≤ 1 for t ≥ t0,

then equation (1.2) has a positive solution. Let there a exist function µ ∈
C(R+; (0,+∞)) such that

lim inf
t→+∞

µ(t) > 0, lim sup
t→+∞

µ(t) < +∞

and

lim inf
t→+∞

1

µ(t)

∫ t

τ(t)
µ(s) p(s) ds >

1

e

then all solutions of equation (1.2) oscillate.

Now consider the differential equation with several delays

x′(t) +

m∑
i=1

pi(t)x
(
τi(t)

)
= 0. (1.3)

In 2000 Koplatadze, Grammatikpoulos and Stavroulakis [9] proved

Theorem 1.7 : If∫ +∞

0

∣∣pi(t)− pj(t)
∣∣dt < +∞, i, j = 1, . . . ,m

and

m∑
i=1

lim inf
t→+∞

∫ t

τi(t)
pi(s) ds >

1

e

then all solutions of equation (1.3) oscillate.

Theorem 1.8 : Let there exist non-decreasing functions σi such that τi(t) ≤
σi(t) ≤ t and

lim sup
t→+∞

m∏
j=1

[ m∏
i=1

∫ t

σi(t)
pi(s) exp

(∫ σi(t)

τi(s)

m∑
i=1

pi(ξ)×

× exp

(∫ ξ

τi(ξ)

m∑
i=1

pi(u)du

)
dξ

)
ds

] 1

m

>
1

mm
.

Then all solutions of equation (1.3) oscillate.
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Theorem 1.9 : Let there exists non-decreasing functions σi such that τi(t) ≤
σi(t) ≤ t (i = 1, . . . ,m) and

lim sup
ε→0+

(
lim sup
t→+∞

m∏
j=1

( m∏
i=1

∫ t

σi(t)
pi(s)×

× exp

(∫ σi(t)

τi(s)

m∑
i=1

(λ∗i − ε)pi(ξ) dξ

)
ds

) 1

m
)
>

1

mm
.

Then all solutions of equation (1.3) oscillate, where λ∗i is the smaller root of the
equation

epiλ = λ,

and

pi = lim inf
t→+∞

∫ t

τi(t)
pi(s) ds.

Corollary 1.10: Let τi be non-decreasing functions and

lim sup
t→+∞

m∏
j=1

( m∏
i=1

∫ t

τj(t)
pi(s)ds

) 1

m

>
1

mm
.

Then all solutions of equation (1.3) oscillate.

Corollary 1.11: Let τi be non-decreasing functions pi(t) ≥ p(t) ≥ 0, i = 1, . . . ,m
and

lim sup
t→+∞

m∏
j=1

∫ t

τj(t)
p(s)ds >

1

mm
.

Then all solutions of equation (1.3) oscillate.

Corollary 1.12: Let pi ≥ p = const and

pm lim sup
t→+∞

m∏
i=1

(
t− τi(t)

)
>

1

mm
.

Then all solutions of equation (1.3) oscillate.

Theorem 1.13 : Let∫ +∞

0

(
1

m

m∑
i=1

pi(t)−
( m∏

i=1

pi(t)
) 1

m

)
dt < +∞
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and

lim inf
t→+∞

m∑
i=1

∫ t

τi(t)
p∗(s)ds >

m

e
.

Then all solutions of equation (1.3) oscillate, where p∗ =
m∑
i=1

pi(t).

Corollary 1.14: Let∫ +∞

0

∣∣pi(t)− pj(t)
∣∣dt < +∞, i, j = 1, . . . ,m

and

lim inf
t→+∞

m∑
i=1

∫ t

τi(t)
pi(s) ds >

1

e
, (1.4)

then all solution of equation (1.3) oscillate.

Example. Let

τi(t) = αi t
(
τi(t) = tαi

)
, i = 1, . . . ,m, 0 < αi < 1,

pi(t) =
λ

t
m∑
i=1

α−λ
i

(
pi(t) =

λ

t (ln t)λ+1
m∑
i=1

α−λ
i

)
.

Then the function x(t) = t−λ (x(t) = ln−λ t) is the solution of equation (1.3). On
the other hand, for any ε > 0 there exists δ > 0 such that if

|αi − α1| < δ (i = 1, . . . ,m)

then

1− ε

e
≤ lim inf

t→+∞

m∑
i=1

∫ t

τi(t)
pi(s) ds ≤

1

e
,

i.e. condition (1.4) is an optimal condition.

2. Difference Equations

Consider the difference equation

∆u(k) + p(k)u(τ(k)) = 0, (2.1)

where ∆u(k) = u(k + 1) − u(k), p : N → R+, τ : N → N , τ(k) ≤ k − 1 and
lim

k→+∞
τ(k) = +∞.
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Theorem 2.1 [10]: Let τ(k) = k − n and

lim inf
k→+∞

k−1∑
i=k−n

p(i) >
( n

n+ 1

)n+1
,

then all solutions of equation (2.1) oscillate.

Theorem 2.2 [11]: Let

lim inf
k→+∞

k−1∑
i=τ(k)

p(i) = α ≤ 1

and

lim sup
k→+∞

k∑
i=σ(k)

p(i) > 1−
(
1−

√
1− α

)2
.

Then all solutions of equation (2.1) oscillate, where

σ(k) = max
{
τ(s) : 1 ≤ s ≤ k, s ∈ N

}
.

Theorem 2.3 [12]: Let

lim inf
k→+∞

k−1∑
i=τ(k)

p(i) >
1

e
.

Then all solutions of equation (2.1) oscillate.

Now consider the difference equation with several delays

∆u(k) +

m∑
i=1

pi(k)u(τi(k)) = 0. (2.2)

Theorem 2.4 : Let

+∞∑
k=1

(
1

m

m∑
i=1

pi(k)−
( m∏

i=1

pi(k)
) 1

m

)
< +∞

and

lim inf
k→+∞

m∑
i=1

( k−1∑
s=τi(k)

p∗(s)

)
>
m

e
.

Then all solutions of equation (2.2) oscillate, where p∗(k) =
m∑
i=1

pi(k).
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Theorem 2.5 : Let

+∞∑
k=1

∣∣pi(k)− pj(k)
∣∣ < +∞ (j, i = 1,m)

and

lim inf
k→+∞

m∑
i=1

( k−1∑
j=τi(k)

pi(j)

)
>

1

e
,

then all solutions of equation (2.2) oscillate.
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