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1. Introduction

1.1. Some Remarks on Biofilms

A biofilm is a complex gel-like aggregation of microorganisms like bacteria,
cyanobacteria, algae, protozoa and fungi. They stick together, they attach to a
surface and they embed themselves in a self-produced extracellular matrix of poly-
meric substances, called EPS. Even if a biofilm contains water, it is mainly in
a solid phase. Biofilms can develop on surfaces which are in permanent contact
with water, i.e. on solid/liquid interfaces or on different types of interfaces such as
air/solid, liquid/liquid or air/liquid (see [1] and references therein).
To describe the complex structure of biofilms, we consider, four different phases:

Live cells (B), Dead cells (D), Extra cellural matrix of polymetric substances –
EPS (E), and Liquid (L). We denote the concentration of biomass by Cϕ = ρϕϕ,
where ρϕis the mass density of the phase in [g/cm3] and ϕ = B,D,E,Lis the
volume fraction of the phases. We assume that the biomasses are incompressible
and Newtonian, then ρB, ρD, ρL, and ρE are positive constants, and also that the
phases have all the same constant density. Since EPS encompasses the cells, we can
assume that live cells, dead cells, and EPS have the same transport velocityvs. We
denote instead by vL the velocity of liquid, and by Γϕ, with (ϕ = B,D,E,L), the
mass exchange rate. The equations expressing mass balance with the equations for
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the velocity and pressure P give the following system (see [1])

∂tB +∇ · (Bvs) = B(LkB − kD),

∂tD +∇ · (Dvs) = αBkD −DkN ,

∂tE +∇ · (Evs) = BLkE− ∈ E,

∂tL+∇ · (LvL) = B [(1− α)kD − LkB − LkE ] +DkN+ ∈ E,

∂t[(1− L)vs] +∇ · [(1− L)vs ⊗ vs] + (1− L)∇P = ∇Σ+ (M − ΓL)vL −Mvs,

∂t(LvL) +∇ · (LvL ⊗ vL) + L∇P = −(M − ΓL)vL +Mvs,

−∆P = ∇ · [∇ · ((1− L)vs ⊗ vs + LvL ⊗ vL)]−∆Σ,

where kBand kD are respectively a birth term and a death term for the active
bacterial cells, α is the fraction of active cells that gives rise to dead cells (the
remaining proportion becoming liquid), kN is the natural decay of dead cells, kE
represents the production of EPS, and ∈ E, with ∈ constant, is the natural decay
of EPS. We assume, for simplicity, that kB, kD, kN , kE are constants. M is a Darsy
constant and Σ is a stress function

Σ := −γ(1− L), γ = const.

Assuming the volume constraint (see [1])

B +D + E + L = 1.

ΓL is given by the expression

ΓL := B [(1− α)kD − LkB − LkE ] +DkN+ ∈ E.

On the boundary, we impose Neumann conditions for the volume ratios and
no-flux boundary conditions for the velocities:

∇B · n|∂Ωb = ∇E · n|∂Ωb = ∇D · n|∂Ωb = 0,

vs · n|∂Ωb = vL · n|∂Ωb = 0.

2. 2D Problem for Biofilm Occupying Thin Prismatic Domain

Assume that biofilm occupy the following domain

Ωb :=
{
(x1, x2, x3) : −∞ < x1 < +∞, 0 < x2 < l, 0 ≤ x3 ≤ hb, hb = const

}
.
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For the sake of simplicity let all the physical and geometrical quantities under
consideration are independent of x1 and let D = 0, E = 0; so we arrive at the
two-dimensional case

∂tB +∇2 · (Bvs) = B(LkB − kD),

∂t[(1− L)vs] +∇2 · [(1− L)vs ⊗ vs] + (1− L)∇2P

= ∇2Σ+ (M − ΓL)vL −Mvs,

∂t(LvL) +∇2 · (LvL ⊗ vL) + L∇2P = −(M − ΓL)vL +Mvs,

−∆2P = ∇2 · [∇2 · ((1− L)vs ⊗ vs + LvL ⊗ vL)]−∆2Σ.

(1)

We consider the linearized problem, the case when all the unknown functions
B,L, vs, vL, P are slightly perturbed from the constant values B∗, L∗, v∗s , v

∗
L, P

∗

respectively, i.e., they can be written in the following form

B := B∗ + B̃, L := L∗ + L̃, vs := v∗s + ṽs, vL := v∗L + ṽL, P := P ∗ + P̃ .

Let us assume that

B∗ := 1− kD
kB

, L∗ :=
kD
kB

, v∗s = v∗L = 0,

and kB > kD.
System (1) can be rewritten as follows

∂tB̃ +

(
1− kD

kB

)
∇2 · ṽs =

(
1− kD

kB

)
kBL̃,

(
1− kD

kB

)
∂tṽs +

(
1− kD

kB

)
∇2P̃ = −γ ∇2B̃ +M( ṽL − ṽs),

kD
kB

∂tṽL +
kD
kB

∇2P̃ = −M(vL − vs),

−∆2P̃ = γ ∆2B̃,

(2)

which we solve under the following initial and boundary conditions

L̃(x2, x3, 0) = L̃0(x2, x3), ṽs(x2, x3, 0) = ṽL(x2, x3, 0) = 0,

∇2L̃(x2, x3, t)
∣∣∣
∂Ωb

= ∇2P̃ (x2, x3, t)
∣∣∣
∂Ωb

= 0,

ṽs(x2, x3, t)|∂Ωb = ṽL(x2, x3, t)|∂Ωb = 0,

(3)

where L̃0(x2, x3) is a prescribed function.
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Using Vekua’s dimension reduction method (for the method see, e.g., [2]-[4]) in
the zero approximation from (2) and (3) we get

−∂tL̃0 +

(
1− kD

kB

)
ṽs0,2 =

(
1− kD

kB

)
kBL̃0,

(
1− kD

kB

)
∂tṽs0 +

(
1− kD

kB

)
P̃0,2 = γ L̃0,2+M( ṽL0 − ṽs0),

kD
kB

∂tṽL +
kD
kB

P̃0,2 = −M(vL0 − vs0),

P̃0,22= γ L̃0,22 ,

(4)

L̃0(x2, 0) = L̃0
0(x2), ṽs0(x2, 0) = ṽL0(x2

L0,2(0, t) = L̃0,2(l, t) = P̃0,2(0, t) = P̃0,2(l, t) = 0,

ṽs0(0, t) = ṽs0(l, t) = ṽL0(0, t) = ṽL0

where

(
L̃0, P̃0, ṽs0, ṽL0

)
(x2, t) :=

∫ hb

0

(
L̃, P̃ , ṽs, ṽL

)
(x2, x3, t)dx3,

L̃0
0(x2) :=

∫ hb

0
L̃0(x2, x3)dx3

are so called zero moments of the corresponding quantities L̃, P̃ , ṽs, ṽL, and

L̃0(x2, x3) (see, e.g., [2]-[4]),

L̃(x2, x3, t) ∼=
1

hb
L̃0(x2, t), P̃ (x2, x3, t) ∼=

1

hb
P̃0(x2, t),

ṽs(x2, x3, t) ∼=
1

hb
ṽs0(x2, t), ṽL(x2, x3, t) ∼=

1

hb
ṽL0(x2, t),

L̃0(x2, x3) ∼=
1

hb
L̃0
0(x2).

Summing the second and third equations of the system (4) and taking into account
the fourth equation and IBC (5) we get(

1− kD
kB

)
∂tṽs0 +

kD
kB

∂tṽL0 = 0, ⇒
(
1− kD

kB

)
ṽs0 +

kD
kB

ṽL0 = f(x)

in view of IC (ṽs0(x, 0) = ṽL(x, 0) = 0), we get

(6)
(l, t) = 0,

, 0) = 0, (5)

˜



106 Bulletin of TICMI(
1− kD

kB

)
ṽs0 +

kD
kB

ṽL0 = 0 ⇒ ṽs0 +
kD
kB

(ṽL0 − ṽs0) = 0 ⇒

(ṽL0 − ṽs0) = −kB
kD

ṽs0.

(7)

Therefore, the second equation of the system (4) can be rewritten as follows(
1− kD

kB

)
∂tṽs0 +M

kB
kD

ṽs0 =
kD
kB

γ L̃0,2 ,

∂tṽs0 +
Mk2B

kD(kB − kD)
ṽs0 =

kD
kB − kD

γ L̃0,2 ,

whose solution has the following form

ṽs0 =

∫ t

0

kD
kB − kD

γ L̃0,2 e
Mk2

B
kD(kB−kD)

(τ−t)
dτ. (8)

From the third equation of (4), by virtue of (7), we obtain

kD
kB

∂tṽL = M
kB
kD

ṽs0 −
kD
kB

γ L̃0,2,

whence,

∂tṽL = M
k2B
k2D

ṽs0 − γ L̃0,2=
Mk2B

kD(kB − kD)
γ

∫ t

0
L̃0,2 e

Mk2
B

kD(kB−kD)
(τ−t)

dτ − γ L̃0,2

and

ṽL =
Mk2B

kD(kB − kD)
γ

t∫
0

ds

s∫
0

L̃0,2 e
Mk2

B
kD(kB−kD)

(τ−s)
dτ − γ

t∫
0

L̃0,2 dτ

=
Mk2B

kD(kB − kD)
γ

t∫
0

L̃0,2 dτ

t∫
τ

e
Mk2

B
kD(kB−kD)

(τ−s)
ds− γ

t∫
0

L̃0,2 dτ

= γ

t∫
0

L̃0,2

(
1− e

Mk2
B

kD(kB−kD)
(τ−t)

)
dτ − γ

t∫
0

L̃0,2 dτ

= −γ

t∫
0

L̃0,2 e
Mk2

B
kD(kB−kD)

(τ−t)
dτ.
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Finally, from the first equation of (4) taking into account (8), we get

∂tL̃0 =
kD
kB

γ

∫ t

0
L̃0,22 e

α(t−τ)dτ − (kB − kD) L̃0 , α: = −
Mk2B

kD(kB − kD)
. (9)

Using the Laplace transform, from (9) we have

s L̂0 − L̃ 0
0 (x2) =

kD
kB

γ L̂0,22
1

s− α
− (kB − kD) L̂0,

hence,

kDγ

kB(s− α)
L̂0,22 = (s+ kB − kD) L̂0 + L̃ 0

0 (x2)

and taking into account the homogeneous BC (6) L̃0,2(0, t) = L̃0,2(l, t) = 0, we
obtain

L̂0(x2, s) =

√
kB(s− α)

2
√

kDγ(s+ kB − kD)

×
x2∫
0

L̃ 0
0 (ξ)

[
e

√
kB(s+kB−kD)(s−α)

kDγ
(x2−ξ) − e

−
√

kB(s+kB−kD)(s−α)

kDγ
(x2−ξ)

]
dξ

−
√

kB(s− α)

2
√

kDγ(s+ kB − kD)

e

√
kB(s+kB−kD)(s−α)

kDγ
x2 + e

−
√

kB(s+kB−kD)(s−α)

kDγ
x2

e

√
kB(s+kB−kD)(s−α)

kDγ
l − e

−
√

kB(s+kB−kD)(s−α)

kDγ
l

×
l∫

0

L̃ 0
0 (ξ)

[
e

√
kB(s+kB−kD)(s−α)

kDγ
(l−ξ)

+ e
−
√

kB(s+kB−kD)(s−α)

kDγ
(l−ξ)

]
dξ,

where by L̂0(x2, s) we denote the Laplace transform of the function L̃0(x2, t).
Thus,

P̂0(x2, s) = γ L̂0(x2, s) + C(s).

For bounded on [0, l] function L̃ 0
0 (x) it can be shown that the inverse Laplace

transform L̂0(x2, s) exists.

Examples:
1. L̃ 0

0 (x2) = Λ = const, then

L̃0(x2, t) = Λe(kD−kB)t.



5

1~
,

3

2 0
0  L

k

k

B

D

Figure 2. 2
0
0

~
,

3

2
xL

k

k

B

D 

Figure 1.  

L B

108 Bulletin of TICMI



Vol. 18, No. 2, 2014 109

2. L̃ 0
0 (x2) = x2 + Λ

L̃0(x2, t) = (x2 + Λ)e(kD−kB)t.

Corresponding plots of the functions for L̃0(x2, t) and B̃0(x2, t) are given in Fig-
ures 1-2.
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