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1. Introduction

Many physical processes are well modelled by evolution equations, i.e. partial dif-
ferential equations of the type [1]

∂

∂t
V(x, t) = K · V(x, t). (1)

It specifies the rate of change with t of the variable V, which, designated to char-
acterize the physical state of the dynamical system of concern, is regarded as a
function of the independent “space” and “time” variables (x, t).
The heat equation (HE) [2], the time-dependent Schrödinger equation (SE) [3]

and the paraxial wave equation (PWE) [4] are substantive examples of evolution
equation.
Many physical processes are equally well modelled by equations, which cannot

be traced back to the scheme of Eq. (1): equations, for instance, involving higher-
order derivatives of V with respect to the “time” variable t, or equations containing
fractional order derivatives with respect to the “space” variable x.
The relativistic heat equation (RHE) [5][

α

C2

∂2

∂t2
+
∂

∂t

]
u(r, t) = α∇2u(r, t), (2)
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α and C being the thermal diffusivity and the speed of heat, the Klein-Gordon
equation (KGE) [6] [

∇2 − 1

c2
∂2

∂t2
−
(mc

~

)2]
ψ(r, t) = 0, (3)

m and c denoting the mass of the particle and the speed of light, and the homoge-
neous scalar wave equation (WE) [7][

∇2 − 1

c2
∂2

∂t2

]
φ(r, t) = 0, (4)

are typical examples of equations containing the second-order derivative with re-
spect to time.
On the other hand, the relativistic Schrödinger equation (RSE) [6]

i~
∂ψ(r, t)

∂t
=
√
m2c4 − ~2c2∇2ψ(r, t), (5)

involves the square-root of an operator containing the laplacian ∇2.
The analysis developed in [8–11] frames within the context of an investigation

aimed at establishing if, at which extent and in which form some properties of the
evolution equations, like the aforementioned HE, SE and PWE, could be recovered
to equations, that are not of evolution type or demand to deal with fractional
differential operators, examples of which are the RHE, KGE,WE and RSE, reported
above.
In this connection, as shown in [8, 9], the Dirac-like factorization approach con-

veys a valuable method to tackle with both kinds of difficulties. Correspodingly, a
variety of methods has been proposed in [10, 11] to deal with evolution-like equa-
tions ruled by square-root operators, which are addressed to as relativistic evolution
equations.
Here, we will mainly be concerned with the Dirac factorization procedure. Ac-

cordingly, in Sect. 2, we will review the Dirac-like factorization method in con-
nection with square-root operators. Extension of the procedure to higher-degree
root operators will be approached in Sect. 3, where in fact cube and quartic root
operators will be treated in some detail. Then, in Sect. 4 we will illustrate some
applications of the method. The concluding notes of Sect. 5 will close the paper.

2. Dirac-like factorization to disentangle root operator functions: square
root operators

Let us recall that the Dirac equation [6, 12][
i~γj

∂

∂xj
−mcI4

]
ψ = 0, j = 0, 1, 2, 3, (6)

where γj , j = 0, 1, 2, 3, are the (4× 4) Dirac matrices, (x0, x1, x2, x3) ≡ (ct, x, y, z)
and I4 the 4 × 4 unit matrix, offers in a sense the “evolution-like” alternative to
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the KGE. As is well known, it was originally formulated by Dirac when seeking
a relativistically covariant evolution equation for the state function of a quantum
particle in the Schrödinger-like form,

i~
∂ψ

∂t
= Ĥψ,

with the Hamiltonian Ĥ being a linear Hermitian operator [12]. However, it can
also be understood as following from a “factorization” of the KGE[

1

c2
∂2

∂t2
−∇2 +

(mc
~

)2]
I4ψ =[

i~γj
∂

∂xj
−mcI4

] [
−i~γj ∂

∂xj
−mcI4

]
ψ = 0.

Then, one can eventually deal with an equation containing a first-order derivative
with respect to the evolution variable although in a system of four coupled linear
differential equations for the 4-component state vector ψ.
We will show how to exploit such a factorization method to deal with root oper-

ators. Let us firstly exemplify the procedure in the case of a square-root operator.

2.1. Square root function

It is evident that the identity

A2 +B2 = (A+B)2 = (A+B)(A+B),

can not hold if A and B are numbers (real or complex). In contrast, it can hold if
A and B are anticommuting operators or matrices, for which{

Â, B̂
}
= ÂB̂ + B̂Â = 0.

Thus, one is led to write down the square root function
√
A2 +B2 in the “dis-

entangled” form √
A2 +B2 = Aα +Bβ , (7)

with α and β being such that

α2 = β2 = 1,
α β + βα = 0,

(8)

in order to satisfy the desired equality (7).
We see that α and β cannot simply be numbers; indeed, as a direct consequence

of (8), they must be traceless matrices with eigenvalues equal to ±1, and hence of
order 2n× 2n, n = 1, 2, .., and determinant equal to (−1)n.
Evidently, the scalar nature of the original function

√
A2 +B2 is lost, since in-

deed in the stated identity (7) it is understood as a multiple of the 2n × 2n unit
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matrix I2n. In fact, Eq. (7) conveys a matrix identity in a proper 2n-dimensional
vector space, whose meaning and ultimate dimensions (following those of α and β)
are dictated by the problem at hand. Remarkably, however, one gains a root-free
matrix form expression, that could facilitate the solution of the problem although
it must be reinterpreted in the light of the gained degree (or, degrees) of freedom
(naturally conveyed, as seen, by the procedure). Furthermore, the method can open
new perspectives within the theory of fractional calculus, suggesting alternative
formulations to already established treatments and/or definitions.
In particular, when up-to-three addends are involved in the square root, the

smallest admissible dimension 2n = 2 is enough to ensure that the desired matrices
α and β can be realized. We may identify them with any two of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (9)

so that we can eventually write√
Â2 + B̂2I2 = Âσj + B̂σk , j ̸= k j, k = 1, 2, 3 (10)

or, more in general,√
Â2 + B̂2 + Ĉ2I2 = Âσj + B̂σk + Ĉσl, j ̸= k ̸= l j, k, l = 1, 2, 3 (11)

The correspondence of each of the operators involved in the square root with
a specific Pauli matrix is a mere matter of convenience, possibly suggested by
the problem under investigation. Therefore, the resulting matrix expression of the
original (scalar) operator function is not unique. We will illustrate this in Sect.
4.1.1.

3. Dirac-like factorization to disentangle root operator functions: estension
of the procedure to higher-order root operator functions

It is quite natural to address the question whether it could be possible to extend
the procedure to higher-order root operator functions, thus allowing one to write
down

m

√
Âm + B̂m I = Âα + B̂β , (12)

or, more in general, with m operators involved in,

m
√
Âm1 + Âm2 + ..+ Âmm I = Â1α1 + Â2α2 + ..+ Âmαm , (13)

where the matrices α and β could be identified by suitable conditions analogous
to (8).
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3.1. Cube root function

Thus, for instance, the factorization

( Â3 + B̂3) I = (Âα + B̂β)3,

allowing for the disentanglement of the cube root operator as

3

√
Â3 + B̂3 I = Âα + B̂β , (14)

is possible for commuting operators Â, B̂, and matrices α and β such as to satisfy
the three-term relations

α3 = β3 = I,{
α, β2

}
+ {β, {α, β}} = 0,

{
β, α2

}
+ {α, {α, β}} = 0.

(15)

We see that α and β are traceless matrices, with eigenvalues conveyed by the
third roots of unity:

µ3 = 1,

and hence

µ0 = 1, µ1 = −1

2
(1− i

√
3), µ2 = −1

2
(1 + i

√
3).

Therefore, they must be of the order 3n× 3n, n = 1, 2, .., with determinant

∆ = (µ0 µ1 µ2)
n = 1.

The matrices

τ 1 =

0 1 0
0 0 1
1 0 0

 , τ 2 =

0 µ1 0
0 0 µ2
1 0 0

 , (16)

of smallest admissible dimension, provide a suitable pair of matrices satisfying
the required conditions. They are seen to span, by repeated commutators, an 8-
dimensional Lie algebra. The expressions of the other τ -matrices result to be

τ3 =

 0 0 1
µ1 0 0
0 µ2 0

 = τ⊤2 , τ4 =

µ2 0 0
0 1 0
0 0 µ1

 , τ5 =

µ1 0 0
0 1 0
0 0 µ2

 = τ∗4 ,

(17)

τ6 =

0 µ2 0
0 0 µ1
1 0 0

 = τ∗2 = τ⊤7 , τ7 =

 0 0 1
µ2 0 0
0 µ1 0

 = τ∗3 = τ⊤6 , τ8 =

0 0 1
1 0 0
0 1 0

 .
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Each of them is such that τ 3
j = I3, and ∆j = 1, j = 1, .., 8. Also, their commu-

tators are

[τ j , τ k] = −i
√
3fjklτ l,

the relevant structure constants fjkl being

f123 = f134 = f142 = f246 = f268 = f284 = f358 = f382 =

f478 = f483 = f562 = f674 = 1,

f156 = f146 = f175 = f235 = f251 = f346 = f371 = f461 =

f573 = f587 = f685 = f786 = −1.

Of course, fjkl = −fkjl.
Interestingly, only 4 commutators vanish, i.e.

[τ 1, τ 8] = [τ 2, τ 7] = [τ 3, τ 6] = [τ 4, τ 5] = 0,

and accordingly, the involved pairs of matrices are the only ones that do not allow
for the desired factorization à la Dirac of the sum of third-power operators. There-
fore, 24 possible pairs of matrices suitable for the disentanglement of the cube root
are conveyed by the set of τ -matrices.
If a third term is added in the sum, amounting to the linearization issue

3

√
Â3 + B̂3 + Ĉ3I3×3 = Âα + B̂β + Ĉγ, (18)

a triplet of matrices is needed, such that each and each pair of them satisfy the
relations (15), in addition to the further one∑

p∈S3

(αβ γ) = 0, (19)

the sum being over all the six possible products of the three matrices obtained
from all their permutations p (∈ S3).
One can see that 24 suitable triplets of matrices can be extracted from the set of

τ -matrices, the choice being a matter of convenience in conformity to the problem
under analysis.
It is worth noting that the τ -matrices have been already deduced in [13] in

connection with the analysis of the fractional Dirac equation. There, the triplets
of matrices allowing for (18) are explicitly signalized.

3.2. Quartic root function

The disentanglement of the quartic root as

4

√
Â4 + B̂4 I = Âα + B̂β , (20)
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demands for α and β matrices such as to satisfy the four-term relations

α4 = β4 = I,
{α2 , {α, β}} = 0, {β2 , {α, β}} = 0,{

α2 ,β2
}
+ {α, β}2 = 0.

(21)

Thus, the desired matrices α and β are traceless and with eigenvalues conveyed
by the quartic roots of unity:

µ4 = 1,

yielding

µ0 = 1, µ1 = i, µ2 = −i, µ3 = −1

As a consequence, they must be of the order 4n×4n, n = 1, 2, .., with determinant

∆ = (µ0 µ1 µ2µ3)
n = (−1)n .

The anticommutation relations in the second row of (21) suggest a correspon-
dence of the matrices α2 , {α, β} and β2 with σ-composed matrices. Thus, working
with the smallest admissible dimension, i.e. 4n = 4, we start taking

ρ1 =

(
02 −i√σ3

i
√
σ3 02

)
, (22)

with

√
σ3 =

(
1 0
0 i

)
.

Evidently, ρ41 = I4. Then, following the conditions (21), the suitable matrix

ρ2 =

(
σ+ σ−
σ− σ+

)
, (23)

is obtained, where

σ+ =
1

2
(σ1 + iσ2) =

(
0 1
0 0

)
, σ− =

1

2
(σ1 − iσ2) =

(
0 0
1 0

)
.

Note that σ2
+ = σ2

− = 0, and [σ+,σ−] = σ3 whereas {σ+,σ−} = I2.

1 ̸= µ2, the function f(M) can be evaluated
according to [14]

f(M) =
µ1f(µ2)− µ2f(µ1)

µ1 − µ2
I+

f(µ1)− f(µ2)

µ1 − µ2
M.

1)

1)We recall that given a 2 × 2 matrix M with eigenvalues µ
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Of course, ρ1 and ρ2 do not commute with each other (as it must be in order for
they to allow for (20)); in fact,

[ρ1,ρ2] =
√
2ρ3, ρ3 = e−i

π

4

(
σ− −iσ+

iσ+ −σ−

)
,

whilst

{ρ1,ρ2} = i
√
2ρ3 = i [ρ1,ρ2] .

It can be verified that ρ3 can be a suitable matrix to realize (20) accompanied
by either ρ1 or ρ2.
By repeated commutators, we span a 15-dimensional Lie algebra of matrices{
ρj
}
j=1,..,15

such that ρ4j = I4, ∀j. Their explicit expressions have been reported

in [11], where further details about their features are also given.
It results that 48 possible pairs of ρ-matrices allow for the quartic-root decom-

position (20).

3.3. m-th root function

Evidently, with increasing m, the decomposition, as addressed in (12) and (13),
becomes even more complex. However, on the basis of the previous analysis, we
can try to draw some basic issues, at least for the two-term case exemplified in
(12).
The identity (12) yields m + 1 relations involving terms of degree m in the

mn ×mn matrices α and β. Firstly, the latter come to be the m-th roots of the
unit matrix, being

αm = βm = I, (24)

and hence their eigenvalues can be written as

µj = ei
2π

m
j , j = 0, 2, ...m− 1.

It is easy to see that

m−1∑
j=0

µj = 0,

thus implying

Tr(α) = Tr(β) = 0.

Furthermore, since

m−1∏
j=0

µj = (−1)m−1,
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the determinant of the matrices α and β comes to be

∆ = (−1)n(m−1).

As to the other conditions ensuring that (12) be satisfied, they can be synthesised
in the form

∑
p,q

αp1βq1αp2βq2 ....αpαβqβ = 0 (25)

where the sum is intended to comprise all the powers pj and qi such that
∑

j pj = l

and
∑

i qi = k, for any choice of integers (l, k) such that l ̸= 0, k ̸= 0 and l+k = m,

thus yielding m!
l!k! terms of degree m.

We see that the m×m matrices

ν1 =


0 µ0 0 · · · 0
0 0 µ0 · · · 0
...

...
...

...
...

0 0 0 · · · µ0
µ0 0 0 · · · 0

 , ν2 = δ


0 µ1 0 · · · 0
0 0 µ2 · · · 0
...

...
...

...
...

0 0 0 · · · µm−1

µ0 0 0 · · · 0

 ,

with δ =

{
1 m odd
ei

π

m m even
, represent a suitable pair of matrices (of smallest al-

lowable order) which satisfy (24) and (25). Starting from them, one can span an
(m2 − 1)-dimensional Lie algebra of matrices {νj}j=1,..,m2−1 satisfying (24).

4. Dirac-like factorization to disentangle root operator functions: possible
applications

The Dirac-like factorization procedure can be applied to various (physical and/or
mathematical) contexts, and also be variously finalized.
It can be effectively applied to deal with evolution equations ruled by fractional

differential operators, like that entering the RSE. In fact, the factorization proce-
dure allows for the “disentanglement” of root operators into the sum of operators,
and hence, under appropriate conditions, one can overcome the problem of working
with fractional differential operators [8, 11].
In addition, the factorization approach to root operators may open new perspec-

tives within the theory of fractional calculus, suggesting, for instance, alternative
formulations to already well-established definitions and/or treatments [9, 11].
We will illustrate both issues in connection with root functions of differential

operators, in particular, square and cube roots respectively of second-order and
third-order differential operators.
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4.1. Square root of differential operators

4.1.1. Solving relativistic evolution equations

Let us consider evolution equations ruled by square roots of second-order differ-
ential operators. A typical example is offered by the equation

∂ζ ψ(ξ, ζ) = −
√

1− ∂2ξψ(ξ, ζ), (26)

ψ(ξ, 0) = ψ0(ξ).

Setting ζ = i ctλc
and ξ = x

λc
, λc = ~

mc being the Compton wavelength of the
particle, the above equation would yield the (1+1)D version of the RSE (5), and
accordingly ψ(ξ, ζ) would represent the particle wave function. We may refer to
(26) as relativistic evolution equation.
The Dirac-like “linearization” procedure turns the problem of the solution of (26)

into that of the solution of the system of two coupled linear homogeneous partial
differential equation of the first order

∂ζ ψ(ξ, ζ) = −(σj − i∂ξσk)ψ(ξ, ζ), j ̸= k, (27)

ψ(ξ, 0) = ψ0(ξ),

for the two component vector ψ(ξ, 0).
The solution to the above “evolution equation” is indeed immediately written in

the form

ψ(ξ, ζ) = U(ξ, ζ)ψ0(ξ), (28)

the evolution matrix being

U(ξ, ζ) = e−ζ(σj −i∂ξσk) . (29)

Since the exponent K = −ζ(σj − i∂ξσk) in (29) is a traceless matrix, whatever
be the specific Pauli matrices chosen in the factorization, U(ξ, ζ) can be given the
explicit expression

U(ξ, ζ) = cosh[ζ(
√

1− ∂2ξ )]I2 −
sinh[ζ(

√
1− ∂2ξ )]√

1− ∂2ξ

(σj − i∂ξσk). (30)

Let us apply such a result to specific initial data. We may consider, for instance,
the input vector

ψ0(ξ) =

(
e−

ξ2

4

0

)
. (31)

Then, with the specific choice of the Pauli matrices yielding
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K = −(σ3 − i∂ξσ2),

the evolution of the vector ψ occurs according to

ψ(ξ, ζ) =

(
Ĉ − Ŝ −∂ξŜ
∂ξŜ Ĉ − Ŝ

)
ψ0(ξ). (32)

Here, Ĉ and Ŝ are the cosh- and sinch-operator functions entering (30), i.e

Ĉ = cosh[ζ(
√

1− ∂2ξ )], Ŝ =
sinh[ζ(

√
1− ∂2ξ )]√

1− ∂2ξ

.

Therefore, with ψ0(ξ) given by (31), we obtain

ψ(ξ, ζ) =

(
Ĉ − Ŝ

∂ξŜ

)
e−

ξ2

4 , (33)

graphically displayed in Figure 1.

Figure 1. ζ-evolution of the two components (a) ψ1(ξ, ζ) and (b) ψ2(ξ, ζ) of the ψ-vector for the input (31),
shown at ζ = 0 (solid line), ζ = 0.3 (dotted line), ζ = 0.6 (dashed line), and ζ = 1 (dash-dotted line).

4.1.2. Suggesting alternative formulations in fractional calculus

As said, another possible context of application of the Dirac-like “linearization”
procedure is that of the theory of the fractional calculus [13]. As an example, we
consider the operator

Ô =
√
a+ ∂x, (34)
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a being an arbitrary constant. Resorting to the integral representation of the op-
erator L̂−ν , ℜ(ν) > 0, as

L̂−ν =
1

Γ(ν)

∫ ∞

0
sν−1e−sL̂ds, ℜ(ν) > 0 (35)

which reproduces for operators the well-known Laplace-transform identity for c-
numbers, the operator Ô can be interpreted as

Ôf(x) =
a+ ∂x√
a+ ∂x

f(x) = (a+ ∂x)
1√
π

∫ ∞

0
s−1/2e−ase−s∂xf(x)ds.

Alternatively, in the light of the analysis presented in Sect. 2.1, the scalar oper-
ator can be replaced by the operator matrix√

a+ ∂x →
√
aσj +

√
∂xσk , j ̸= k j, k = 1, 2, 3, (36)

for any specific choice of the inherent Pauli matrices, thus opening new perspectives
within the theory of fractional calculus.
The operator nature of the l.h.s. would be conveyed by the matrix nature of

r.h.s.; indeed,
√
∂x may be seen as acting on 1, thus giving√

∂x 1 =
1√
πx
,

according to the Euler definition of fractional derivative [13]

∂νxx
µ =

Γ(µ+ 1)

Γ(ν − µ+ 1)
xµ−ν .

Thus, the operator (34) can be regarded as acting in a 2D vector space through
the matrix

Ô :=

(
0

√
a− i√

πx√
a+ i√

πx
0

)
,

or also through

Ô :=

(
1√
πx

−i
√
a

i
√
a − 1√

πx

)
, Ô :=

(
1√
πx

√
a

√
a − 1√

πx

)
,

each matrix being obtained in correspondence with a specific choice of the Pauli
matrices in (36). In our opinioin, this view deserves to be explored.

4.2. Cube root of differential operators

Paralleling the analysis developed in connection with Eq. (26), we may consider
an evolution equation involving the cube root of the third-order differentiation
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operator ∂3ξ , namely

∂ζψ(ξ, ζ) =
3
√

1 + ∂3ξψ(ξ, ζ), (37)

ψ(ξ, 0) = ψ0(ξ).

By the Dirac-like procedure, Eq. (37) is recast into the system of three coupled
linear homogeneous partial differential equation of the first order for the three
component vector ψ(ξ, 0),

∂ζψ(ξ, ζ) = (τ j + ∂ξτ k)ψ(ξ, ζ), j ̸= k, (38)

ψ(ξ, 0) = ψ0(ξ),

for any choice of the suitable pairs of the τ -matrices.
The solution can formally be written as

ψ(ξ, ζ) = eζ(τ j +∂ξτk)ψ0(ξ). (39)

However, since the τ -matrices involved in the linearization of the original cube
root operators should not commute with each other, in order to get an explicit
expression for the evolution matrix

U(ξ, τ) = eζ(τ j +∂ξτk) (40)

entering (39), one needs to resort to appropriate ordering techniques.
Let us work, for instance, with the matrices (16). We apply the Zassenhaus

formula [15, 16] giving the exponential of the sum of two operators as the in general
infinite product of operators according to

eX̂+Ŷ = eX̂eŶ
∞∏
j=1

eĈj ,

where the first terms in the product explicitly write as

Ĉ1 = −1

2

[
X̂, Ŷ

]
,

Ĉ2 =
1

3

[
Ŷ ,
[
X̂, Ŷ

]]
+

1

6

[
X̂,
[
X̂, Ŷ

]]
,

Ĉ3 =
1

8

{[
Ŷ ,
[
Ŷ ,
[
X̂, Ŷ

]]]
+
[
Ŷ ,
[
X̂,
[
X̂, Ŷ

]]]}
− 1

24

[
X̂,
[
X̂,
[
X̂, Ŷ

]]]
.

In the case of (40) we find that

Ĉ1 =
i
√
3

2
ζ2∂ξτ 3, Ĉ2 = ζ3∂2ξ (

1

2
τ 4 − τ 5),
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thus enabling us to write U(ξ, τ) at the third order in the evolution parameter ζ
as

U(ξ, ζ) = eζτ 1eζ∂ξτ 2e
i
√

3

2
ζ2∂ξτ 3eζ

3∂2
ξ (

1

2
τ 4−τ 5) +O(ζ4)

= eζτ 1eζ∂ξτ 2e
i
√

3

2
ζ2∂ξτ 3e

1

2
ζ3∂2

ξτ 4e−ζ
3∂2

ξτ 5 +O(ζ4),

the latter expression being allowed by the commutator relation [τ 4, τ 5] = 0.
Interestingly, each term in the above product of exponential matrices can be

written in a form similar to (30). In fact, as a consequence of that τ 3
j = I, the

exponential matrix eaτ j turns out to be the sum of three terms; precisely,

eaτ j = A0(a)I3×3 +A1(a)τ j +A2(a)τ
2
j . (41)

The coefficients Aj(a), j = 0, 1, 2 are given by

A0(a) = 0F2(−;
1

3
,
2

3
;
a3

27
),

A1(a) = a 0F2(−;
2

3
,
4

3
;
a3

27
), (42)

A2(a) =
a2

2
0F2(−;

4

3
,
5

3
;
a3

27
),

where 0F2(·) denotes the generalized hypergeometric function, formally represented
by the series [17]

pFq(a1, .., ap; b1, .., bq; z) =

∞∑
k=0

∏p
j=1(aj)k∏q
j=1(bj)k

zk

k!
, (43)

with (a)k ≡ Γ(a + k)/Γ(a) being the Pochhammer symbol. We recall that pFq
converges for all finite z if p ≤ q. It is worth recalling that the relevant power
series expressions of the Ajs, conveyed by (43), have been investigated in [18] as
pseudo-hyperbolic functions.
Accordingly, we can say that the exponentials eaτ j belong to the algebra spanned

(in general, over the complex field C) by the {τ j}j=1,..,8 and the unit matrix.

5. Concluding notes

We have reviewed the square-root operator factorization method à la Dirac along
with its extension to higher-degree root operators, as recently suggested in the
literature [8, 9, 11]. Cube and quartic root operators have been investigated in
some detail.
A variety of possible applications of the method have also been proposed and

illustrated. In fact, solutions of equations involving root functions of differential
operators, specifically, square and cube roots respectively of second-order and third-
order differential operators, have been worked out. Also, it has been shown that
the factorization approach to root operators may open new perspectives within the
theory of fractional calculus.
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