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Green’s Function for the Light Scattering Equations
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Abstract. The aim of this paper is to construct Green’s function in an infinite medium for
the light scattering equation. To this end the method of spectral resolution of the solutions
by the eigenfunctions of the corresponding characteristic equation is used.
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We consider the equation which occurs when investigating one important problem
of mathematical physics, namely the equation which describes the light scattering.
The considered equation has the form

µ
∂I(τ, µ, x)

∂τ
= α(x)I(τ, µ, x)− λ

2
Aα(x)

∫ +∞

−∞
α(x′)dx′

∫ +1

−1
I(τ, µ′, x′)dµ′ (1)

τ, x ∈ (−∞,+∞), µ ∈ (−1,+1)

where α(x) is a continuous, integrable, positive function, A is a normalizing mul-
tiplier

A

∫ +∞

−∞
α(x)dx = 1,

Many weel known authors [1-3] investigated this equation. We seek the solution
of this equation in the following form

I(τ, µ, x) = eτ/νφν(µ, x).
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With this assumption, Eq. (1) becomes

(να(x)− µ)φν(µ, x) =
λ

2
Aν

∫ +∞

−∞

∫ +1

−1
α(x)α(x′)φν(µ

′, x′)dµ′dx′ (2)

where ν is a parameter, so-called characteristic equation. It is very convenient to
normalize φν so that

∫ +∞

−∞

∫ +1

−1
α(x)φν(µ, x)dµdx = 1.

Then the above becomes

(να(x)− µ)φν(µ, x) =
λ

2
Aνα(x)

From this point the conventional argument runs as follows

φν(µ, x) =
λ

2
A

να(x)

να(x)− µ
.

Inserting this result into Eq.(2) yields the condition

Λ(ν) ≡ 1− λ

2
A

∫ +∞

−∞

∫ +1

−1

να2(x)

να(x)− µ
dµdx = 0. (3)

There are, as is known [4], for λ > 1, two regular purely imaginary eigenvalues
of the characteristic equation (2). Here they will be denoted by ±ν0. For λ < 1 the
regular eigenvalues is absent. The two roots ±ν0 occur. With the normalization
the corresponding solutions of the initial equation are

I0±(τ, µ, x) = e±τ/ν0φ0±(µ, x). (4)

where

φ0±(µ, x) =
λ

2
A

ν0α(x)

ν0α(x)∓ µ
(5)

The argument has given the usual solutions of the homogeneous light scattering
equation. However, there are others. It is to see that

I(τ, µ, x) =

∫ +∞

0

∫
M(ν)

eτ/νφν,(ζ)(µ, x)u(ν, ζ)dζdν (6)

τ ∈ (−∞, 0) µ ∈ (−1,+1), x ∈ (−∞,+∞).
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where

φν,(ζ)(µ, x) =
λ

2
A
νρ(ν)α(x)α(ζ)

να(x)− µ
(7)

+

(
δ(ζ − x)− λ

2
A

∫ +1

−1

νρ(ν)α(x)α(ζ)

να(x)− µ′
dµ′

)
δ(να(x)− µ)

ν ∈ (−∞,+∞), ζ ∈M(ν).

is solution of the initial equation (1). Here,

ρ−1(ν) = 1− λ

2
A

∫ +∞

−∞

∫ +1

−1

να2(x)θ(|ν|α(x)− 1)

να(x)− µ
dµdx,

M(ν) = {x ∈ (−∞,+∞) : |ν|α(x) < 1}, u(ν, ζ) is a continuous, integrable
function satisfying H∗ condition [6] with respect to variable ν
To summarize: There are, when λ > 1, two discrete eigenfunctions given by Eqs.
(5) and also the class of the so-called singular eigenfunctions given by Eqs. (7).
Now consider the equation which is named the adjoint of the characteristic equa-

tion

(να(x)− µ)φ∗
ν(µ, x) =

λ

2
Aν

∫ +∞

−∞

∫ +1

−1
α2(x)φ∗

ν(µ
′, x′)dµ′dx′ (8)

where ν is a parameter.
Now, it is very convenient to normalize φ∗

ν so that

∫ +∞

−∞

∫ +1

−1
φ∗
ν(µ, x)dµdx = 1.

Then

(να(x)− µ)φ∗
ν(µ, x) =

λ

2
Aνα2(x)

From this gives

φ∗
ν(µ, x) =

λ

2
A

να2(x)

να(x)− µ
.

Inserting this result into Eq.(8) we have also the condition

Λ(ν) ≡ 1− λ

2
A

∫ +∞

−∞

∫ +1

−1

να2(x)

να(x)− µ
dµdx = 0.
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Consequently, also for the adjoint characteristic equation, when λ > 1, there are,
two regular eigenfunctions and a class of singular eigenfunctions

φ∗
ν,(ζ)(µ, x) =

λ

2
A
νρ(ν)α2(x)

να(x)− µ
(9)

+

(
δ(ζ − x)− λ

2
A

∫ +1

−1

νρ(ν)α2(x)

να(x)− µ′
dµ′

)
δ(να(x)− µ)

ν ∈ (−∞,+∞), ζ ∈M(ν), M(ν) = {x ∈ (−∞,+∞) : |ν|α(x) < 1}

The usefulness of these functions arises from the fact that they are both bi-
orthogonal and complete. This can be stated in the form of theorems

+∞

−∞

∫ +1

−1

µ

α(x)
φ∗
ν(µ, x)φν′(µ, x)dµdx = 0, ν ′ ̸= ν (10)

Proof : φ∗
ν and φν′ satisfy the equations(
1− 1

ν

µ

α(x)

)
φ∗
ν(µ, x) =

λ

2
Aν

∫ +∞

−∞

∫ +1

−1
α(x)φ∗

ν(µ
′, x′)dµ′dx′

(
1− 1

ν ′
µ

α(x)

)
φν′(µ, x) =

λ

2
Aν

∫ +∞

−∞

∫ +1

−1
α′(x)φν′(µ′, x′)dµ′dx′

Multiplying the first of these by φν′(µ, x), the second by φ∗
ν(µ, x), subtracting, and

integrating, we get(
1

ν ′
− 1

ν

)∫ +∞

−∞

∫ +1

−1

µ

α(x)
φ∗
ν(µ, x)φν′(µ, x)dµdx = 0.

�

It is seen that if g(ν, ζ, ζ) is an arbitrary integrable function then

φ̃∗
ν,(ζ)(µ, x) = φ∗

ν,(ζ)(µ, x) +

∫
M(ν)

g(ν, ζ, ζ ′)φ∗
ν,(ζ′)(µ, x)dζ

′

is also a singular eigenfunction of the adjoint equation. Moreover, if

S(ν, ζ, x) = −π2ν2
∫
M(ν)

λ2

4
A2ρ2(ν)α(x)α2(ζ ′)dζ ′

Theorem 1 : ∫
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−λ
2
A

∫
M(ν)

∫ +1

−1

νρ(ν)α(x)α(ζ ′)

να(ζ ′)− µ′
dµ′

×λ
2
A

∫
M(ν)

∫ +1

−1

νρ(ν)α2(ζ ′)

να(ζ ′)− µ′
dµ′dζ ′

+
λ

2
A

∫ +1

−1

νρ(ν)α(x)α(ζ)

να(ζ)− µ′
dµ′

+
λ

2
A

∫ +1

−1

νρ(ν)α2(x)

να(x)− µ′
dµ′,

and g(ν, ζ, x) is the solution of the equation

g(ν, ζ, x)−
∫
M(ν)

S(ν, ζ ′, x)g(ν, ζ, ζ ′)dζ ′ = S(ν, ζ, x)

ν ∈ (−∞,+∞) ζ ∈M(ν)

then φ̃∗
ν,(ζ)(µ, x) will also be singular eigenfunction of the adjoint characteristic

equations and the following equality (cf.[5])

∫ +∞

−∞

∫ +1

−1

µ

α(x)
φ̃∗

ν0,(ζ0)(µ, x)φν,(ζ)(µ, x)dµdx = δ(ν0 − ν)δ(ζ0 − ζ)

0± and φν,(ζ), −∞, < ν < +∞ are complete for
functions ψ(µ, x) defined in −1 < µ < +1, −∞ < x < +∞ satisfying H∗ condition
[6] with respect to variable µ, integrable with respect to x, i.e.

ψ(µ, x) = a0±φ0±(µ, x) +

∫ +∞

−∞

∫
M(ν)

φν,(ζ)(µ, x)u(ν, ζ)dζdν

where

a0± =
1

N0±

∫ +∞

−∞

∫ +1

−1

µ

α(x)
φ∗
0±(µ, x)ψ(µ, x)dµdx,

u(ν, ζ) =

∫ +∞

−∞

∫ +1

−1

µ

α(x)
φ̃∗
ν,(ζ)(µ, x)ψ(µ, x)dµdx.

holds.

Theorem 2: The functions φ
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From this theorem there follows correctness of the formula

α(x)δ(µ− µ0)δ(x− x0) = µ
1

N0±
φ0±(µ, x)φ∗

0±(µ0, x0)

+µ

∫ +∞

−∞

∫
M(ν)

φν,(ζ)(µ, x)φ̃
∗
ν,(ζ)(µ0, x0)dζdν,

|µµ0| ∈ (0, 1) x, x∈(−∞,+∞)

I(τ, µ, x) = c0±e±τ/ν0φ0±(µ, x) (11)

+

∫ +∞

−∞

∫
M(ν)

eτ/νφν,(ζ)(µ, x)v(ν, ζ)dζdν

τ ∈ (−∞,+∞) µ ∈ (−1,+1), x ∈ (−∞,+∞)

where c0± and v are defined uniquely by I, and Vice versa, this expansion is a
formal solution of equation (1) for arbitrary c0± and v, moreover this expansion
gives us a general presentation of solutions of equation (1) for arbitrary c0± and v
guaranteeing convergence of the integrals in the right part of formula (11).

As an illustration of the applicability of the results Green’s function for the light
scattering equation will be constructed. To be definite λ < 1 is assumed here.
Green’s function Ig(τ, µ, x) satisfies the equation

µ
∂Ig(τ, µ, x)

∂τ
= α(x)Ig(τ, µ, x)−

λ

2
Aα(x)

∫ +∞

−∞
α(x′)dx′

∫ +1

−1
Ig(τ, µ

′, x′)dµ′ (12)

+δ(τ)δ(µ− µ0)δ(x− x0)

τ, x ∈ (−∞,+∞), µ ∈ (−1,+1)

Integrating across the plane τ = 0 shows that Ig satisfies the homogeneous equation
(1) for τ ̸= 0 and the jump condition

µ(Ig(0
+, µ, x)− Ig(0

−, µ, x)) = α(x)δ(µ− µ0)δ(x− x0)

(see [1]).

which can be useful when investigating the problems of the point sources.

Theorem 3 : Every solution of the equation (1) can be represented in the form
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Let us look for the solution Ig which vanishes as |τ | → ∞. It is sufficient to
expand Ig in the form

Ig =

∫ +∞

0

∫
M(ν)

eτ/νφν,(ζ)(µ, x)u(ν, ζ)dζdν, τ < 0

or

Ig = −
∫ 0

−∞

∫
M(ν)

eτ/νφν,(ζ)(µ, x)u(ν, ζ)dζdν, τ > 0

The jump condition then gives an integral equation to determine the expansion
coefficients. It is

α(x)δ(µ− µ0)δ(x− x0) = µ

∫ +∞

−∞

∫
M(ν)

φ(ν,(ζ)(µ, x)u(ν, ζ)dζdν.

The solution obtained using the orthogonality relations is

u(ν, ζ) = φ̃∗
ν,(ζ)(µ0, x0)

Hence Ig can be written in the typical normal mode expansion

Ig =

∫ +∞

0

∫
M(ν)

eτ/νφ̃∗
ν,(ζ)(µ0, x0)φν,(ζ)(µ, x)dζdν τ < 0

µ0, µ ∈ (−1,+1) x0, x ∈ (−∞,+∞)

Ig = −
∫ 0

−∞

∫
M(ν)

eτ/νφ̃∗
ν,(ζ)(µ0, x0)φν,(ζ)(µ, x)dζdν τ > 0

µ0, µ ∈ (−1,+1) x0, x ∈ (−∞,+∞).
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