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Asymptotic Center by a Sequence of Mappings
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Main purpose of this paper is to generalize the concept of asymptotic center and give new
extensions of some fixed point theorems. For this, we first prove some results by the asymptotic
center definition. Next, we will introduce a new extension by sequences of functions, and we
will prove existence theorems with it.
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1. Introduction and preliminaries

In 1969, Ky Fan [4] proved that for any continuous function f from a compact
convex subset C of a normed linear space X into X, there exists x ∈ C such that
‖f(x)−x‖ = dist(f(x), C). Since then, there have appeared several generalizations,
extensions and applications of this theorem. Indeed,Reich [8] has shown that even
if K is a non-empty approximately p-compact convex subset of a locally convex
Hausdorff topological vector space E with a relatively compact image f(K), then
the same conclusion holds. Later, Segal and Singh [9] have extended this result
to convex valued continuous multifunctions. Even though a best approximation
theorem guarantees the existence of an approximate solution, it is contemplated
to find an approximate solution which is optimal. In this direction, Srinivasan
and Veeramani [10] have proved the general forms of existence theorems for best
proximity pairs, and Kim and Lee [6] prove two general existence theorems of best
proximity pairs in a recent paper.

Many of the generalizing topics in this paper are from Bose and Laskar [2],
Downing and Kirk [3], Goebel and Kirk [5], and Lan and Webb [7].

Let X be a Banach space. Then a function δX : [0, 2] → [0, 1] is said to be the
modulus of convexity of X if

δX(ε) = inf{1− ‖x+ y

2
‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

Also the characteristic of convexity or the coefficient of convexity of the Banach
space X is the number

ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}.
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Lemma 1.1: [1] Let C be a weakly compact convex subset of a Banach space
and f : C → (−∞,∞] a proper lower semicontinuous convex function. Then there
exists x0 ∈ Dom(f) such that f(x0) = inf{f(x) : x ∈ C}.

2. Main results

Definition 2.1: Let C be a nonempty subset of a Banach spaceX and let {fn} be
a bounded sequence of continuous map on C. Consider the functional ra(., {fn}) :
C → R+ defined by

ra(x, {fn}) = lim sup
n→∞

‖fn(x)− x‖.

The infimum of ra(x, {fn}) over C is denoted by ra(C, {fn}). A point z ∈ C is said
to be an asymptotic center of the sequence {fn} with respect to C if

ra(z, {fn}) = ra(C, {fn}).

The set of all asymptotic centers of {fn} with respect to C is denoted by
Za(C, {fn}). On the other hand

Za(C, {fn}) = {x : ra(x, {fn}) = ra(C, {fn})}

This set may be empty, a singleton, or certain infinitely many points. In fact, if

limn→∞ fn(x) = x, then

x ∈ Za(C, {fn}).

Several useful results of asymptotic center concept are discussed in the following.
We now discuss the existence of asymptotic center of bounded sequences. We first
establish a preliminary result:

Proposition 2.2: Let C be a nonempty subset of X and let {fn} be a sequence
of K-Lipschitzian maps such that fn : C → X. Then ra(., {fn}) is (K + 1)-
Lipschitzian map.

Proof : Suppose {fn} is a sequence of K-Lipschitzian maps. For x, y ∈ X we have

‖x− fn(x)‖ ≤ ‖x− y‖+ ‖y − fn(y)‖+ ‖fn(x)− fn(y)‖.

Therefore

ra(x, {fn}) ≤ ‖x− y‖+ ra(y, {fn}) + lim
n→∞

‖fn(x)− fn(y)‖.

Thus

ra(x, {fn})− ra(y, {fn}) ≤ ‖x− y‖+K‖x− y‖.
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Similarly by replacing roles of x and y we have

|ra(x, {fn})− ra(y, {fn})| ≤ (K + 1)‖x− y‖.

�

We now discuss the existence and uniqueness of asymptotic center.

Proposition 2.3: Let C be a nonempty weakly compact convex subset of Banach
space X and let {fn} be a sequence of K-Lipschitzian maps such that fn : C → X.
Then Za(C, {fn}) is nonempty.

Proof : Since C is compact and ra(., {fn}) is continuous, by Lemma 1.1 there
exists x0 ∈ C such that ra(x0, {fn}) = ra(C, {fn}) i.e. x0 ∈ Za(C, {fn}). �

Let X be a normed linear space. We remember that a subset P of X is called a
cone if
(i) P is closed, non-empty and P 6= {0},
(ii) ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,
(iii) P ∩ −P = {0}.

For a given cone P ⊆ X, we can define a partial ordering 6 with respect to P
by x 6 y if and only if y−x ∈ P . The cone P is called normal if there is a number
M > 0 such that for all x, y ∈ X, 0 ≤ x ≤ y implies ‖x‖ ≤M‖y‖.

The least positive number satisfying the above is called the normal constant of P .

Lemma 2.4: Let C be a nonempty convex subset of Banach space X which is
ordered by a normal cone P and let {fn} be a sequence of convex maps such that
fn : C → X. Then ra(., {fn}) is convex.

Proof : We want to show that

ra(αx+ (1− α)y, {fn}) ≤ αra(x, {fn}) + (1− α)ra(y, {fn})

for all x, y ∈ X and α ∈ (0, 1) . Since {fn} is convex and X is an ordered Banach
space with ≤p and normed constant k = 1, we have

fn(αx+ (1− α)y)− αx+ (1− α)y ≤p α(fn(x)− x) + (1− α)(fn(y)− y).

Thus

‖fn(αx+ (1− α)y)− αx+ (1− α)y‖ ≤ α‖fn(x)− x‖+ (1− α)‖fn(y)− y‖.

Hence

lim sup
n→∞

‖fn(αx+ (1− α)y)− αx+ (1− α)y‖

≤ α lim sup
n→∞

‖fn(x)− x‖+ (1− α) lim sup
n→∞

‖fn(y)− y‖.

�
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Theorem 2.5 : Let C be a nonempty convex compact subset of the Banach space
X which is ordered by a normal cone P and {fn} a sequence of K-Lipschitzian
convex maps such that fn : C → X. Then Za(C, {fn}) is a nonempty convex set.

Proof : By Proposition 2.3 Za(C, {fn}) is nonempty. Suppose x, y ∈ Za(C, {fn})
and so

ra(x, {fn}) = ra(y, {fn}) = ra(C, {fn}).

By Lemma 2.4 ra(., {fn}) is convex, therefore for t ∈ [0, 1] we have

ra((1− t)x+ ty, {fn}) ≤ (1− t)ra(x, {fn}) + tra(y, {fn}) = ra(C, {fn}).

i.e (1− t)x+ ty ∈ Za(C, {fn}). �

Theorem 2.6 : Let C be a nonempty weakly compact convex subset of uniformly
convex Banach space X which is ordered by a normal cone P and let {fn} be
a sequence of K-Lipschitzian maps such that fn : C → X where K < 1. Then
Za(C, {fn}) is unique.

Proof : Suppose C is an arbitrary bounded subset of X. Since {fn} are contin-
uous and convex functions and ra(x, {fn}) → ∞ as ‖x‖ → ∞, by Lemma 1.1
Za(C, {fn}) 6= ∅. Suppose Za(C, {fn}) is not singleton. We claim that

(1−K)diam(Za(C, {fn})) ≤ ε0(X)ra(C, {fn}).

Set d = diam(Za(C, {fn})) that d > 0. Let 0 < r < d and x, y ∈ Za(C, {fn}) with
‖x − y‖ ≥ d − r. By the convexity of Za(C, {fn}), x+y

2 ∈ Za(C, {fn}). Also from
the property of modulus of convexity for every n ∈ N we have

‖fn(
x+ y

2
)− x+ y

2
‖ ≤ ‖fnx− x

2
+
fny − y

2
‖

≤ ra(C, {fn})[1− δX(
‖fnx− x− (fny − y)‖

ra(C, {fn})
)].

Therefore

ra(C, {fn}) = lim sup
n→∞

‖fn(
x+ y

2
)− x+ y

2
‖

≤ ra(C, {fn}) lim sup
n→∞

[1− δX(
‖fnx− x− (fny − y)‖

ra(C, {fn})
)]

and thus

lim inf
n→∞

δX(
‖fnx− x− (fny − y)‖

ra(C, {fn})
) ≤ 0.

By definition of ε0(X) and lim inf, there exists n0 ∈ N such that

(1−K)(d− r) ≤ (1−K)‖x− y‖ ≤ ‖fn0
x− x− (fn0

y − y)‖ ≤ ε0(X)ra(C, {fn}).
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Since r > 0 is arbitrary, we proved that the claim. By uniformly convexity of
X, ε0(X) = 0 and so diam(Za(C, {fn})) = 0 that is contradiction. Therefore
Za(C, {fn}) is singleton. �

Theorem 2.7 : Let C be a nonempty closed convex subset of a uniformly convex
Banach space. Then every bounded sequence {fn} in X has a unique asymptotic
with respect to C, i.e., Za(C, {fn}) = {z} and

lim sup
n→∞

‖fn(z)− z‖ < lim sup
n→∞

‖fn(x)− x‖ for x 6= z.

Proof : The result follows from Theorem 3.6. �

Theorem 2.8 : Let C be a nonempty closed convex bounded subset of a uniformly
convex Banach space X and let {fn} be a sequence of bounded maps such that
fn : C → X with Za(C, {fn}) = {z} and ra(C, {fn}) = r. For t ∈ (0, 1), let
gn(w) = (1 − t)w + tfn(w), n ∈ N, for all w ∈ C. Then Za(C, {gn}) = {z} and
ra(C, {gn}) = tr.

Proof : Suppose, for contradiction, that Za(C, {gn}) = v 6= z. Since

‖gn(z)− z‖ = t‖fn(z)− z‖ for all n ∈ N,

it follows that

ra(C, {gn}) = inf{lim sup
n→∞

‖gn(w)− w‖ : w ∈ C} ≤ tr.

Let ra(C, {gn}) = r
′
. Since the asymptotic center v of {gn} is unique, we have

r
′

= lim sup
n→∞

‖gn(v)− v‖ ≤ t lim sup
n→∞

‖fn(v)− v‖ < tr.

For each n ∈ N , we have

‖fn(v)− v‖ = ‖v − (1− t)v − tfn(v) + (1− t)v − (1− t)fn(v)‖

≤ ‖v − [(1− t)v + tfn(v)]‖+ (1− t)‖fn(v)− v‖

= ‖gn(v)− v‖+ (1− t)‖fn(v)− v‖,

which implies that

lim sup
n→∞

‖fn(v)− v‖ ≤ r′
+ (1− t)r < r

contradicting ra(C, {fn}) = r. Thus, Za(C, {gn}) = {z} , we have ra(C, {gn}) = tr.
�

Let C be a nonempty subset of a Banach space X. We remember that for x ∈ C
the inward set of x relative to C is the set

IC(x) = {(1− t)x+ ty : y ∈ C, t ≥ 0},
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and T : C → X is said to be a inward mapping if Tx ∈ IC(x) for all x ∈ C.

Theorem 2.9 : Let C be a nonempty subset of uniformly convex Banach space X
which is ordered by a normal cone P and let {fn} be a sequence of K-Lipschitzian
bounded maps which are uniformly convergent to f : C → X and K < 1. If z is
the asymptotic of {fn} with respect to C, then it is also asymptotic with respect to
IC(z).

Proof : Suppose that v is the asymptotic of {fn} with respect to IC(z). Suppose
that v 6= z. For v 6= z and C ⊆ IC(z), we have v ∈ IC(z)\C and f(v) < f(z) by
the uniqueness of the asymptotic center and the continuity of {fn}, there exists
w ∈ IC(z)\C such that f(w) < f(z). Hence w = (1 − t)z + ty for some y ∈ C
and t > 1. Since f(.) is a convex function, ra(y, {fn}) ≤ f(t−1w + (1 − t−1)z) =
t−1f(w) + (1− t−1)f(z) < f(z), a contradiction. Hence v = z. �

Theorem 2.10 : Let C be a nonempty weakly compact convex subset of a uni-
formly convex Banach space Xwhich is ordered by a normal cone P and let
{fn} be a sequence of K-Lipschitzian maps which are uniformly convergent to
f : C → X and K < 1. If T : C → X is a inward nonexpansive mapping such that
T (Za(IC(z), f)) ⊆ Za(IC(z), f), then T has a fixed point.

Proof : Let z ∈ Za(C, {fn}). Because Tz ∈ IC(z) and by Theorem 2.9 z is the
asymptotic center of {fn} with respect to IC(z), i.e. z, T z ∈ Za(IC(z), {fn}) we
conclude that from Theorem 2.6 Tz = z. �

Let C be a nonempty subset of Banach space X, T : C → X. Then x ∈ X is
said to be foxed point T if T (x) = x, and we denote the set of all fixed points of
T by F (T ). In the following we give new results in the fixed point.

Theorem 2.11 : Let C be a nonempty subset of Banach space X, T : C → X
nonexpansive and fn : C → X such that Za(C, {fn}) is weakly compact and
star-shaped. Also assume T (Za(C, {fn})) ⊆ Za(C, {fn}), T (∂C) ⊆ C and I − T
demiclosed on Za(C, {fn}). Then F (T ) ∩ Za(C, {fn}) 6= ∅.

Proof : Let u be the star- of Za(C, {fn}) and let {an} be a sequence in (0, 1) such
that an → 1. Define Tn : Za(C, {fn})→ Za(C, {fn}) by

Tnx = (1− an)u+ anTx.

For each n ≥ 1, Tn is a contraction, so there exists exactly one fixed point xn of
Tn. Now since

lim ‖Txn − xn‖ ≤ lim
n→∞

‖Tnxn − Txn‖,

limn→∞ ‖xn − Txn‖ = 0. Since Za(C, {fn}) is weakly compact there exists a sub-
sequence {xni

} of {xn} such that xni
⇀ z ∈ Za(C, {fn}). Since I − T is demi-

closed on Za(C, {fn}) and xni
− Txni

→ 0, it follows that z ∈ F (T ). Therefore
F (T ) ∩ Za(C, {fn}) 6= ∅. �

Corollary 2.12: Let C be a nonempty subset of the Banach space X, T : X → X
nonexpansive and fn : C → X such that Za(C, {fn}) is compact and convex. If
T (Za(C, {fn})) ⊆ Za(C, {fn}), then F (T ) ∩ Za(C, {fn}) 6= ∅.
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