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Consider the first order difference equation with several retarded arguments

∆u(k) +
m∑

i=1

pi(k) u(σi(k)) = 0,

where ∆u(k) = u(k + 1) − u(k), pi : N → R+, σi : N → N and lim
k→+∞

σi(k) = +∞
(i = 1, . . . , m). In the paper the oscillation of all solutions to this equation is reviewed and
new sufficient conditions for the oscillation are established.
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1. Introduction

Consider the difference equation with several retarded arguments

∆u(k) +
m∑

i=1

pi(k) u(σi(k)) = 0, (1.1)

where m ∈ N , ∆u(k) = u(k + 1) − u(k), pi : N → R+, σi : N → N and
lim

k→+∞
σi(k) = +∞ (i = 1, . . . , m). For each n ∈ N , denote Nn = {n, n + 1, . . .}.

Definition 1.1: Let n ∈ N . We call a function u : N → R a proper solution of
equation (1.1) on the set Nn, if it satisfies (1.1) on Nn and sup{|u(i)| : i ≥ k} > 0
for any k ∈ Nn.
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Definition 1.2: We say that a proper solution u : Nn → R of equation (1.1)
is oscillatory if for any k ∈ Nn there are n1, n2 ∈ Nk such that u(n1) u(n2) ≤ 0.
Otherwise the solution is called nonoscillatory.

In Sections 2 and 3 we give some well-known results for oscillation of solutions
of difference equation(1.1) and the differential equation

u′(t) +
m∑

i=1

qi(t) u(τi(t)) = 0, (1.2)

where qi ∈ Lloc(R+;R+), τi ∈ C(R+; R) and lim
t→+∞ τi(t) = +∞ (i = 1, . . . , m).

For these two types of equations to give different and similarity between the
oscillation of these criteria. In the final Section 4, we give new results for equation
(1.1), where some results are new for m = 1.

In the special case where m = 1, equation (1.1) and (1.2) are reduced respectively
to the equations

∆u(k) + p(k) u(σ(k)) = 0 (1.3)

and

u′(t) + q(t) u(τ(t)) = 0, (1.4)

where p : N → R+, σ : N → N , lim
k→+∞

σ(k) = +∞, q ∈ Lloc(R+; R+),

τ ∈ C(R+; R) and lim
t→+∞ τ(t) = +∞.

2. Oscillation criteria for equations (1.3) and (1.4)

Theorem 2.1 : ([1]) Let

lim inf
t→+∞

∫ t

τ(t)
q(s)ds >

1
e

, (2.1)

then all proper solutions of equation (1.4) are oscillatory.

Remark 1 : Condition (2.1) is optimal, that is, inequality (2.1) cannot be replaced
by the condition

lim inf
t→+∞

∫ t

τ(t)
q(s)ds ≥ 1

e
.

Furthermore, if
t∫

τ(t)

q(s)ds is a nondecreasing function, then condition (2.1) is nec-

essary and sufficient for oscillation of all solutions of equation (1.4).
Note that Theorem 2.1 was generalized in [2− 4] at different times.
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Theorem 2.2 : ([5]) Let n ∈ N , σ(k) = k − n and

lim inf
k→+∞

k−1∑

i=k−n

p(i) >
( n

n + 1

)n+1
. (2.2)

Then all proper solutions of equation (1.3) are oscillatory.

Remark 2 : Condition (2.2), for any n ∈ N , is optimal, that is condition (2.2)
cannot be replaced by the condition

lim inf
t→+∞

k−1∑

i=k−n

p(i) ≥
( n

n + 1

)n+1
.

It is obvious that
(

n
n+1

)n+1
< 1

e and
(

n
n+1

)n+1 ↑ 1
e when n ↑ +∞.

Theorem 2.3 : ([6]) Let

lim inf
k→+∞

k−1∑

i=σ(k)

p(i) >
1
e

. (2.3)

Then all proper solutions of equation (1.3) are oscillatory.

Remark 3 : Condition (2.3) is optimal. That is, we can construct the difference
equation, where k − σ(k) → +∞ for k → +∞ and

lim inf
k→+∞

k−1∑

i=σ(k)

p(i) =
1
e

,

but difference equation (1.3) has the positive solution.

3. Oscillation criteria for equations (1.1) and (1.2)

Theorem 3.1 : ([7]) Let the condition

+∞∑

s=1

∣∣pi(s)− pj(s)
∣∣ < +∞ (i, j = 1, . . . , m),

be fulfilled and

lim inf
k→+∞

m∑

i=1

( k−1∑

s=σi(k)

pi(s)
)

>
1
e

.

Then all proper solutions of equation (1.1) are oscillatory.
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Theorem 3.2 : ([8]) Let τi be non-decreasing functions and

lim sup
t→+∞

m∏

j=1

( m∏

i=1

∫ t

τj(t)
qi(s)ds

) 1
m

>
1
m

.

Then all proper solutions of equation (1.2) are oscillatory.

Theorem 3.3 : ([9]) Let

lim sup
t→+∞

m∏

j=1

[ m∏

i=1

∫ t

τj(t)
qi(s)

∫ τj(t)

τi(s)

( ∏

`=1

q`(ξ)
) 1

m

dξ ds

] 1
m

> 0

and

lim inf
t→+∞

m∑

i=1

∫ t

τi(t)

( m∏

`=1

q`(s)
) 1

m

ds >
1
e

.

Then all proper solutions of equation (1.2) are oscillatory.

4. New oscillation criteria for equation (1.1)

Theorem 4.1 : Let

lim inf
k→+∞

pi(k) > 0 (i = 1, . . . , m)

and

min

{
m∏

i=1
lim inf
k→+∞

k∏
j=σi(k)

(
1 + α m p

1
m (j)

)

αm
: α ≥ 1

}
> 1. (4.1)

Then all proper solutions of equation (1.1) are oscillatory, where p(j) =
m∏

i=1
pi(j).

Theorem 4.2 : Let for large j ∈ N , pi(j) ≥ pi > 0 (i = 1, . . . , m) and

p lim inf
k→+∞

(
m +

m∑
i=1

(k − σi(k))
)m+

m∑
i=1

(k−σi(k))

( m∑
i=1

(k − σi(k))
) m∑

i=1
(k−σi(k))

> 1.

Then all proper solutions of equation (1.1) are oscillatory, where p =
m∏

i=1
pi.
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Corollary 4.3: Let ni ∈ N , for large k ∈ N , σi(k) ≤ k − ni, pi(k) ≥ pi > 0
(i = 1, . . . , m) and

p
(
m +

m∑
i=1

ni

)m+
m∑

i=1
ni

( m∑
i=1

ni

) m∑
i=1

ni

> 1. (4.2)

Then all proper solutions of equation (1.1) are oscillatory, where p =
m∏

i=1
pi.

Remark 1 : In the case, observe that, when m = 1, condition (4.2) can be reduced
to the (classical) condition (2.2). The following example illustrates the significance
of our results.

Let σ(k) = k − 1, then condition (2.2) is reduced to the condition

lim inf
k→+∞

p(k) >
1
4

(4.3)

and condition (4.1) is reduced to the condition

lim inf
k→+∞

(√
p(k − 1) +

√
p(k)

)2
> 1. (4.4)

It is obvious that condition (4.3) implies Condition (4.4).
Let ε ∈ (0, 1

4 ], p(2k) = ε and p(2k + 1) = 1− ε (k = 1, 2, . . . ). It is obvious that
condition (4.4) is fulfilled but condition (4.3) is not fulfilled.
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