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1. Introduction

Let X(i) = (X
(i)
1 , . . . , X

(i)
ni ), i = 1, . . . , p, be independent samples of size

n1, n2, . . . , np, from p ≥ 2 general populations with distribution densities

f1(x), . . . , fp(x). It is based on sample X(i), i = 1, . . . , p, checking two hypotheses:
the homogeneity hypothesis

H0 : f1(x) = · · · = fp(x)

and the goodness-of-fit hypothesis

H ′
0 : f1(x) = · · · = fp(x) = f0(x),

where f0(x) is the completely defined density function. In the case of the hypothesis
H0, the general density of the distribution f0(x) is unknown.
In the present paper, the tests are constructed for the hypotheses H0 and H ′

0
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against the sequence of close alternatives:

H1 : fi(x) = f0(x) + α(n0)φi(x),

α(n0) −→ 0, n0 = min(n1, . . . , np) −→ ∞,∫
φi(x) dx = 0, i = 1, . . . , p.

We consider the test for the hypotheses H0 and H ′
0 based on the statistic

T (n1, n2, . . . , np) =

p∑
i=1

Ni

∫ [
f̂i(x)−

1

N

p∑
j=1

Nj f̂j(x)
]2
r(x) dx, (1)

where f̂i(x) is a kernel-type Rosenblatt-Parzen estimator of the density of the
function fi(x):

f̂i(x) =
ai
ni

ni∑
j=1

K
(
ai(x−X

(i)
j )

)
, Ni =

ni

ai
, N = N1 + · · ·+Np.

The particular case p = 2 is considered in [1] and [7]. Then the statistic T takes
the explicit form

T (n1, n2) =
N1N2

N1 +N2

∫ (
f̂1(x)− f̂2(x)

)2
r(x) dx.

2. Preliminaries

We consider the question concerning the limiting law of the distribution of statistic
(1) for the hypothesis H1 when ni tends to infinity so that ni = nki, where n → ∞,
and ki are constants. Let a1 = a2 = · · · = ap = an, where an → ∞ as n → ∞.
To obtain the limiting law of distribution of the functional Tn = T (n1, . . . , np),

we make assumptions as to the functions K(x), f0(x), φi(x), i = 1, . . . , p, and r(x):

(i) K(x) ≥ 0, vanishes outside the finite interval (−A,A) and, together with
its derivatives, is continuous on this interval or absolutely continuous on
(−∞,∞), x2K(x) is integrable and K(1)(x) ∈ L1(−∞,∞). In both cases∫
K(x) dx = 1.

(ii) The density function f0(x) is bounded and positive on (−∞,∞) or it is
bounded and positive in some finite interval [c, d]. Besides, in the domain
of positivity it has a bounded derivative.

(iii) Functions φj(x), j = 1, . . . , p, are bounded and have bounded derivatives

of first order; also φ
(1)
i (x) ∈ L1(−∞,∞).

(iv) The weight function r(x) is piecewise-continuous, bounded and r(x) ∈
L1(−∞,∞).
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3. Statements of the main results

Theorem 3.1 : Let the conditions (i)–(iv) be fulfilled. If αn = n−1/2a
1/4
n (αn =

α(n0)), n
−1a

9/2
n → 0 as n → ∞, then for the hypothesis H1 the random variable

a
1/2
n (Tn − µ) has the normal limiting distribution (A(φ), σ2), where

A(φ) =

p∑
i=1

ki

∫ [
φi(x)−

1

k

p∑
j=1

kjφj(x)
]2
r(x) dx,

σ2 = 2(p− 1)

∫
f2
0 (x)r

2(x) dx ·R(K0), K0 = K ∗K,

µ = (p− 1)

∫
f0(x)r(x) dx ·R(K), R(g) =

∫
g2(x) dx,

k = k1 + · · ·+ kp, p ≥ 2.

The conditions of Theorem 3.1 as regards an and αn are fulfilled, for instance, if
it is assumed that an = nδ, αn = n−1/2+δ/4 for 0 < δ < 2

9 .

Corollary 3.2: Let the conditions (i), (ii) and (iv) be fulfilled for K(x), f0(x)

and r(x), respectively. If n−1a2n → 0, then the random variable a
1/2
n (Tn−µ) for the

hypothesis H ′
0 has a normal limiting distribution (0, σ2).

Using this corollary we may construct the test for the hypothesis H ′
0; the critical

domain for testing this hypothesis is defined by the inequality

Tn ≥ dn(α), (2)

where

dn(α) = µ+ a−1/2
n σ λα,

λα is the quantile of the level 1−α, 0 < α < 1, of the standard normal distribution
Φ(x).

Remark 1 : The particular case p = 2 of criteria (2) is considered in [1, p. 43].

Corollary 3.3: In the conditions of Theorem 3.1 the local behavior of the power
PH1

(Tn ≥ dn(α)) is as follows: for n → ∞

PH1

(
Tn ≥ dn(α)

)
−→ 1− Φ

(
λα − A(φ)

σ

)
.
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We introduce the notation

f∗
n(x) =

1

k

p∑
j=1

kj f̂j(x),

µn =

∫
f∗
n(x)r(x) dx,

∆2
n =

1

k

p∑
i=1

ki∆
2
in, ∆2

in =

∫
f̂ 2
i (x)r

2(x) dx.

Theorem 3.4 : Let all the conditions of Theorem 3.1 be fulfilled. Then

a
1/2
n (Tn − µn)σ

−1
n for the hypothesis H1 has a normal limiting distribution

(A(φ)σ−1, 1), where

µn = (p− 1)R(K)µn, σ2
n = 2(p− 1)R(K0)∆

2
n.

Corollary 3.5: Let the conditions (i), (ii), (iv) and n−1a2n → 0 be fulfilled. Then
the random variable

a1/2n (Tn − µn)σ
−1
n

for the hypothesis H0 has a normal limiting distribution (0, 1).

This result allows us to construct the asymptotic test of the hypothesis testing
for H0 : f1(x) = · · · = fp(x) (hypothesis of homogeneity); the critical domain is
established by the inequality

Tn ≥ d̃n(α) = µn + a−1/2
n σnλα, (3)

where λα is a quantile of the level 1−α of the standard normal distribution Φ(x).

Corollary 3.6: In the conditions of Theorem 3.4 the local behavior of the power
PH1

(Tn ≥ d̃n(α)) is as follows

PH1
(Tn ≥ d̃n(α)) −→ 1− Φ

(
λα −A(φ)σ−1

)
.

Suppose inf
0≤x≤1

f0(x) > 0 and r(x) = f−1
0 (x), x ∈ [0, 1] (= 0, x ̸∈ [0, 1]). In this

case for the hypothesis H1, random variable a
1/2
n (Tn − µ0) has the normal limiting

distribution (A(φ), σ2
0), where

µ0 = (p− 1)

∫
K2(u) du, σ2

0 = 2(p− 1)

∫
K2

0 (u) du.



Vol. 22, No. 1, 2018 29

Let us introduce

T̂n = T̂ (n1, n2) =
n

an

p∑
i=1

ki

1∫
0

[
f̂i(x)−

1

k

p∑
j=1

kj f̂j(x)
]2
rn(x) dx,

rn(x) = [f∗
n(x)]

−1.

Theorem 3.7 : Let the condition (i)–(iv) be fulfilled. If αn = n−1/2a
1/4
n and

n−1a
9/2
n lnn → 0 as n → ∞, then random variable a

1/2
n (T̂n−µ0) for the hypothesis

H1 has the normal limiting distribution (A(φ), σ2
0).

Corollary 3.8: Let the conditions (i), (ii) and (iv) be fulfilled. If n−1a3n lnn→ 0,

then the random variable a
1/2
n (T̂n − µ0) for the hypothesis H0 has normal distribu-

tion (0, σ2
0).

This corollary allows us to construct the asymptotic test of the hypothesis testing
for H0 : f1(x) = · · · = fp(x); the critical domain is established by the inequality

T̂n ≥
≈
dn(α) = µ0 + a−1/2

n λασ0, (4)

where λα is a quantile of the level 1−α of the standard normal distribution Φ(x).

Corollary 3.9: In conditions of Theorem 3.7 the local behaviour of the power

PH1
(T̂n ≥

≈
dn(α)) is as follows

PH1

(
T̂n ≥

≈
dn(α)

)
−→ 1− Φ

(
λα − A(φ)

σ0

)
. (5)

Remark 2 :

(a) The test (2) of testing hypothesis H ′
0 against alternative H1 : f1(x) =

f0(x), fj(x) = f0(x) + αnφj(x), j = 2, . . . , p, is asymptotically strictly
unbased, since A(φ) > 0 and equals 0 if and only if, when φj(x) = 0,
j = 2, . . . , p.

(b) The tests (3) and (4) of testing hypothesis H0 against H1 is asymptotically
strictly unbased, since A(φ) > 0 and equals 0 if and only if, when φi(x) =
φj(x), i ̸= j, i, j = 1, . . . , p.

4. Proofs of Theorems 3.1, 3.4, 3.7

Proof of Theorem 3.1: Let us represent Tn as the sum

Tn = T (1)
n +A1n +A2n,
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where

T (1)
n =

n

an

p∑
i=1

ki

∫ [
f̂i(x)− Ef̂i(x)−

1

k

p∑
j=1

kj
(
f̂j(x)− Ef̂j(x)

)]2
r(x) dx,

A1n = 2
n

an

p∑
i=1

ki

∫ [
f̂i(x)− Ef̂i(x)

][
Ef̂i(x)−

1

k

p∑
j=1

kjEf̂j(x)
]
r(x) dx,

A2n =
n

an

p∑
i=1

ki

∫ [
Ef̂i(x)−

1

k

p∑
j=1

kjEf̂j(x)
]2
r(x) dx.

Here and in what follows E( · ) is a mathematical expectation with respect to the
hypothesis H1.
It is not difficult to see that

Ef̂i(x)=an

∫
K(an(x−u))f0(u) du+αnφi(x)+

αn

an

∫
tK(t)

1∫
0

φ
(1)
i

(
x− tz

an

)
dz dt.

This relation implies

A2n =
nα2

n

an
An(φ) +O

(nα2
n

a2n

)
.

Hence, since nα2
n√

an
= 1, we obtain

√
anA2n = A(φ) +O

(nα2
n

a
3/2
n

)
= A(φ) +O

( 1

an

)
, (6)

where

A(φ) =

p∑
i=1

ki

∫ [
φi(x)−

1

k

p∑
j=1

kjφj(x)

]2
r(x) dx.

Now let us show that a
1/2
n A1n −→ 0 in probability. For this it suffices to show that

a
1/2
n E|A1n| −→ 0 as n → ∞. We have

E|A1n| ≤ (EA2
1n)

1/2 =

= 2
n

an

{
p∑

i=1

k2iE

(∫ (
f̂i(x)− Ef̂i(x)

)
Ai(x)r(x) dx

)2
}1/2

,

where

Ai(x) = Ef̂i(x)−
1

k

p∑
j=1

kjEf̂j(x).
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Further, it is easy to calculate that

E

[ ∫ (
f̂i(x)−Ef̂i(x)

)
Ai(x)r(x) dx

]2
≤ a2n
kin

E

[ ∫
K
(
an(x−X

(i)
1 )

)
Ai(x)r(x) dx

]2
.

Therefore

E|A1n| ≤ c1
√
n

{
p∑

i=1

ki

∫
fi(u) du

[ ∫
K(an(x− u))Ai(x)r(x) dx

]2}1/2

. (7)

Since sup
x

|Ai(x)| ≤ c2αn for all i = 1, . . . , p and r(x) is bounded, from (7) we

obtain

a1/2n E|A1n| ≤ c3

√
nαn

a
1/2
n

= O
( 1

a
1/4
n

)
.

Hence

a1/2n A1n = op(1). (8)

Let us now proceed to the calculation of the limiting distribution of the functional

T
(1)
n :

T (1)
n =

n

an

p∑
i=1

ki

∫ [
f̂i(x)− Ef̂i(x)−

1

k

p∑
j=1

kj
(
f̂j(x)− Ef̂j(x)

)]2
r(x) dx, (9)

where k = k1 + · · ·+ kp.
After performing some simple transformation in (9), we obtain

T (1)
n =

∫ [ p∑
i=1

(√
ni

an

(
f̂i(x)−Ef̂i(x)

))2

−
( p∑
j=1

αj

√
nj

an

(
f̂j(x)−Ef̂j(x)

))2]
r(x) dx,

where α2
i =

ki

k1+···+kp
.

Let

Z(x) =
(
Z1(x), . . . , Zp(x)

)
be the vector with the component

Zi(x) =

√
ni

an

(
f̂i(x)− Ef̂i(x)

)
, i = 1, . . . , p.

Then

T (1)
n =

∫ [
|Z(x)|2 −

( p∑
j=1

αjZj(x)
)2

]
r(x) dx,
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where |a| is the length of the vector a = (a1, . . . , ap).
There exists an orthogonal matrix C = ∥cij∥, i, j = 1, . . . , p, depending only on

k1, k2, . . . , kp, for which

cpi = αi =

√
ki

k1 + · · ·+ kp
, i = 1, . . . , p.

Since under orthogonal transformation the vector length does not change, we
have

T (1)
n =

∫ [
|CZ|2 −

( p∑
j=1

αjZj(x)
)2

]
r(x) dx

=

p−1∑
i=1

∫ ( p∑
j=1

cijZj(x)
)2

r(x) dx. (10)

Let Fi(x) be a distribution function of the random variable X
(i)
1 and let F̂ni

(x)

be an empirical distribution function of the sample X(i) = (X
(i)
1 , . . . , X

(i)
ni ).

Further, by Theorem 3 in [5] we can write that

F̂ni
(x)− Fi(x) = n

−1/2
i W 0

i (Fi) + ε(1)n (x), (11)

sup
−∞<x<∞

|ε(1)n (x)| = O
( lnn

n

)
;

W 0
i (t), i = 1, . . . , p, are the independent Brownian bridges depending only on X(i).
Using (11), it is easy to establish ([4], [8]) that

Zi(x) =

√
ni

an

(
f̂i(x)− Ef̂i(x)

)
= ξi(x) + ε(2)n (x), (12)

sup
−∞<x<∞

|ε(2)n (x)| = Op

( lnn√
na−1

n

)
,

where

ξi(x) = a1/2n

∫
K(an(x− u)) dW 0

i (Fi(u)), i = 1, . . . , p,

then by virtue of (12) we can write

p∑
j=1

cijZj(x) =

p∑
j=1

cijξj(x) + ε(3)n (x), (13)

sup
−∞<x<∞

|ε(3)n (x)| = Op

( lnn√
na−1

n

)
.
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Further, ξj(x) can be represented as

ξj(x) = a1/2n

∫ [
K(an(x− t))−

∫
K(an(x− u)) dFj(u)

]
dWj(Fj),

where Wj(t), j = 1, . . . , p are independent standard Wiener processes on [0, 1].
From this representation it follows that

sup
−∞<x<∞

E ξ2j (x) < ∞, j = 1, 2, . . . , p.

From this we have

An =

p−1∑
i=1

∫ p∑
j=1

cij ξj(x)r(x) dx

is uniformly bounded in probability, i.e. P{|An| ≥ M} −→ 0 as M → ∞ uniformly
with respect to n.
Therefore

An ·Op

(an lnn√
n

)
= op(1), (14)

since, by assumption, a9/2
n

n → 0.
Thus, from representations (10) and (13), and also from relation (14), we find

√
an (T

(1)
n − T (2)

n ) = op(1) +Op

(a3/2n ln2 n

n

)
, (15)

where

T (2)
n =

p−1∑
i=1

∫ ( p∑
j=1

cijξj(t)
)2

r(t) dt.

Denote

ηi(t) = a1/2n

∫
K(an(t− u)) dWi(Fi(u)),

T (3)
n =

p−1∑
i=1

∫ ( p∑
j=1

cijηj(t)
)2

r(t) dt,

εi(t) = a1/2n Wi(1)

∫
K(an(t− u))fi(u) du.

Then

a1/2n

(
T (2)
n − T (3)

n

)
= op(1). (16)
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Indeed,

E
∣∣T (2)

n − T (3)
n

∣∣ ≤ 2

p−1∑
i=1

E

∣∣∣∣ ∫ p∑
j=1

cijηj(t)

p∑
r=1

cirεr(t)

∣∣∣∣r(t) dt
+

p−1∑
i=1

E

∫ ( p∑
j=1

cijεj(t)
)2

r(t) dt = B(1)
n +B(2)

n . (17)

It is easy to check that

B(2)
n ≤ c4a

−1
n .

Let us now estimate B
(1)
n . We have

B(1)
n ≤2

p−1∑
i=1

[
p∑
j,r

|cijcir|E|Wr(1)|
∣∣∣∣∫ [∫

Ψr(t)K(an(t−u))r(t) dt

]
dWj(Fj)

∣∣∣∣
]

≤2

p−1∑
i=1

p∑
j=1

p∑
r=1

|cijcir|

{∫ (∫
Ψr(t)K(an(t−u))r(t) dt

)2

dFj(u)

}1/2

≤c5a
−1
n ,

where

Ψr(t) =

∫
K(z)fr(t− za−1

n ) dz.

So, substituting the estimators of the expressions B
(1)
n and B

(2)
n into (17), we obtain

statement (16).
Denote

η0i (t) = a1/2n

∫
K(an(t− x)) dWi(F0),

where F0(x) is a distribution function with density f0(x). Since Fi(x) = F0(x) +

αnUi(x), U
(1)
i (x) = φi(x) and, by assumption, φi(x) is bounded and K(1)(x) ∈

L1(−∞,∞), we have

E
(
ηj(t)− η0j (t)

)2
= O(anαn),

E(η0j (t))
2 = O(1),

(18)

uniformly with respect to t ∈ (−∞,∞) and j, j = 1, . . . , p. Indeed, we have

E
(
ηj(t)− η0j (t)

)2
= anE

(∫ (
Wj(Fj(an(t− x)))−Wj(F0(an(t− x)))

)
K(1)(x) dx

)2
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≤an

∫ ∣∣∣Fj(an(t−x))−F0(an(t−x))
∣∣∣ |K(1)(z)| dx ·

∫
|K(1)(x)| dx≤c6anαn,

and also

E(η0n(t))
2 = an

∫
K2(an(t− x))f0(x) dx ≤ max

x
f0(x) ·

∫
K2(u) du.

Further, using (18) and the Cauchy–Schwarz inequality we establish that

√
anE|T (3)

n − T (4)
n | = O(an

√
αn ) +O(a3/2n αn), (19)

where

T (4)
n =

p−1∑
i=1

∫ ( p∑
j=1

cijη
0
j (t)

)2
r(t) dt.

Let us now study the limiting distribution of the functional T
(4)
n .

The processes η0j (t), j = 1, . . . , p, are independent and Gaussian and therefore

the new processes
p∑

j=1
cijη

0
j (t), i = 1, . . . , p, are also independent and Gaussian

by virtue of the orthogonality of the matrix ∥cij∥. Therefore to find the limiting

distribution T
(4)
n it remains to establish the limiting distribution of the functional

U (i)
n =

∫ ( p∑
j=1

cijη
0
j (t)

)2
r(t) dt

for every fixed i, i = 1, . . . , p− 1.

The covariant function R
(i)
n (t1, t2) of the Gaussian process

p∑
j=1

cijη
0
j (t) is equal to

R(i)
n (t1, t2) =

p∑
j=1

c2ijEη0j (t1)η
0
j (t2).

However,

Eη0j (t1)η
0
j (t2) =

∫
K(u)K

(
an(t1 − t2) + u

)
f0(t1 − a−1

n u) du

= f0(t1)K0

(
an(t1 − t2)

)
+O(a−1

n ), (20)

where the estimator O( · ) is uniform with respect to t1, t2 and K0 = K ∗K.
From (20) it follows that

R(i)
n (t1, t2) = f0(t1)K0

(
an(t1 − t2)

)
+O(a−1

n ). (21)
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A semi-invariant χ(i)
n
(s) of order s of the random variable U

(i)
n is defined by the

formula [3]

χ(i)
n
(s) = (s− 1)! · 2s−1

∫
· · ·

∫
R(i)

n (x1, x2)R
(i)
n (x2, x3) · · ·R(i)

n (xs, x1)

× r(x1)r(x2) · · · r(xs) dx1 dx2 · · · dxs. (22)

Using (21) and (22) it is not difficult to establish that

EU (i)
n = χ(i)

n
(1) = R(K)

∫
f0(x)r(x) dx+O(a−1

n ),

VarU (i)
n = χ(i)

n
(2) = 2R(K0)a

−1
n

∫
f2
0 (x)r

2(x) dx+ o(a−1
n ),

(23)

and the s-th semi-invariant χ(i)
n
(s) is equal, with an accuracy of terms of higher

order smallness, to [3]:

(s− 1)! 2s−1(a−1
n )s−1[K ∗K](s)(0)

∫
fs
0 (x)r

s(x) dx, (24)

where [K ∗K](s)(0) means an s-fold convolution of K0(x) with itself.
From relations (23) and (24) it follows [3] (see also [8]) that

a1/2n

(
U (i)
n −R(K)

∫
f0(x)r(x) dx

)
has a normal limiting distribution with mathematical expectation 0 and dispersion

2R(K0)

∫
f2
0 (u)r

2(u) du, R(g) =

∫
g2(x) dx,

and therefore
√
an (T

(4)
n − µ) has a normal limiting distribution (0, σ2).

Finally, taking into account (6), (8), (15), (16), (19) and the representation

a1/2n (Tn − µ) = a1/2n (T (4)
n − µ) +A(φ) +O(a−1/2

n ) + op(1)

+Op

(a3/2n ln2 n

n

)
+Op(an

√
αn ) +O(a3/2n αn), (25)

we conclude that a
1/2
n (Tn − µ) has a normal limiting distribution

(A(φ), σ2). 2

Proof of Theorem 3.4: It is obvious that

a1/2n (Tn − µn)σ
−1
n = a1/2n (Tn − µ)σ−1(σσ−1

n ) + a1/2n (µ− µn)σ
−1
n .
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Therefore it suffices to show that

a1/2n

(
µn −

∫
f0(x)r(x) dx

)
= op(1) (26)

and

∆2
n −

∫
f2
0 (x)r

2(x) dx = op(1). (27)

But (27) immediately follows from Theorem 2.1 of Bhattacharyya G. K., Rous-
sas G. G. [2] (see also [8], [6]).
Let us prove (26). We have

a1/2n E

∣∣∣∣ ∫ f∗
n(x)r(x) dx−

∫
f0(x)r(x) dx

∣∣∣∣
≤ a1/2n E

∣∣∣∣ ∫ (
f∗
n(x)− Ef∗

n(x)
)
r(x) dx

∣∣∣∣+ a1/2n

∫ ∣∣Ef∗
n(x)− f0(x)

∣∣r(x) dx
= A1n +A2n.

It is not difficult to check that

A2n ≤ c7
(
a−1/2
n +

√
an αn

)
.

Further, we have

A1n ≤ a1/2n E1/2

(∫ (
f∗
n(x)− Ef∗

n(x)
)
r(x) dx

)2

≤ c8a
1/2
n max

1≤j≤p

{
1

n

∫
fj(u) du

(∫
K(t)r

(
u− t

an

)
dt

)2
}1/2

≤ c9

(an
n

)1/2
.

Therefore

A1n +A2n ≤ c10

(
a−1/2
n +

√
an αn +

(an
n

)1/2
)

−→ 0. 2

Proof of Theorem 3.7: For proving it is enough to state that
√
an (Tn−T̂n) → 0

in probability. We have

√
an |Tn − T̂n| ≤ L(1)

n · L(2)
n ,

L(1)
n =

√
an sup

0≤x≤1
|f∗

n(x)− f0(x)|
(

inf
0≤x≤1

(
f0(x)f

∗
n(x)

))−1
,

L(2)
n =

n

an

p∑
i=1

ki

1∫
0

[
f̂i(x)−

1

k

p∑
j=1

kj f̂j(x)
]2

dx.
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Considering, that Ef̂j(x)− f0(x) = O(a−1
n ) +O(αn) uniformly in x, we obtain

√
an sup

x
|f∗

n(x)− f0(x)|

≤
p∑

i=1

ki
√
an sup

x
|f̂i(a)− Ef̂i(x)|+O(a−1/2

n ) +O(
√
an αn).

Further, from inequality (2) in [9] (see also [8, p. 43]) it follows that

√
an sup

x
|f̂j(x)− Ef̂j(x)| ≤ V0a

3/2
n sup

x
|F̂j(x)− Fj(x)| = O

(a3n lnn
n

)1/2

with probability 1, where V0 =
∞∨
−∞

(K). From this and by condition a9/2
n

n lnn → 0

it follows that

√
an sup

x
|f∗

n(x)− f0(x)| −→ 0 (28)

with probability 1.
Further, since

inf
0≤x≤1

f0(x)f
∗
n(x) ≥ ∆0 inf

0≤x≤1
f∗
n(x), ∆0 = inf

0≤x≤1
f0(x) > 0

and

inf
0≤x≤1

f∗
n(x) ≥ ∆0 − sup

0≤x≤1
|f∗

n(x)− f0(x)|,

then from the last and from (28) it follows that L
(1)
n → 0 with probability 1.

Further, we have

EL(2)
n =

n

an

p∑
i=1

ki

1∫
0

Var f̂i(x) dx+
n

an

p∑
i=1

ki

1∫
0

[
Ef̂i(x)−

1

k

p∑
j=1

kjEf̂j(x)
]2

dx. (29)

It is easity to see that

1∫
0

Var f̂i(x) dx = O
(an
n

)
,

Ef̂n(x) = an

∫
K(an(x− u))f0(u) du+O(αn).

Because from (29) we establish that

EL(2)
n ≤ c12 + c13

n

an
α2
n = c12 + c13a

−1/2
n
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(by condition nα2
n√

an
= 1). This means that L

(2)
n is bounded by probability. Therefore,

√
an (Tn − T̂n) → 0 in probability. 2
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