
Bulletin of TICMI
Vol. 22, No. 1, 2018, 3–10

Skolemization in Unranked Logics

Lia Kurtanidzea∗ and Mikheil Rukhaiab

aFaculty of Informatics, Georgian University
bI. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University

(Received March 30, 2018; Revised June 8, 2018; Accepted June 12, 2018)

In this paper we study skolemization for unranked logics with classical first-order semantics.
Skolemization is a transformation on first-order logic formulae, which removes all existential
quantifiers from a formula. This technique is vital in proof theory and automated reasoning,
especially for refutation based calculi, like resolution, tableaux, etc. Here we extend skolem-
ization procedure to unranked formulae and prove that the procedure is sound and complete.

Keywords: Skolemization, Unranked logics; Proof complexity, Normal forms.

AMS Subject Classification: 68T15, 03F07, 03B70, 68T27, 03F05.

1. Introduction

Skolemization is a well known technique in refutational theorem proving to elim-
inate existential quantifiers. It is sometimes called an extension method, because
it introduces new symbols in the signature of a formula. A very important fea-
ture of skolemization is that it looses logical equivalence, but preserves sat- or
validity-equivalence.

Skolemization procedure is well studied for classical first-order logic (see e.g. [1, 5,
20]), Constrained Logic (see e.g. [2]), Intuitionistic Logic (see e.g. [3, 4]), Fuzzy Log-
ics (see e.g. [6]), Lukasiewicz Logic (see e.g. [7]), Probabilistic Logic (see e.g. [27])
and the like.

The aim of this paper is to define different kinds of skolemization procedures for
unranked logics and discuss the effects in the proof complexities of skolem normal
forms.

Unranked languages are based on unranked alphabet, where function and/or
predicate symbols do not have a fixed arity. Thus, in these languages, inside a term
or a formula, it is possible to have several different occurrences of the same func-
tion/predicate symbol with different number of arguments. Additional strength
to these languages are given by the notions of sequence variables and sequence
functions. Sequence variables can be instantiated with finite sequences of terms,
whereas sequence functions are interpreted as multi-valued functions. These con-
structs seems to be higher-order, but they have a precisely defined first-order se-
mantics (see e.g. [16, 18, 22]).

In recent years, the usefulness of sequence variables and unranked symbols has
been illustrated in practical applications related to XML [11–15, 25], knowledge

∗Corresponding author. Email: lia.kurtanidze@gmail.com

ISSN: 1512-0082 print
c⃝ 2018 Tbilisi University Press

4 Bulletin of TICMI

representation [16, 18], automated reasoning [8, 19, 21, 23, 26], just to name a few.
In this extent, it is well known that on the one hand, tableaux method is widely
used for reasoning in Semantic Web and Knowledge Representation. On the other
hand, skolemization procedure is crucial for the tableaux method. In [17] a tableaux
calculus for unranked logics was presented, but the skolemization procedure itself
was not defined. With the present paper we intend to fill the gap.

2. Preliminaries

We define first-order unranked predicate logic in the similar way as it was given
in [17, 22]. We consider an alphabet A consisting of the following pairwise disjoint
sets of symbols:

• the set Vi of individual variables, denoted by xi, yi, zi, . . .,

• the set Vs of sequence variables, denoted by x, y, z, . . .,

• the set Fr
i of fixed arity (ranked) individual function symbols, denoted by

f r, gr, . . .,

• the set Fu
i of flexible arity (unranked) individual function symbols, denoted by

fu, gu, . . .,

• the set Fr
s of fixed arity (ranked) sequence function symbols, denoted by

f
r
, gr, . . .,

• the set Fu
s of flexible arity (unranked) sequence function symbols, denoted by

f
u
, gu, . . .,

• the set Pr of ranked predicate symbols, denoted by p, q, . . .,

• the set Pu of unranked predicate symbols, denoted by pu, qu, . . .,

• logical connectives and quantifiers ¬,∧,∨,→, ∃, ∀,

• auxiliary symbols: parentheses and the comma.

Each ranked symbol has a unique arity (rank) associated with it. If the rank
of a function symbol is 0, then it is called a constant. Unranked symbols do not
have a fixed arity. Each set of variables, function symbols, and predicate symbols is
countably infinite. The letter V denotes the set Vi∪Vs and its elements are denoted
by x, y, z,

The terms are defined as individual and sequence terms over A in the following
inductive way:

t ::= xi | f r(t1, . . . , tn) | fu(s1, . . . , sn) individual terms

s ::= t | x | f r
(t1, . . . , tn) | fu

(s1, . . . , sn), n ≥ 0 sequence terms

An atom is a formula of the form p(t1, . . . , tn), n ≥ 0 and pu(s1, . . . , sm),m ≥ 0,
where p ∈ Pr is an n-ary predicate symbol, and pu ∈ Pu is a flexible arity predicate
symbol. Formulas are built as usual from atomic formulas and logical connectives
¬,∧,∨,→,∃, and ∀. Quantifications are allowed on both, individual as well as on
sequence variables. We use the letters A,B, . . . to denote formulas.

A substitution is a finite set of distinct variable bindings, where variable binding
is either expression xi 7→ t or x 7→ s. Substitutions are denoted by σ, θ and the
empty substitution is denoted by ϵ. Application of a substitution σ on term t and
formula A is defined in the similar way as it is given in [24] and is denoted by tσ
and Aσ, respectively.

Vol. 22, No. 1, 2018 5

The semantics of our language is assumed to be classical first-order semantics,
defined in a similar way as it is given in [22, 24]. The notions of interpretation,
evaluation, etc., are standard. Note that, as usual, ∀ and ∃ are dual to each other
in our setting too; i.e., ∀d ≡ ∃ and ∃d ≡ ∀.

The following definitions provide some terminology, vital for the next section.

Definition 2.1: (Strong and weak quantifiers). The polarity of a quantifier is
defined in the following inductive way:

• (Qx) is positive in (Qx)A.

• if (Qx) is positive (negative) in A or in B, then it is positive (negative) in A∧B
and in A ∨B.

• if (Qx) is positive (negative) in B, then it is positive (negative) in A → B.

• if (Qx) is positive (negative) in A, then it is negative (positive) in ¬A and in
A → B.

Positive universal (existential) quantifiers and negative existential (universal) quan-
tifiers are called strong (weak) quantifiers.

Definition 2.2: (Quantifier scope). Let A be a formula and let (Qx)B be its
subformula. We say, that B is in the scope of (Qx) and for every subformula (Q′y)C
of B, the quantifier (Q′y) is in the scope of the quantifier (Qx).

Let A be a formula and x a variable occurring in A. We say that an occurrence
of x is bound in A, if it occurs in the scope of the quantifier (Qx), otherwise its
occurrence is free. If all occurrences of x are bound in A, then we say that x is
a bound variable in A. Please note, that it can be the case, that one variable has
free and bound occurrences in a formula, but we can avoid such cases by renaming
bound variables. In the similar way we avoid cases when one variable is bound by
two or more quantifiers. We say that A is a closed formula, if it does not contain
free variables.

Definition 2.3: (Quantifier omission). Let A be a formula. A−(Qx) denotes the
formula A, where an occurrence of the quantifier (Qx) is omitted.

Remark 1 : Note that the bound variable x of A becomes free in A−(Qx).

Example 2.4 Let A be the formula B ∧ (∀xi)(∃x)pu(xi, x). Then A−(∀xi) is the

formula B ∧ (∃x)pu(xi, x) and A−(∃x) is B ∧ (∀xi)pu(xi, x).

We say, that a formula is in the prenex form, if it has the form
(Q1x1) · · · (Qnxn)A, where A is a quantifier-free formula. Every formula can be
transformed into a prenex form using the following quantifier shifting rules:1

¬(Qx)A ⇐⇒ (Qdx)¬A
(∃x)(A ∨B) ⇐⇒ (∃x)A ∨ (∃x)B
(∀x)(A ∧B) ⇐⇒ (∀x)A ∧ (∀x)B

(∃x)(A → B) ⇐⇒ (∀x)A → (∃x)B

1To transform a formula into prenex form, the quantifier shifting rules are used from right to left direction.
The other direction is used to transform a formula into antiprenex form.

6 Bulletin of TICMI

and if x is not free in B, then

(Qx)(A ∨B) ⇐⇒ (Qx)A ∨B
(Qx)(A ∧B) ⇐⇒ (Qx)A ∧B

(Qx)(A → B) ⇐⇒ (Qdx)A → B
(Qx)(B → A) ⇐⇒ B → (Qx)A

3. Skolemization

In a refutational calculus skolemization is a removal of the existential quantifiers
from formulas. There are various ways to define skolemization:

Prenex: the traditional way to get skolem normal form of a formula. First, the
formula is transformed to prenex normal form and then existential quantifiers are
removed by replacing the corresponding bound variables by new n-ary function
symbols, n ≥ 0, where n is the number of universal quantifiers, preceding the
existential one.
Structural: this method does not need transformation to the prenex normal
form. It is a bit more general, because it can eliminate strong quantifiers from
a formula. The rule is similar – strong quantifier (Qx) depends on the weak
quantifiers having (Qx) in their scope. It is possible to remove weak quantifiers
in the same way, but it is called Herbandization in the literature (see e.g. [9, 10]).
Antiprenex: this method is similar to structural skolemization, but contrary
to the prenex normal form, quantifiers are shifted deep inside the formula us-
ing quantifier shifting rules, to minimize the range of quantifiers. This leads to
smaller skolem terms in general.

Below we consider structural skolemization, because it is more general and does
not need any preprocessing steps like prenex or antiprenex. We extend definitions
from [1] to first-order unranked formulae.

Definition 3.1: (Structural skolemization). Let A be a closed unranked for-
mula, where no variable is bound by two quantifiers. We define a structural skolem-
ization operator sk() in the following way:

• If A does not contain strong quantifiers, then sk(A) = A.

• Let (Qxi) be the first strong quantifier occurring in A. If (Qxi) is in the scope
of weak quantifiers (Q1x1), . . . , (Qnxn), n ≥ 0, then we distinguish the following
cases:
• if n > 0 and xj ∈ Vs for any j = 1, . . . , n, then take a fresh flexible arity indi-

vidual function symbol fu not occurring in A and sk(A) = sk(A−(Qxi)[x
i 7→

fu(x1, . . . , xn)]);
• otherwise, take a fresh n-ary individual function symbol f r not occurring in

A and sk(A) = sk(A−(Qxi)[x
i 7→ f r(x1, . . . , xn)]); note that, if n = 0, then f r

is a constant.

• Let (Qx) be the first strong quantifier occurring in A. If (Qx) is in the scope
of weak quantifiers (Q1x1), . . . , (Qnxn), n ≥ 0, then we distinguish the following
cases:
• if n > 0 and xj ∈ Vs for any j = 1, . . . , n, then take a fresh flexible arity

sequence function symbol f
u

not occurring in A and sk(A) = sk(A−(Qx)[x 7→

Vol. 22, No. 1, 2018 7

f
u
(x1, . . . , xn)]);

• otherwise, take a fresh n-ary sequence function symbol f
r

not occurring in A
and sk(A) = sk(A−(Qx)[x 7→ f

r
(x1, . . . , xn)]); note that, if n = 0, then f

r
is a

constant.

Remark 1 : Note that, if we exchange places of words “strong” and “weak” in
Definition 3.1, then we get Herbandization of a formula – exact dual to Skolemiza-
tion. Also, note that weak quantifiers become strong ones when formula is negated
in refutational calculus.

It is easy to see, that sk() operator is well-defined: there is a finite number, say n
strong quantifiers in a formula, thus a fixed point of sk() operator will be reached
after n steps of the recursive definition. Moreover, sk() is a function: it produces
the same skolem normal form modulo function symbol names.

Definition 3.2: Let A be an unranked formula and let A′ be its prenex form;
then sk(A′) is a prenex skolem form of A. Analogously we define an antiprenex
skolem form of A.

In the definition above we say “a” instead of “the”, because a formula might
have several prenex forms, thus different skolem normal forms. This is illustrated
in the following example.

Example 3.3 Let us consider the formula:

A : (∃xi)
(
(∀yi)pu(xi, yi) ∧ (∀x)qu(x)

)
∧ (∃y) (pu(y) ∨ qu(y))

and compute its structural, anti-prenex and prenex skolem forms. According to
Definition 3.1, we get:

(∃xi)
(
pu(xi, f r(xi)) ∧ qu(f

r
(xi))

)
∧ (∃y) (pu(y) ∨ qu(y))

Note, that f r and f
r

are different function symbols, individual and sequence func-
tion symbols, respectively, both with arity 1.

If we apply quantifier shifting rules, we can obtain the anti-prenex form of A:

A′ : (∃xi)(∀yi)pu(xi, yi) ∧ (∀x)qu(x) ∧ (∃y) (pu(y) ∨ qu(y))

Again, by Definition 3.1, we get:

(∃xi)pu(xi, f r(xi)) ∧ qu(f
r
) ∧ (∃y) (pu(y) ∨ qu(y))

Note, that here f
r

(with arity 0) is a constant and does not depend on xi.
There are several prenex forms of A, namely, the order of quantifiers can be

(∃xi)(∀yi)(∀x)(∃y), (∃xi)(∀x)(∀yi)(∃y), (∃y)(∃xi)(∀yi)(∀x), or (∃y)(∃xi)(∀x)(∀yi).
The skolem terms will be similar to the one from A in the first two cases, so
interesting is to consider either from the last two cases, e.g.:

A′′ : (∃y)(∃xi)(∀yi)(∀x)
(
pu(xi, yi) ∧ qu(x) ∧ (pu(y) ∨ qu(y))

)

8 Bulletin of TICMI

According to Definition 3.1, we get:

(∃y)(∃xi)
(
pu(xi, fu(y, xi)) ∧ qu(f

u
(y, xi)) ∧ (pu(y) ∨ qu(y))

)
where, again, fu and f

u
are different function symbols, individual and sequence

function symbols, respectively, both with the flexible arity.

Theorem 3.4 : (Soundness). If A is valid, then sk(A) is also valid.

Proof : Proceed by induction on the number of strong quantifiers in A. The base
case is trivial: A = sk(A).

Assume, that the theorem holds for all formulae with at most n strong quantifiers
and A contains n + 1 strong quantifiers. Then we select the first strong quantifier
(Qx), and assume it is in the scope of weak quantifiers (Q1x1), . . . , (Qmxm),m ≥ 0
in A. We shift those quantifiers to the front using quantifier shifting rules,
then we get an equivalent formula of A, (∃x1) . . . (∃xm)(∀x)B, where B =
A−(Qx)(Q1x1)...(Qmxm).

1

By Definition 3.1, sk((∃x1) . . . (∃xm)(∀x)B) = sk((∃x1) . . . (∃xm)Bσ), where σ is
a substitution built according to Definition 3.1 (case distinction on x,m, x1, . . . , xm,
not relevant for this proof).

By the induction hypothesis, if (∃x1) . . . (∃xm)Bσ is valid, then
sk((∃x1) . . . (∃xm)Bσ) is valid too. Thus, it is sufficient to show that
(∃x1) . . . (∃xm)(∀x)B → (∃x1) . . . (∃xm)Bσ, which is trivially valid. �

Theorem 3.5 : (Completeness). If sk(A) is valid, then A is also valid.

Proof : Proceed by induction on the number of strong quantifiers in A. The base
case is trivial: sk(A) = A.

Assume, that the theorem holds for all formulae with at most n strong quantifiers
and A contains n + 1 strong quantifiers. Then we select the first strong quantifier
(Qx) and distinguish the following cases:

• (Qx) is not in the scope of weak quantifiers in A. Then, by Definition 3.1 sk(A) =
sk(A−(Qx)σ), where σ is either [x 7→ f r] (if x ∈ Vi) or [x 7→ f

r
] (if x ∈ Vs), for

f r (or f
r
), with arity 0, not occurring in A. By the induction hypothesis, if

sk(A−(Qx)σ) is valid, then A−(Qx)σ is valid too. Thus, it is sufficient to show
that if A−(Qx)σ is valid, then A is also valid.

Note that A is equivalent to A′ : (∀x)A−Q(x) (using quantifier shifting rules
(Qx) is shifted to front) and assume that A′ (and thus A) is not valid. Then there
is an interpretation Γ, that falsifies A′. By the standard definition of interpreta-
tions, there is also an interpretation Γ′ that differs from Γ in the interpretation
of x and falsifies A′. Since f r (or f

r
) does not occur in A, we can extend Γ′ to

Γ′′, where x is interpreted as f r (or f
r
). Then Γ′′ falsifies A−(Qx)σ, implying that

A−(Qx)σ is not valid either.

• (Qx) is in the scope of weak quantifiers (Q1x1), . . . , (Qmxm),m > 0 in A. We shift
those quantifiers in front using quantifier shifting rules, then we get an equivalent
formula of A, A′ : (∃x1) . . . (∃xm)(∀x)B, where B = A−(Qx)(Q1x1)...(Qmxm). By
Definition 3.1, sk(A′) = sk((∃x1) . . . (∃xm)Bσ), where σ = [x 7→ f(x1, . . . , xm)],

1Note that weak quantifiers become existential ones and strong quantifiers become universal ones when
shifted in front.

Vol. 22 No. 1, 2018 9

and f is either in Fr
i ,Fu

i ,Fr
s or Fu

s depending on x, x1, . . . , xm. Without loss of
generality we assume that f ∈ Fu

s , i.e., x ∈ Vs, and there is k ∈ {1, . . . ,m}, s.t.,
xk ∈ Vs; the other cases are similar.

By the induction hypothesis, if sk((∃x1) . . . (∃xm)Bσ) is valid, then
(∃x1) . . . (∃xm)Bσ is valid too. Thus, it is sufficient to show that if
(∃x1) . . . (∃xm)Bσ is valid, then A′ (and thus A) is also valid.

Again, assume that A′ is not valid, then there is an interpretation Γ that
falsifies A′ and is a model of ¬A′ : (∀x1) . . . (∀xm)(∃x)¬B. By axiom of choice,
there is a function gu of x1, . . . , xm to assign to x, and since f does not occur
in A, we can take gu = f and construct an interpretation Γ′, extension of Γ,
that will be a model of (∀x1) . . . (∀xm)¬Bσ, thus falsify (∃x1) . . . (∃xm)Bσ. This
proves the theorem.

�

Corollary 3.6: A is sat-equivalent to ¬sk(¬A), i.e., A is satisfiable iff ¬sk(¬A)
is.

Proof : Direct consequence of theorems 3.4 and 3.5. �

It is easy to see, that different skolemization methods produce formulae of the
similar length (the number of symbols) and logical complexity (the number of
logical connectives). In [5] it was shown, that in terms of proof complexity, the
particular form of skolemization actually matters, since it might destroy some in-
formation encoded inside a formula. The complexity analysis is based on the notion
of Herbrand complexity – the minimum size of Herbrand disjunction of a formula.
The detailed discussion can be found in [1, 5]. The complexity results obtained
in [1, 5] can be extended to unranked logics in a straightforward way.

To summarize the mentioned results, as it was stated in [1], if a given for-
mula is already in the prenex form, then “antiprenex skolemization may give a
non-elementary speed-up over the structural one” during the proof search. Thus,
skolemization should be considered as “an integral part of the inference process and
not as a preprocessing step of minor importance”.

4. Conclusion

We have investigated skolemization procedure for first-order unranked formulas.
We defined the algorithm and proved that it is sound and complete. Although
we did not give a formal proof, it is easy to see, that the complexity relationship
between different kind of skolemization procedures hold for unranked formulas as
well.

Aknowledgements

This work was supported by the Shota Rustaveli National Science Foundation
project PhD F 17 218.

References

[1] M. Baaz, U. Egly, A. Leitsch, Normal form transformations. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, North Holland, I, 5 (2001), 273-333

10 Bulletin of TICMI

[2] HJ. Bürckert, B. Hollunder, A. Laux, On skolemization in constrained logics, Annals of Mathematics
and Artificial Intelligence, Springer, 18, 2 (1996), 95-131

[3] M. Baaz, R. Iemhoff, The Skolemization of existential quantifiers in intuitionistic logic. Annals of
Pure and Applied Logic, Elsevier, 142, 1-3 (2006), 269-295

[4] M. Baaz, R. Iemhoff, On Skolemization in constructive theories, The Journal of Symbolic Logic,
Cambridge University Press, 73, 3 (2008), 969-998

[5] M. Baaz, A. Leitsch., On skolemization and proof complexity, Fundamenta Informaticae, 20, 4 (1994),
353-379

[6] M. Baaz, G. Metcalfe, Herbrand theorems and Skolemization for prenex fuzzy logics, In Conference
on Computability in Europe, Springer, Berlin, Heidelberg, 2008, 22-31

[7] M. Baaz, G. Metcalfe, Herbrand’s Theorem, Skolemization and Proof Systems for First-Order
 Lukasiewicz Logic, Journal of Logic and Computation, Oxford University Press, 20, 1 (2010), 35-
54

[8] B. Buchberger, T. Jebelean, T. Kutsia, A. Maletzky, W. Windsteiger, Theorema 2.0: Computer-
Assisted Natural-Style Mathematics, Journal of Formalized Reasoning, 9, 1 (2016), 149-185

[9] S.R. Buss, On Herbrand’s theorem, In Logic and Computational Complexity, LNCS, Springer, Berlin,
Heidelberg, 960 (1995), 195-209

[10] S.R. Buss, (editor). Handbook of Proof Theory, Elsevier, 1998
[11] J. Coelho and M. Florido, CLP(Flex): Constraint Logic Programming applied to XML processing,

In Robert Meersman and Zahir Tari, editors, CoopIS/DOA/ODBASE (2), Springer, 3291 (2004), of
LNCS, 1098–1112

[12] J. Coelho and M. Florido, Veriflog: A constraint logic programming approach to verification of website
content, In Heng Tao Shen, Jinbao Li, Minglu Li, Jun Ni, and Wei Wang, editors, Advanced Web
and Network Technologies, and Applications, APWeb 2006 International Workshops: XRA, IWSN,
MEGA, and ICSE, Harbin, China, January 16-18, 2006, Proceedings, Lecture Notes in Computer
Science, Springer, 3842 (2006), 148-156

[13] J. Coelho, M. Florido, XCentric: logic programming for XML processing, In Irini Fundulaki and Neok-
lis Polyzotis, editors, 9th ACM International Workshop on Web Information and Data Management
(WIDM 2007), Lisbon, Portugal, November, ACM, 9, (2007), 1-8

[14] J. Coelho, M. Florido, T. Kutsia, Sequence disunification and its application in collaborative schema
construction, In Mathias Weske, Mohand-Said Hacid, and Claude Godart, editors, WISE Workshops,
Lecture Notes in Computer Science, Springer 4832 (2007), 91-102

[15] J. Coelho, M. Florido, T. Kutsia, Collaborative schema construction using regular sequence types, In
Proceedings of the IEEE International Conference on Information Reuse and Integration, IRI 2009,
10-12 August 2009, Las Vegas, Nevada, USA, pages 290–295. IEEE Systems, Man, and Cybernetics
Society, 2009

[16] H. Delugach, Common Logic (CL) – A Framework for a Family of Logic-Based Languages, ISO/IEC
24707 Information Technology Standard, 2007

[17] B. Dundua, L. Kurtanidze, M. Rukhaia. Unranked Tableaux Calculus and its Web-related Applica-
tions, IEEE Conference on Electrical and Computer Engineering, IEEE Xplore Digital Library, 2017,
1181-1184

[18] M. Genesereth, Knowledge Interchange Format, Draft proposed American National Standard, 1998,
Available at http://logic.stanford.edu/kif/dpans.html

[19] M. Ginsberg, The MVL theorem proving system, SIGART Bull., 2, 3 (1991), 57-60
[20] J. Goubault. A BDD-based simplification and skolemization procedure, Logic Journal of the IGPL,

Oxford University Press, 3, 6 (1995), 827-855
[21] I. Horrocks, A. Voronkov, Reasoning support for expressive ontology languages using a theorem prover,

In Jürgen Dix and Stephen J. Hegner, editors, Foundations of Information and Knowledge Systems,
4th International Symposium, FoIKS 2006, Budapest, Hungary, February 14-17, 2006, Proceedings,
Lecture Notes in Computer Science, Springer, 3861 (2006), 201-218

[22] T. Kutsia, B. Buchberger, Predicate Logic with Sequence Variables and Sequence Function Symbols,
In: A. Asperti, G. Bancerek, and A. Trybulec, editors, Proceedings of the 3rd International Conference
on Mathematical Knowledge Management, LNCS, Springer, 3119 (2004), 205-219

[23] T. Kutsia, Equational prover of THEOREMA, In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-11, 2003, Pro-
ceedings, Lecture Notes in Computer Science, 2706 (2003), 367-379

[24] T. Kutsia, Solving Equations Involving Sequence Variables and Sequence Functions, In: Buchberger
B., Campbell J. (eds) Artificial Intelligence and Symbolic Computation, LNCS, Springer, Berlin,
Heidelberg, 3249 (2004), 157-170

[25] T. Kutsia, M. Marin, Can context sequence matching be used for querying XML? In Laurent Vigneron,
editor, Proceedings of the 19th International Workshop on Unification UNIF’05, Nara, Japan, 22 April,
2005, 77-92

[26] L.C. Paulson. Isabelle: The next 700 theorem provers, In Logic and Computer Science, Academic
Press, 1990, 361-386

[27] G. Van den Broeck, W. Meert, A. Darwiche, Skolemization for weighted first-order model counting.
In Proceedings of the 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR), 2014, 1-10

	Information for the Authors.pdf
	Information for the Authors
	Information for the Authors
	Information for the Authors

