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Throughout this paper, E denotes a base (ground) set and R stands for the real
line.
Let f : E → R be a function and let M be a class of σ-finite measures defined

on some σ-algebras of subsets of E.
According to the terminology adopted in [1], we shall say that:
(a) f is absolutely measurable with respect to M if, for any measure µ ∈ M,

this f turns out to be µ-measurable;
(b) f is relatively measurable with respect to M if there exists at least one

measure µ ∈ M such that this f is µ-measurable;
(c) f is absolutely nonmeasurable with respect to M if there exists no measure

from M for which this f becomes measurable.
Naturally, for a set X ⊂ E, we have some direct analogues of the introduced

notions (a), (b), and (c).
Namely, we shall say that X is absolutely measurable (relatively measurable,

absolutely nonmeasurable) with respect to the classM if the characteristic function
of X is absolutely measurable (relatively measurable, absolutely nonmeasurable)
with respect to M.
More detailed information about the above concepts can be found in Chapter

5 of [1]. Actually, (a), (b), and (c) may be regarded as generalized measurability
properties of functions acting from E into R.
In the present paper we intend to discuss certain pathological subsets of R from

the point of view of their generalized measurability and potential definability. As
widely known, all projective sets inR (in the classical sense of Luzin and Sierpiński)

∗Corresponding author. Email: kharaz2@yahoo.com

ISSN: 1512-0082 print
c⃝ 2018 Tbilisi University Press



60 Bulletin of TICMI

can be treated as one of the possible realizations of the concept of definability,
and in our further considerations we will be focused on projective sets with bad
measurability properties. The following preliminary examples are relevant in this
context. They serve to somehow illustrate the introduced notions (a), (b), and (c).

1 of the completions of all
σ-finite Borel measures on R. As well known, it is consistent with ZFC set theory
that every projective subset of R is absolutely measurable with respect to M1. In
particular, the Axiom of Projective Determinacy implies the absolute measurability
of all projective sets in R with respect to the same class M1. Moreover, all analytic
and co-analytic sets in R are absolutely measurable with respect to M1, without
assuming any additional set-theoretical assertions.

2

Consider any Bernstein type subset B of R. This B and its complement R\B meet
each nonempty perfect set in R (see, for instance, [4], [7], [8]). It is not difficult
to show that B is absolutely nonmeasurable with respect to M2. Conversely, any
subset of R absolutely nonmeasurable with respect to M2 is a Bernstein set in R
(see [1]). It should be noticed that in Gödel’s Constructible Universe L there are
certain Bernstein sets belonging to the projective class ∆1

2(R) = Σ1
2(R) ∩ Π1

2(R),
so we have in L projective sets absolutely nonmeasurable with respect to M2

3 of measures on
R which extend the standard Lebesgue measure λ on R and are invariant under
the group of all translations of R. It is well known that there exist subsets of R
which are absolutely nonmeasurable with respect to M3. One of such subsets is
a classical Vitali set (recall that Vitali sets are usually defined as selectors of the
quotient set R/Q, where Q stands for the field of all rational numbers). At the
same time, there exists a Vitali subset of R relatively measurable with respect to
the class of those measures on R which extend λ and are quasi-invariant under
the group of all translations of R (see [1]). In Gödel’s Universe L the real line
R is endowed with a well-ordering ≼ whose graph belongs to the projective class
∆1

2(R
2). Defining in L the set V ⊂ R by the formula

x ∈ V ⇔ (∀y ∈ R)(x− y ∈ Q ⇒ x ≼ y),

it is not difficult to verify that V is a Vitali set belonging to the projective class
∆1

2(R). Consequently, we have in L projective sets absolutely nonmeasurable with
respect to M3.

µ(E) denote the class of all those measures on
E which extend µ. It is known that any set X ⊂ E is relatively measurable with
respect to Mµ(E). In other words, there are no subsets of E absolutely nonmea-
surable with respect to the same class.

By definition, a Hamel basis of R is any of its bases, when this R is treated as
a vector space over Q. The following statement is valid.

be the class of the completions of

Theorem 1 : If there exists a projective Hamel basis of R, then there exists a
projective Vitali set in R which is a vector space over Q.

all nonzero σ-finite diffused (i.e., vanishing at the singletons) Borel measures on R.

Example 1: Take E = R and consider the class M

Example 2: Take again E = R and let M

.

Example 3: Once again put E = R and consider the class M

Example 4: Let E be a ground set, let µ be a σ-finite measure defined on some
σ-algebra of subsets of E, and let M
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Proof : Let H = {ei : i ∈ I} be a projective Hamel basis of R. For 1 ∈ Q, we
have its unique representation in the form

1 = q1ei1 + q2ei2 + ...+ qnein ,

where i1, i2, ..., in are some pairwise distinct indices from I and q1, q2, ..., qn are
some nonzero rational numbers. Denote

H ′ = H \ {ei1 , ei2 , ..., ein}

and consider the finite-dimensional vector space

U = linQ({ei1 , ei2 , ..., ein}).

Using a well-known algorithm, we can replace the basis {ei1 , ei2 , ..., ein} of U by a
basis {e′1, e′2, ..., e′n}, where e′1 = 1. Further, we put

U ′ = linQ({e′2, e′3, ..., e′n} ∪H ′).

Obviously, we have a representation of R in the form of a direct sum

R = Q+ U ′ (Q ∩ U ′ = {0}),

whence it follows that U ′ is a Vitali set being simultaneously a vector space over
Q.
It remains to show that U ′ is also a projective subset of R. For this purpose,

first observe that the set

H ′′ = {e′2, e′3, ..., e′n} ∪H ′

is trivially projective (because H and H ′ are projective). Further, we may write

U ′ = ∪{U ′
k : k < ω},

where, for every natural number k, the set U ′
k consists of all those elements from

U ′, whose representation via H ′′ contains at most k nonzero rational coefficients.
Clearly, we have a continuous mapping

ϕ : (QH ′′)k → R

defined by the formula

ϕ(q1h1, q2h2, ..., qkhk) = q1h1 + q2h2 + ...+ qkhk,

where

(q1, q2, ..., qk) ∈ Qk, (h1, h2, ..., hk) ∈ (H ′′)k.
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From this formula we easily infer that each U ′
k (k < ω) is a projective set in R

(belonging to a fixed projective class). Therefore, the entire set U ′ belongs to the
same projective class. This completes the proof. �

Remark 1 : Actually, the above argument yields that if there exists a Hamel
basis of R belonging to the projective class Π1

n(R), then there exists a Vitali set
which is a vector space over Q and belongs to the projective class Σ1

n+1(R). The
same argument shows (within ZF theory) that if there exists a Hamel basis of R,
then there exists a Vitali set in R which is a vector space over Q.

Remark 2 : According to one old theorem of Sierpiński, no Hamel basis in R can
be an analytic subset of R. On the other hand, by virtue of Miller’s result (see [5],
[6]), in Gödel’s Universe L there exists a co-analytic Hamel basis. Keeping in mind
Theorem 1, we once again come to the statement that in L there exists a Vitali set
which belongs to the projective class ∆1

2(R) and is a vector space over Q.

Let M(R) denote the class of all nonzero σ-finite diffused measures on R (notice
that these measures are defined on various σ-algebras of subsets of R). In [2] the
validity of the following statement has been established.

1 and, simultaneously, is a projective subset of
the Euclidean plane R2. Then there exists a function

f : R → R

which is absolutely nonmeasurable with respect to M(R) and whose graph is a
projective subset of the plane R2.
Consequently, there exists a countable family {Pi : i ∈ I} of projective subsets of

R such that, for any measure µ ∈ M(R), infinitely many members of {Pi : i ∈ I}
are nonmeasurable with respect to µ.
Moreover, if the above-mentioned well-ordering of R belongs to the projective

class Σ1
n(R

2), then all members of {Pi : i ∈ I} can be taken from the class
Σ1
m(n)(R), where the natural number m(n) is completely determined by n.

Notice that a certain analog of Theorem 2 can be proved under Martin’s Axiom
instead of the Continuum Hypothesis.
By virtue of Example 4 we see that, for every measure µ ∈ M(R) and for any

finite subfamily {Pj : j ∈ J} of {Pi : i ∈ I}, there exists a measure µ′ ∈ M(R)
extending µ and such that

{Pj : j ∈ J} ⊂ dom(µ′),

where dom(µ′) denotes, as usual, the domain of µ′.
Let m > 0 be a natural number and let L(Rm) stand for the class of those

nonzero σ-finite measures on Rm which are invariant (quasi-invariant) under the
group of all translations of Rm.
We shall say that a set X ⊂ Rm is absolutely negligible with respect to L(Rm)

if, for every measure µ ∈ L(Rm), there exists a measure µ′ ∈ L(Rm) extending µ
and satisfying the relation µ′

m, the following two assertions are equivalent:

Theorem 2 : Suppose that there exists a well-ordering of R which is isomorphic
to the least uncountable ordinal ω

(X) = 0.

Lemma 1: For a set X ⊂ R



Vol. 22, No. 1, 2018 63

(1) X is absolutely negligible with respect to L(Rm);
(2) for any countable family {gi : i ∈ I} ⊂ Rm, there exists a countable family

{hk : k ∈ K} ⊂ Rm such that

∩{(hk + ∪{gi(X) : i ∈ I}) : k ∈ K} = ∅.

For a proof of Lemma 1, see Chapter 5 in [1].
From Lemma 1 it is not difficult to deduce the following statement.

m, let k be a natural number, and let
Hk denote the set of all those elements of Rm, whose representation via H contains
at most k nonzero rational coefficients. Then Hk is absolutely negligible with respect
to the class L(Rm).

The next statement may be regarded as an analogue of Theorem 2 for translation
invariant (quasi-invariant) measures on R.

m which is a
projective subset of Rm. Then there exists a countable family {Xi : i ∈ I} such
that:
(1) ∪{Xi : i ∈ I} = Rm;
(2) all Xi (i ∈ I) are projective subsets of Rm;
(3) all Xi (i ∈ I) are absolutely negligible with respect to the class L(Rm).
Consequently, for an arbitrary measure µ ∈ L(Rm), infinitely many members

of {Xi : i ∈ I} are nonmeasurable with respect to µ, and for any finite subfamily
{Xj : j ∈ J} of {Xi : i ∈ I}, there exists a measure µ′ ∈ L(Rm) extending µ and
satisfying the relation

{Xj : j ∈ J} ⊂ dom(µ′), (∀j ∈ J)(µ′(Xj) = 0).

Proof : For a natural number k, let Hk denote again the set of all those elements
of Rm, whose representation via H contains at most k nonzero rational coefficients.
According to Lemma 2, all Hk (k < ω) are absolutely negligible with respect to
the class L(Rm). Further, using the same argument as in the proof of Theorem 1,
we infer that all Hk are projective subsets of Rm. It remains to observe that the
equality

Rm = ∪{Hk : k < ω}

holds true. Theorem 3 has thus been proved. �

Remark 3 : It is easy to see from the above argument that if a Hamel basis H
belongs to the projective class Π1

n(R
m), then all sets Hk (n < ω) belong to the

projective class Σ1
n+1(R

m).

Remark 4 : Recall that a Mazurkiewicz set is any subset of the plane R2 which
meets each straight line contained in R2 in exactly two points. It can be demon-
strated that there exists a measure ν ∈ L(R2) extending the standard Lebesgue
measure λ2 on R2 and such that all Mazurkiewicz sets are of ν-measure zero.
In particular, all Mazurkiewicz sets are relatively measurable with respect to the
class L(R2). Moreover, every Mazurkiewicz set Z ⊂ R2 is small (negligible) with
respect to L(R2) in the following sense: for any measure µ ∈ L(R2), the relation

Lemma 2: Let H be a Hamel basis of R

Theorem 3 : Suppose that there exists a Hamel basis H of R
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Z ∈ dom(µ) implies µ(Z) = 0. In this context, the next two facts are of some
interest:
(a) there exists a Mazurkiewicz set which is not absolutely negligible with respect

to L(R2);
(b) there exists a Mazurkiewicz set which is a Hamel basis of R2 and, conse-

quently, is absolutely negligible with respect to L(R2).
For more details about these facts, see [3].
Notice also that in Gödel’s Universe L there are co-analytic Mazurkiewicz sets

(see [5], [6]).
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