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Negafibonacci Numbers via Matrices
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(Received November 01, 2018; Revised June 08, 2019; Accepted June 24, 2019)

In this paper, negafibonacci numbers are generated by means of matrix methods. A 2×2 matrix
is used to obtain some properties of negafibonacci numbers; on the other hand, families of
tridiagonal matrices are introduced to generate negafibonacci numbers through determinants.
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1. Introduction

The Fibonacci sequence {fn} is defined by the following recurrence relation

fn+1 = fn + fn−1, for n ≥ 1,

with f0 = 0, f1 = 1. The Fibonacci numbers have been widely studied, and the
different ways to generate those numbers have gained continued interest, among
them matrix methods [10], determinants [5], permanents [6], Pascal’s triangle [9],
binomial coefficients [3], and many others [8].

An interesting connection between Fibonacci numbers and matrices, introduced

in [4], is given by the matrix Q =

[
1 1
1 0

]
, known as Fibonacci Q-matrix [7] or

Fibonacci’s matrix [11], such that

[
1 1
1 0

]n
=

[
fn+1 fn
fn fn−1

]
.

In [1] two tridiagonal Toeplitz matrices were presented

Hn =


1 i
i 1 i

i 1
. . .

. . .
. . . i
i 1


n×n

, Dn =


1 −1
1 1 −1

1 1
. . .

. . .
. . . −1
1 1


n×n
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such that det(Hn) = det(Dn) = fn+1.

By the relation f−n = (−1)n+1fn, where n is any positive integer, Fibonacci
numbers can be extended to negative index [2], terms in this sequence are called
negafibonacci numbers. Since fn+1 = fn + fn−1, it is easy to check that f−(n+1) =
−f−n + f−(n−1); some negafibonacci numbers are f−1 = 1, f−2 = −1, f−3 = 2,
f−4 = −3, f−5 = 5. In this paper negafibonacci numbers are generated by means
of matrices, and some identities are proved by matrix methods.

2. Negafibonacci identities by matrix methods

Motivated by the Fibonacci Q-matrix, the matrix N =

[
−1 1
1 0

]
is presented, the

following proposition shows a connection between N and negafibonacci numbers.

Proposition 2.1:

[
−1 1
1 0

]n
=

[
f−(n+1) f−n

f−n f−(n−1)

]
.

Proof : Since

[
−1 1
1 0

]
=

[
f−2 f−1

f−1 f0

]
, the proposition is true for n = 1. Assuming

that

[
−1 1
1 0

]n
=

[
f−(n+1) f−n

f−n f−(n−1)

]
,

[
−1 1
1 0

]n+1

is calculated as follows:

[
−1 1
1 0

]n+1

=

[
−1 1
1 0

] [
−1 1
1 0

]n
=

[
−1 1
1 0

] [
f−(n+1) f−n

f−n f−(n−1)

]
=

[
−f−(n+1) + f−n −f−n + f−(n−1)

f−(n+1) f−n

]
=

[
f−(n+2) f−(n+1)

f−(n+1) f−n

]
.

�

The above proposition is useful to prove some identities about negafibonacci
numbers.

Proposition 2.2: For all n, k ≥ 0:

f−(n+k+1) = f−(n+1)f−(k+1) + f−nf−k f−(n+k) = f−(n+1)f−k + f−nf−(k−1)

f−(n+k) = f−nf−(k+1) + f−(n−1)f−k f−(n+k−1) = f−nf−k + f−(n−1)f−(k−1).

Proof : Since

[
−1 1
1 0

]n
=

[
f−(n+1) f−n

f−n f−(n−1)

]
, by Proposition 2.1, then

[
−1 1
1 0

]n+k

=

[
f−(n+k+1) f−(n+k)

f−(n+k) f−(n+k−1)

]
.
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−1 1
1 0

]n+k

=

[
−1 1
1 0

]n [−1 1
1 0

]k
=

[
f−(n+1) f−n

f−n f−(n−1)

] [
f−(k+1) f−k

f−k f−(k−1)

]
=

[
f−(n+1)f−(k+1) + f−nf−k f−(n+1)f−k + f−nf−(k−1)

f−nf−(k+1) + f−(n−1)f−k f−nf−k + f−(n−1)f−(k−1)

]
.

Thus obtaining the desired equalities. �

From Proposition 2.2, we may immediately deduce the following identities.

Corollary 2.3: For all n ≥ 0:

(1) f−2n = f−nf−(n+1) + f−(n−1)f−n.
(2) f−(n+2) = 2f−n − f−(n−1).

The following result can be called Cassini’s formula for negafibonacci numbers,
the reader is referred to [12] for more Cassini-like formulas.

Proposition 2.4: f−(n+1)f−(n−1) − f2
−n = (−1)n

Proof : Let N =

[
−1 1
1 0

]
, then det(N) = −1. Since Nn =

[
f−(n+1) f−n

f−n f−(n−1)

]
, then

det(Nn) = f−(n+1)f−(n−1) − f2
−n. On the other hand, det(Nn) = (det(N))n =

(−1)n; therefore f−(n+1)f−(n−1) − f2
−n = (−1)n. �

3. Negafibonacci numbers as tridiagonal matrix determinants

In this section, we present the matrices Gn and Kn defined as follows:

Gn =


−1 −1
1 −1 1

−1 −1
. . .

. . .
. . . (−1)n−1

(−1)n −1


n×n

Kn =


−1 −i
−i −1 i

i −1
. . .

. . .
. . . (−1)n−1i

(−1)n−1i −1


n×n

The following proposition shows a connection between negafibonacci numbers and
the determinants of a family of tridiagonal matrices.

Proposition 3.1: For all n > 0:

(1) det(Gn) = f−(n+1).
(2) det(Kn) = f−(n+1).

Proof : Here we prove (1); (2) can be similarly proved.

We argue by induction on n. Clearly G1 = −1 = f−2 and det(G2) = 2 = f−3.

On the other hand,

[
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Let Gn+2 be the matrix

Gn+2 =

 Gn
0n−1×1

−1
0n−1×1

0
01×n−1 (−1)n+1 −1 (−1)n+1

01×n−1 0 (−1)n+2 −1

 .

Assuming that the determinant det(Gk) = f−(k+1) for all k ≤ n, we aim to show
that det(Gn+2) = f−(n+3). Assuming that n is odd

 Gn
0n−1×1

−1
0n−1×1

0
01×n−1 1 −1 1
01×n−1 0 −1 −1


Rn+1+Rn+2

 Gn
0n−1×1

−1
0n−1×1

0
01×n−1 1 −2 0
01×n+1 0 −1 −1

 .

Applying the column operation Cn+1 − Cn+2, we obtain Gn
0n−1×1

−1
0n−1×1

0
01×n−1 1 −2 0
01×n−1 0 0 −1

 .

Since the above row and column elementary operations do not change the value of
the determinant [11], we have

det(Gn+2) = [−1]
[
(−1)2[n+1][−2] det(Gn) + (−1)2n+1[1] det(Bn)

]
(3.1)

where Bn =

[
Gn−1 0n−1×1

01×n−2 −1 −1

]
. Applying the column operation Cn−1 − Cn, we

obtain the equivalent matrix [
Gn−1 0n−1×1

01×n−1 −1

]
.

Therefore det(Bn) = [−1] det(Gn−1) = −f−n. By replacing in equation (3.1) we
obtain

det(Gn+2) = [−1]
[
[−2][f−(n+1)] + (−1)2n+1[1][−f−n]

]
= 2f−(n+1) − f−n.

Thus, by corollary 2.3, det(Gn+2) = f−(n+3) for n odd. Similarly, if n is even Gn+2

is given by

Gn+2 =

 Gn
0n−1×1

1
0n−1×1

0
01×n−1 −1 −1 −1
01×n−1 0 1 −1

 .
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Applying, first the row operation Rn+1 − Rn+2, and after the column operation
Cn+1 + Cn+2, we obtain the equivalent matrix

 Gn
0n−1×1

1
0n−1×1

0
01×n−1 −1 −2 0
01×n−1 0 0 −1

 .

Therefore,

det(Gn+2) = [−1]
(
(−1)2n+2[−2] det(Gn) + (−1)2n+1[−1] det(Cn)

)
, (3.2)

where Cn is given by

Cn =

[
Gn−1 0n−1×1

01×n−2 1 1

]
.

Hence, det(Cn) = det(Gn−1) = f−n. By replacing in equation (3.2) we obtain

det(Gn+2) = [−1]
(
[−2](f−(n+1)) + (f−n)

)
= 2f−(n+1) − f−n.

Thus, by Corollary 2.3, det(Gn+2) = f−(n+3) for n even. �

Given a matrix that generates Fibonacci numbers we can obtain a matrix for
negafibonacci numbers and vice-versa, as shows the following proposition.

Proposition 3.2: Fn is a matrix such that det(Fn) = fn+1 if and only if Nn =
−Fn is such that det(Nn) = f−(n+1).

Proof : Assuming that det(Fn) = fn+1, for the matrix Nn = −Fn we have
det(Nn) = det(−Fn) = (−1)n det(Fn) = (−1)nfn+1 = (−1)n+2fn+1 = f−(n+1).

Assuming that det(Nn) = f−(n+1), for the matrix Fn = −Nn we have det(Fn) =

det(−Nn) = (−1)n det(Nn) = (−1)nf−(n+1) = (−1)n((−1)n+2fn+1) = fn+1. �

By Proposition 3.2, we have the following result.

Corollary 3.3: For all n ≥ 0:

(1) det(−Gn) = det(−Kn) = fn+1.
(2) det(−Dn) = det(−Hn) = f−(n+1).
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