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Characterization of (n, m)-Jordan Homomorphisms
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Let n € N, m € Z\ {0}. In this paper among other things, under special hypotheses, we prove
that every (n,m)-Jordan homomorphism between Banach algebras A and B is a (n,m)-
homomorphism.
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1. Introduction

Let n € N, A and B be complex Banach algebras and let ¢ : A — B be a linear
map. Then ¢ is called an n—homomorphism if for all aq, ao, ...a, € A,

vlajag...an) = @(ar)p(az)...o(ay).

The concept of an n-homomorphism was studied for complex algebras in [7] and
[3].

Herstein in [8] introduced the notion of n—Jordan homomorphisms. A linear map
© between Banach algebras A and B is called an n—Jordan homomorphism if

w(a") = p(a)”, ac€ A

A 2-homomorphism (2-Jordan homomorphism) is called simply a homomorphism
(Jordan homomorphism).

It is clear that every n-homomorphism is an n-Jordan homomorphism, but in
general the converse is false. There are some examples of n-Jordan homomorphisms
which are not n-homomorphisms. For n = 2, it is proved in [9] that some Jordan
homomorphism on the polynomial rings can not be homomorphism.

Herstein in [8] proved the following theorem.

Theorem 1.1: If ¢ is a Jordan homomorphism of a ring R onto a prime ring
R’ of characteristic deferent from 2 and 3, then either ¢ is a homomorphism or an
anti-homomorphism.
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It is shown in [4] that every n-Jordan homomorphism between two commutative
Banach algebras is an n-homomorphism for n € {2,3,4}, and this result extended
to the case n = 5 in [5]. For the case that n € N is an arbitrary, Lee in [10]
and Gselmann in [6] generalized this result. This challenge is solved in [2] by the
different methods which are used in [6] and [10]. For the non-commutative case,
Zelazko in [12] presented the following result (see also [11]).

Theorem 1.2: Suppose that A is a Banach algebra, which need not be commu-
tative, and suppose that B is a semisimple commutative Banach algebra. Then each
Jordan homomorphism ¢ : A — B is a homomorphism.

Later, this result was proved in [14] for 3-Jordan homomorphism with the
extra condition that the Banach algebra A is unital, and it is extended for all
n € N in [1]. Some significant results concerning Jordan homomorphisms and their
automatic continuity on Banach algebras are obtained by the author in [13], [15]
and [16].

Let m € Z \ {0}, let A and B be complex algebras and let ¢ : A — B be a
linear map. Then ¢ is called an (n, m)-homomorphism if for all aj, as, ...a,, € A,

o(araz...an) = me(ar)p(az)...p(ay),

and it is called an (n, m)-Jordan homomorphism if
e(a@") =mp(a)”, acA

Clearly (n,1)-homomorphism and (n, 1)-Jordan homomorphism coincide with the
classical definitions of n—homomorphism and n—Jordan homomorphism, respec-
tively.

Note that every n—Jordan homomorphism is not necessary (n, m)-Jordan homo-
morphism for m # 1, for example, consider the identity map. Also every (n,m)-
Jordan homomorphism is not necessary n-Jordan homomorphism for m # 1. For
example, define ¢ : R — R by ¢(z) = %:U Then ¢ is not n-Jordan homomorphism,

but for m = 2®=1 it is (n,m)-Jordan homomorphism.

Example 1.3 Let

and define ¢ : A — A by

(X 0], _L[x 0
oy Tk |oyT]
for each k € N. Then for all U € A, we have

1(x™ 0 11xX™ 0
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Thus, ¢ is (n,m)-Jordan homomorphism for m = k=Y, but ¢ is not (n,m)-
homomorphism.

In this paper, we prove that every (3, m)-Jordan homomorphism ¢ from unital
Banach algebra A into Banach algebra B is (3, m)-homomorphism if either:

(1) B is semisimple and commutative, or
(2) A and B are weakly commutative.

2. Main Results

For m = 1, the following result is Theorem 1.2, and for m = —1 it is Lemma 2.1
of [14].

Theorem 2.1: FEvery (2,m)-Jordan homomorphism ¢ from Banach algebra A
into C is a (2, m)-homomorphism.

Proof: Suppose that ¢ is (2, m)-Jordan homomorphism. Then ¢(a?) = mep(a)?,
for all a € A. Replacing a by a + b, we get

w(ab + ba) = 2mp(a)p(b), (a,b e A). (1)
Replacing a by a? in (1), we have
@(a®b + ba®) = 2m>p(a)?p(b), (a,be A). (2)
Taking b = ab + ba in (1), we see that
w(a(ab+ ba) + (ab+ ba)a) = 2mey(a)e(ab + ba),
and hence by (1),
@(a®b + 2aba + ba®) = 4m3p(a)*p(b). (3)
Subtraction (2) from (3), gives
p(aba) = m*p(a)’o(b). (4)
Fix a € A and b € A arbitrarily, and put
2t = p(ab — ba). (5)
It follows from (1) and (5) that

plab) =t =mp(a)p(b),  @(ba) +1t=mep(a)p(d). (6)
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By (4), (5) and (6),

4% = p(ab — ba)? = %cp[(ab — ba)?]
= %(p[(ab)Q + (ba)? — ab*a — ba?b)

= [plab)” + p(ba)’] + — [m*e(a)e(t?) + m*e(b/¢(a”)]

= [t + mp(a)p (D)) + [t + mp(a)p(D)]* — [2m*p(a)*(b)?]

= 2t
Hence ¢t = 0, which proves p(ab) = p(ba). Therefore by (1), p(ab) = mp(a)p(b),
and the proof is complete. O

Corollary 2.2: Suppose that A is a Banach algebra and B is a semisimple com-
mutative Banach algebra. Then each (2, m)-Jordan homomorphism ¢ : A — B is
a (2, m)-homomorphism.

Lemma 2.3: Let A be a unital Banach algebra with unit e and let p : A — C
be a non-zero (3, m)—Jordan homomorphism. Then p(e) # 0.

Proof: Let ¢ be non-zero (3, m)-Jordan homomorphism, then p(a®) = mep(a)?,
for all a € A. Replacing a by a + b, we get

o(ab® + b%a 4 a®b + ba® + aba + bab) = m(3p(a)*0(b) + 3p(a)p(b)?),  (7)
and replacing b by —b in (7), we obtain
o(ab® + b%a — a®b — ba® — aba + bab) = m(—3p(a)*p(b) + 3¢ (a)p(h)?). (8)
By (7) and (8) we obtain
o(ab® + b%a 4 bab) = 3mp(a)p(b)?,  (a,b € A). (9)

Now assume that ¢(e) = 0 and take b = e in (9), then it follows that ¢(a) = 0, for
all a € A, which is a contradiction. O

Lemma 2.4: Let ¢ be a non-zero (3,m?)-Jordan homomorphism from unital
Banach algebra A into C. Then either ¢ is (2,m)-Jordan or (2, —m)-Jordan ho-
momorphism.

Proof: By assumption for all a € A,

p(a®) = m’p(a)’. (10)
Replacing a by a + € in (10), to obtain

2

o(a® + a) = m*(p(e)*¢(a) + ple)p(a)?).
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Replacing a by e in (10), we get ¢(e) = m?¢(e)3. By above Lemma ¢(e) # 0,
therefore ¢(e) = £ or p(e) = =L. If p(e) = +, then by the above equation we get

p(a®) = mp(a)?,

hence ¢ is (2, m)-Jordan. Similarly, we have

p(a®) = —mp(a)®,

if p(e) = =. Thus, ¢ is (2, —m)-Jordan. O

The next result, which is the main one in the paper, characterizes (3, m?)-Jordan
homomorphisms.

Theorem 2.5: Suppose that A is a unital Banach algebra and B is a semisimple
commutative Banach algebra. Then each (3, m?)-Jordan homomorphism ¢ : A —
B is a (3, m?)-homomorphism.

Proof: We first assume that B = C and let ¢ : A — C be (3, m?)-Jordan homo-
morphism, then by Lemma 2.4, ¢ is either (2, m)-Jordan or (2, —m)-Jordan homo-
morphism. If ¢ is (2, m)-Jordan, then by Theorem 2.1 it is (2, m)-homomorphism
and so it is (3,m?)-homomorphism. If ¢ is (2, —m)-Jordan, then by Theorem 2.1
it is (2, —m)~homomorphism. That is, for all a,b € A,

p(ab) = —mp(a)p(b).

Therefore

plabe) = —myp(a)p(be) = —mep(a)[=me(b)p(c)] = m*p(a)p(b)e(c),

for all a,b, c € A. Hence, ¢ is (3, m?)-homomorphism.

Now suppose B is arbitrary semisimple and commutative. Let 9t(5) be the maximal
ideal space of B. We associate with each f € 9M(B) a function ¢ : A — C defined
by

prla) = flp(a)),  (acA).
Pick f € MM(B) arbitrary. It is easy to see that ¢ is a (3,m?)-Jordan homo-

morphism, so by the above argument it is a (3, m?)-homomorphism. Thus by the
definition of ¢y we have

flp(abe)) = m? f () f(p(0) f(¢(c)) = f(m*p(a)p(b)e(c)).
Since f € M(B) was arbitrary and B is assumed to be semisimple, we obtain
p(abe) = m*p(a)p(b)p(c),

for all a, b, c € A. This completes the proof. O

Theorem 2.6: Let A and B be two Banach algebras, where A has a unit el-
ement e and char(B) > 3. If every Jordan homomorphism from A into B is
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a homomorphism, then every (3, m)-Jordan homomorphism from A into B is a

(3, m)—homomorphism.

Proof: Let ¢ be a (3, m)-Jordan homomorphism, then for all a € A,

p((a+2)° = 2(a+e)’+a’) =m(pla+2)° —2p(a+e)’ + p(a)’).

Hence,

6p(a) + 60(e) = m(2p(e)*p(a) + 2¢(a)p(e)® + 2p(e)p(a)p(e) + 6p(e)?).

By assumption ¢(e) = mep(e)?3, so by (11) we get

*o(a) + p(a)p(e)® + ¢(e)p(a)p(e)).

3p(a) = m(p(e)
Multiplying ¢(e) from the right in (12), we get

2

2p(a)p(e) = m(p(e)*e(a)p(e) + p(e)p(a)p(e)?).

Similarly,

2

20(e)p(a) = m(p(e)p(a)p(e)” + p(e)’p(a)p(e)).

By (13) and (14) we have

Tt follows from (12) and (15) that
p(a) = mp(e)*p(a) = mp(a)p(e)”.
By assumption
p((a+e)’ —a’) =m(p(a+e)® —p(a)?).

So by (15) and (17) we have

3p(a?) + 3p(a) + p(e) = m(3p(a)*p(e) + 3p(a)p(e)” + ¢ (e)?).

By (16) and (18) we get

p(a®) = mp(a)’ple),  (a€A).

Now define a mapping f : A —: B by

fla) :=mep(a)p(e),

(11)

(12)

(13)

(14)

(15)

(17)
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for all a € A. Then by (19), f is Jordan homomorphism, so it is a homomorphism.
By the definition of f and (16) we have

fla)p(e) = p(a). (20)

Thus, ¢ is (3, m)-homomorphism. O
As a consequence of Theorem 1.2 and Theorem 2.6 we deduce the next result.

Corollary 2.7: Suppose that A is a unital Banach algebra and B is a semisimple
commutative Banach algebra. Then each (3, m)-Jordan homomorphism ¢ : A —
B is a (3, m)-homomorphism.

3. Weakly commutative Case

We say that the Banach algebra A is weakly commutative if

(azx)? = a*z® and ax’a = 2%d?

for all a, z, € A. Clearly, every commutative Banach algebra is weakly commutative,
but in general, the converse is false. For example, let

A—{[g(ﬂ: a,beR}.

Then it is obvious to check that with the usual matrix product for all z,y € A,

(:J:y)2 = :v2y2 and xy2:1: = y2x2.

Thus, A is weakly commutative, but it is neither unital nor commutative.

Theorem 3.1: Let A and B be two weakly commutative Banach algebras. If
A is unital, then every (2, m)-Jordan homomorphism from A into B is a (2,m)—
homomorphism

Proof: By a similar argument which has been used in the proof of theorem 2.1,
for all a,b € A we have

p(aba) = m*p(a)e(b)e(a). (21)
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Replacing b by b? in (21), we obtain

p(b*a®) = p(ab®a) = m*p(a)p(b*)p(a) = m*p(a)*e(b)* = me(b*)p(a®).  (22)

Replacing b by = + y in (22), gives
plzya® + yra®) = mp(zy + yz)p(a®). (23)

Replacing a by a + b in (23), gives
p((zy + yx)(ab + ba)) = me(zy + yx)p(ab + ba), (24)

for all a,b, x,y € A. Replacing y and b with unit the element of A in (24), we get

p(ra) = mp(z)p(a), (25)

for all a,xz € A, as claimed. O

Theorem 3.2: With the hypotheses of Theorem 3.1, every (3,m?)-Jordan ho-
momorphism from A into B is a (3,m?)-homomorphism.

Proof: Let ¢ : A — B be (3, m?)-Jordan homomorphism. Then by Lemma 2.4,
¢ is (2, m)-Jordan or (2, —m)-Jordan homomorphism. If ¢ is (2, m)-Jordan, then
by Theorem 3.1 it is (2,m)-homomorphism and so it is (3, m?)-homomorphism.
If ¢ is (2,—m)-Jordan homomorphism, then by Theorem 3.1 it is (2,—m)-
homomorphism. That is, ¢(ab) = —my(a)p(b), for all a,b € A. Therefore

p(abc) = —mep(a)p(be) = —mp(a)[—mp(b)p(c)] = m*o(a)p(b)p(c),

for all a,b,c € A. Hence, ¢ is (3, m?)-homomorphism. O
The following theorem follows from Theorem 3.1 and Theorem 2.6.

Theorem 3.3: With the hypotheses of Theorem 3.1, every (3, m)-Jordan homo-
morphism from A into B is a (3, m)—homomorphism.
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