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Theoretical explanation intensification of low frequency (LF) internal gravity waves (IGW)
is presented. The method used is based on generalizing results on shear flow phenomena
from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of
spectrally stable nonuniform sheared flows are non-normal. That is, the linear operators of the
flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal.
The non-normality results in linear transient growth with bursts of the perturbations and the
mode coupling, which causes the amplification of LF IG waves shear flow driven ionospheric
plasma and generation of the higher frequency oscillations. Transient growth substantially
exceeds the growth of the classical dissipative trapped-particle instability of the system.
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1. Introduction

Internal gravity waves (eddies) are important in their own right as major com-
ponents of the total circulation. They are also major transporters of energy and
momentum. For a medium to propagate a disturbance as a wave there must be
a restoring “force”, and in the higher atmospheric levels, this arises, primarily,
from two sources: conservation of potential temperature in the presence of positive
static stability and from the conservation of potential vorticity in the presence of a
mean gradient of potential vorticity. The latter leads to what are known as Rossby
waves. The former leads to internal gravity waves (and surface gravity waves as
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well). Internal gravity waves are simpler to understand and clearly manifest the
various ways in which waves interact with the beckground shear flow. (Holton,
1983, Hines, 2011).
The energy transfer from the Earth’s lithosphere to the atmosphere and iono-

sphere is a fundamental problem of geophysics and applied research. Internal grav-
ity waves (IGWs) play an important role in such a process. For example, IGWs,
propagating upward from the Earth’s surface to the upper atmosphere and iono-
sphere, are able to carry a large amount of energy and momentum. These waves
are crucial in atmosphere convection, generation of atmospheric turbulence and
may affect global circulation. IGWs and related nonlinear structures are widely
observed in the upper and lower layers of the atmosphere as well as in the lower
ionosphere (Onishcenko et al, 2014, Garret, 1968)
Nonmodal approach correctly describes transient exchange of energy between

basic shear flow and perturbations. The energy transfer channel is resonant by na-
ture and leads to energy exchange between different wave modes (chagelishvili et
al, 1996; Gogoberidze et al, 2004). The mutual transformation of the ULF electro-
magneic Rossby type waves is studied numerically and analytically in (Aburjania
et al, 2006; Aburjania, 2006) in detail. The mutual transformation occurs at small
shear rates if the dispersion curves of the wave branches have pieces near one an-
other. Other possibility of energy transfer channel is nonresonant vortex and wave
mode characteristic times are significantly different and nonsymmetric a vortex
mode is able to generate a wave mode but not vice versa. This channel leads to
energy exchange between vortex and wave modes, as well as between different wave
modes. We concentrate on this channel of mode coupling because it is important
at high shear rates.

2. Generation and intensification of IGW at linear stage of evolution

To study the linear stage of interaction of internal gravity waves with the local
non-uniform zonal wind and geomagnetic field, the model of the medium and basic
hydrodynamic equations for the lower ionosphere, is given in Aburjania et all 2013.
On the basis of non-modal approximation, shear flows can become unstable tran-

siently till the condition of the strong relationship between the shear flows and wave
perturbations is satisfied (Chagelishvili et al., 1996), e. i. the perturbation falls into
amplification region in the wave number space. Leaving this region, e.i. when the
perturbation passes to the damping region in the wave vector space, it returns an
energy to the shear flow (Aburjania et al., 2010). The experimental and observation
data shows the same (Gossard and Hooke, 1975).
Non-uniform zonal wind or shear flow can generate and/or intensify the internal

gravity waves in the ionosphere and provoke transient growth of amplitude, i.e.
transient transport the medium into an unstable state. In the next subsection we
confirm this view by using a different, more self-consistent method for the shear
flow.
According the above discussions, further analysis of the features of magnetized

IGW wave at the linear stage in the ionosphere should be conducted in accordance
with a non-modal approach. Considering the initial model equations into moving
coordinate system, where the coordinates become time dependent, the coefficients
of the initial system of linear equations will obtain a temporal dependence. Such
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mathematical transformations replace this spatial non-uniform property into tem-
poral one. Thus, the initial-boundary problem is reduced to the initial problem of
Cauchy type. Hence, the coefficients of are independent of spatial variables, the
Fourier transformation of these equations with respect to spatial variables x1, z1 is
already possible without any local approximation, the temporal evolution of these
spatial Fourier harmonics (SFH) are considered independently (Chargazia et al,
2018):

∂Vx

∂τ
= −SVz + kxP − [b0 + νk2(τ)]Vx, (1)

∂Vz

∂τ
= kz(τ)P − ρ− [by + νk2(τ)]Vz, (2)

∂ρ

∂ τ
= Vz, (3)

kxVx + kz(τ)Vz = 0. (4)

Here, V0(z) = v0(z)ex = A ·z·ex is a background of a plane zonal shear flow (wind)
velocity, which is non-uniform along the vertical, V = V0(z) + V(x, z, t) , ρ =
ρ0(z) + ρ(x, z, t),P = P0(z) +P (x, z, t),v

′

0(z) = dv0(z)/dzωg = (g/H)1/2 > 0 is fre-
quency of Brunt-Vaisala for stably stratified incompressible isothermal atmosphere;
K2 = k2x + k2z + 1/(4H2), K2

1 = K2
2 − ikz/H, K2

2 = k2x + k2z − 1/(4H2),(x, z) ⇒
(x1, z1)/H, S ⇒ A/ωg,kx,z ⇒ kx1,z1H;kz = kz(0) − kxSτ,k

2(τ) = (k2x + k2z(τ)),
ν ⇒ ν/ωgH

2, b0 ⇒ (σPB
2
0)/(ρ0ωg), by ⇒ (σPB

2
y)/(ρ0ωg).

Closed system of equations (1) - (4) describes the linear interaction of IGW with
a shear flow and the evolution of the generated disturbances in the dissipative
ionosphere medium. We note once again that after these transformations the wave
vector k(kx, kz(τ)) of the perturbation became dependent on time: kz(τ) = kz(0)−
kxS · τ ; k2(τ) = (k2x + k2z(τ)). Variation of the wave vector according to time
(i.e. splitting of the disturbances’ scales in the linear stage) leads to significant
interaction in the medium even of such perturbations, the characteristic scale of
which are very different from each other at the initial time (Aburjania et al., 2006).
On the basis of (1) - (4) an equation of energy transfer of the considered wave

structures can be obtained, which gives possibility to identify the pattern of energy
density variation with time:

dE(τ)

dτ
= −S

2

(
V ∗
x (τ) · Vz(τ) + Vx(τ) · V

∗

z (τ)
)
− b1(τ) |Vx|2 − b2(τ) |Vz|2 , (5)

Here the asterisk denotes the complex conjugate values of the indignations, b1(τ) =
b0+νk2(τ), b2(τ) = by+νk2(τ)and the density of the total dimensionless energy
of the wave perturbations E(τ) in the wave number space is given by:

E[k(τ)] =
1

2

(
|Vx|2 + |Vz|2 + |ρ|2

)
. (6)
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It’s obvious that the transient evolution of wave energy structures in the iono-
sphere is due to the shear flow(S ̸= 0, A ̸= 0), dissipative processes - induction
decay ( b0 ̸= 0, by ̸= 0) and viscosity ( ν ̸= 0). In the absence of shear flow
(S = 0, A = 0), and dissipative processes (ν = 0, σP = 0), the energy of the
considered wave disturbances in the ionosphere conserves dE(τ)/dτ = 0. The total
energy density of the perturbations (6) consists of two parts: E[k] = Ek+Et, where

the first term is the kinetic energy of perturbationEk =
(∣∣∣|Vx|2 + |Vz|2

∣∣∣) /2, and
the second - thermobaric energy Et = |ρ|2 /2, stipulated due to the elasticity of
perturbations.

3. Linear spectrum of the perturbations

The dispersion equation of our system may be obtained in the shearless limit S=0
using the full Fourier expansion of the variables, including time (Horton et al, 2009).
Although the roots of the dispersion equation obtained in the shearless limit do
not adequately describe the mode behavior in the shear case, we use this limit
to understand the basic spectrum of the considered system. Hence, using Fourier
expansion of the field vector we derive for the shearless limit the second order
dispersion relation:

(ω − kxv0)
2 − k2x

K2
ω2
g + i

(ω − kxv0)

K2

[
k2x

(
σPB

2
0y

ρ0
+ νK2

1

)

−
(
k2z +

1

4H2

) (
σPB

2
0

ρ0
+ νK2

1

)]
= 0. (7)

Here, we introduce the notation: ωg = (g/H)1/2 > 0 is frequency of Brunt-
Vaisala for stably stratified incompressible isothermal atmosphere; K2 = k2x +
k2z + 1/(4H2), K2

1 = K2
2 − ikz/H, K2

2 = k2x + k2z − 1/(4H2).
This second order dispersion equation describes two different modes of pertur-

bations: two low frequency modes of IG waves. IG fluctuations are dispersive with
ω dependent on Kx. This fact is very important for mode coupling since Kx is
time dependent in nonuniform flow, which, in turn, makes ω also time dependent.
The dispersion equation is solved numerically for the parameters taking S=0 and
the real parts of the dispersive curves, respectively, are plotted in Fig. 1.The plots
show that the magnitude of the frequencies of IGW are close at some critical point.
Consequently, the IGW’s are linearly coupled solely to each other at sizeable shear
flow rates.
Figure 1 shows that maximum values of frequency for the least stable IGW

modes are achieved at Kx/Kz ∼ 1. Thus, and the trapped-particle instability has
no significant influence on the dynamical phenomena.

4. Transient growth and mode coupling

Spectral Fourier harmonics dynamics are studied by numerically solving the three
complex time evolution equations (1)-(4). Separation of the fields into the real and
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Figure 1. Dispersion Curves

imaginary parts is made in the following way (Aburjania et al, 2006):

Vx = Vx1 + iVx2, Vz = Vz1 + iVz2, ρ = ρ1 + iρ2, (8)

For each Fourier harmonics we will have:

∂Vx1

∂τ
= −SVz1 + kxP − [b0 + νk2(τ)]Vx1, (9)

∂Vz1

∂τ
= kz(τ)P − ρ1 − [by + νk2(τ)]Vz1, (10)

∂ρ1
∂ τ

= Vz1, (11)

kxVx1 + kz(τ)Vz1 = 0. (12)

Equations (9)–(12), together with the appropriate initial values, pose the initial
value problem describing the dynamics of a perturbation SFH. The character of
the dynamics depends on inittial SFH mode impose into the equations: pure IGW
SFH (Spatial Fourier Harmonics of IGW) or a mixture of these wave SFHs. Let
us concentrate on the linear dynamics when we initially insert in Eqs. (9)–(12)
a SFH nearly corresponding to a IGW perturbation with wavenumbers satisfying
the condition Kx(0)/Kz >> 1. The numerical simulations are performed using the
MATLAB numerical ordinary differential equation solver. Note that the action of
the flow shear on the dynamics of IGW SFH at wavenumbers Kx(0)/Kz >> 1is
negligible.
The simulations reveal a novel linear effect - the excitation of higher frequency

fluctuations - that accompanies the linear evolution of IGW mode perturbations in
the sheaar flow. The evolution of the initial IGW SFH according to the dynamic
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Figure 2. The evolution of a single SFH

equations (1)-(4) for the ionospheric parameters is presented in Fig. 2. Recall that
Kx changes in time according to Eq. 7: the shear flow sweeps Kx to low values and
then back to high values but with negative Kx/Kz. While Kx/Kz >> 1, over time
τ , 0 < τ < τ∗ = kz(0)/(Skx), the energy density of IGW increases monotonically
and reaches its maximum value (exceeding its initial value by an order) at the
time τ = τ∗- the IGW SFH undergoes substantial transient growth without any
oscillations and the magnetic fluctuations are small. Significant magnetic field fluc-
tuations appear when Kx/Kz = 1. While Kx/Kz = 1 < 0, the IGW SFH generates
the related SFH higer frequency wave modes like inertial modes through the sec-
ond channel of the mode coupling. This generation of higer frequency wave modes
is especially prominent, where significantly higher frequency oscillations of all the
fields are clearly seen at times when Kx/Kz = 1 < 0. A substantial transient burst
of the perturbations energy, density of fluctuations is evident and an appearance of
high frequency fluctuations. Further, at τ∗ < τ < ∞ the energy density begins to
decrease (whenkz(τ) < 0), and monotonically returns to its initial approximately
constant value. In other words, in the early stages of evolution, temporarily, when
kz(τ) > 0and IGW perturbations are in the intensification region in wave-number
space, the disturbances draw energy from the shear flow and increase own ampli-
tude and energy by an order during the period of time 0 < τ < τ∗ = kz(0)/(Skx)
(Horton et al, 2009).
Then (if the nonlinear processes and the self-organization of the wave structures

are not turned on), when kz(τ) < 0, IGW perturbation enters the damping region
in wave number space and the perturbation returns energy back to the shear flow
over time τ∗ < τ < ∞ and so on. Such transient redistribution of energy in
the medium with the shear flow is due to the fact that the wave vector of the
perturbation becomes a function of time k = k(τ), i.e. disturbances’ scale splitting
takes place. The structures of comparable scales effectively interact and redistribute
free energy between them. Taking into account the induction and viscous damping
the perturbation’s energy reduction in the time interval τ∗ < τ < ∞ is more
intensive than that shown on fig. 1, the decay curve in the region τ∗ < τ < ∞
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becomes more asymmetric (right-hand side curve becomes steeper), and part of
the energy of the shear flow passes to the medium in the form of heat.
Thus, even in a stable stratified ionosphere (ω2

g > 0), temporarily, during the

time interval 0 < t∗ ≈ 100/(ωg) ∼ 5 · 103s ∼ 1.5 hour IGW-intensively draws
energy from the shear flow and increases own energy and amplitude by an order.
Accordingly, the wave activity will intensify in the given region of the ionosphere
due to the shear flow (inhomogeneous wind) energy.

Figure 3. The evolution of total energy of SFH perturbations

Figure 3 shows the related dynamics of the total energy. It indicates a substantial
transient burst of the electron thermal energy of fluctuations and an appearance
of Alfvénic like fluctuations.

5. Conclusions

Linear amplification of IGW perturbation is not exponential as in the case of the
AGW in the inverse-unstably stratified (ωg < 0, when IGW cannot be generated)
atmosphere (Aburjania, 2010)), but in algebraic-power law manner. Intensification
of IGW is possible temporarily, for certain values of environmental parameters,
shear and waves, which form an unusual way of heating of the shear flow in the
ionosphere: the waves draw their energy from the shear flow through a linear drift
of SFH in the wave number space (fragmentation of disturbances due to scale)
and pump energy into the region of small-scale perturbations, i.e. in the damping
region. Finally, the dissipative processes convert this energy into heat. The process
is permanent and can lead to strong heating of the medium. Intensity of heating
depends on the level of the initial disturbance and the parameters of the shear flow.
A remarkable feature of the shear flow is the dependence of the frequency and

wave number of perturbations on time kz = kz(0)− kxSτ , k(τ) = (k2x + k2z(τ))
1/2.

In particular, frequency and wave number transient growth leads to a reduction of
scales of the wave disturbances due to time in the linear regime and, accordingly,
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to energy transfer into a short scale region - the dissipation region. On the other
hand, a significant change in the frequency range of the generated disturbances
stipulates in the environment the formation of a broad range of spectral lines of
the perturbations, which is linked to the linear interactions and not to the strong
turbulent effects. Moreover, amplification of the SFH perturbation and broadening
of wave modes’ spectra occur in a limited period of time (transient interval), yet
satisfied the relevant conditions of amplification and a strong enough interaction
between the modes.
It should be emphasized that the detection of the mechanism of the intensification

and broadening of the spectrum of perturbations became possible within the non-
modal mathematical analysis (these processes are overlooked by more traditional
modal approach). Thus, non-modal approach, taking into account the nonorthog-
onality of the eigenfunctions of the linear wave dynamics, proved to be more ap-
propriate mathematical language to study the linear stage of the wave processes
in shear flows.
IGW is characterized by an exponential growth of the amplitude of the perturbed

velocity at the vertical propagation in an environment with exponentially decaying
vertical equilibrium density and pressure (Hines, Gossard, Hook, 1975). According
to observational data, IGW disturbances manifest themselves in a wide range of
heights - from the troposphere to the upper ionosphere heights z ≤ 600km (Gossard
and Hook, 1975). At ionospheric altitudes (above 90 km) the conductive medium
strongly impacts on the IGW, causing its remarkable damping due to local Pedersen
currents.
IGW structures are eigen degrees of freedom of the ionospheric resonator. There-

fore, influence of external sources on the ionosphere above or below (magnetic
storms, earthquakes, artificial explosions, etc.) will excite these modes (or intensi-
fied) in the first. For a certain type of pulsed energy source the nonlinear solitary
vortical structures will be generated (Aburdjania, 2006), which is confirmed by ex-
perimental observations (Sundkvist et al., 2005). Thus, these wave structures can
also be the ionospheric response to natural and artificial activity.
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