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Approximation Properties of Partial Sums of Fourier Series
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In this paper we find a class of functions for which the Lebesgue estimate can be improved.
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Let C([0,27]) denote the space of continuous functions f with period 27. If
f € C([0,27]) then the function

wp(d, f) = sup |§11|1<p5 |0p(z3 hy )], wi(0, f) = w(0, f).

is called the modulus of continuity of the function f where

Ay(xsh, f) = flz +h) — f(2),
Apyi(zsh, f) = Ap(z + by by f) — Ap(z; by f).

Denote by Lip a0 the class of functions f € C([0,27]) for which w(d, f) < e(f)dé*
and let Sy, (f, ) be the n-th partial sum of the trigonometric Fourier series of the
function f.

The Lebesgue estimate (see [3, p. 116] or [1, Ch. 1]) is well known

15 = Su(Flle < e+, ) loa(a +2)

Generalizations of this estimation were introduced by Chanturia [2], Oskolkov [§],
Karchava [6]. The questions devoted to estimation of the uniform deviation of f
from its partial Fourier sums with respect to the Walsh, Vilenkin (bounded and
unbounded cases) systems were discussed by Fine [4], Onnewer [7], Tevzadze [9],
G4t [5].

In the paper [6] we improved this estimation for some subclasses of the class
C([0,27]). In particular we proved the following theorems.
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Theorem 1: If f € Lipa, 0 < a < 1 and has a finite number of monotonocity
intervals, then

c(f;a
17 = Sullle < ALY
n
Theorem 2: If C([0,27]) and has a finite number of convexity or concavity

intervals, then

17 = SuDlle < ethe(: 7).

We showed that analogous estimates are valid for functions of several variables.
For simplicity, let us show this for functions of two variables.
Let xo =z + (i — 1)h1, y2 = y + (i — 1)hg for functions f = f(x;y). Assume

Af(zsysh f) = flz + hsy) — f(z39),
ALy (miyihi f) = A(z + hsy) — Ap(w3y),
A(zyyshs f) = flzsy + h) — fasy),
A2 (@b f) = Al(x + h) — Al(a3y),

wp(8; f) = sup sup |AL(z;y; hs f)],
T3y |h|<6

wi(8; f) = sup sup |A2(x;y; s f)],
zy |h|<s

op(ismyhi f) =Y (1) AL (wgiy: hi ) = o (i f) = 0 (45 ),
q=1
op(ismyihi f) = Y (1) A2 (w59 bs f) = 07 (65 ) = 02 (i3 f),
q=1
or(i302(is f)) = 02(j, o (i £)) = on2(i; 43 f)

i.e. the operation a}%jg is obtained by successive application of the operations o'
and o2.

Let Spm(f) be partial sums of the double trigonometric Fourier series of func-
tions f(z;y).

We prove the following estimation.

Theorem 3:

n 1(,. m 2/,
17 = Sum(le < cimaysup (32 5+ Y I D),

’ 1=1 1=1

This theorem gives rise to two corollaries which generalize Theorems 1 and 2.

Corollary 4: If the function f(x;y) has a finite number of monotonicity in-
tervals with respect to separate variables and wi(3; f) < c(£)0%, W(8; f) < c(f)6P,
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0<v<1,0<pB<1, then

17 = Sunlle < () (o5 + =),

n®  mpb

Proof: In Theorem 3 we assume that p = ¢ = 1. Then
i I\ @
< 2o < =
o (i )| < e(f >“’(n ,f) <e)(=)"
M n 1
upy" A1) <Z (D _en)§h 1)

« 2—a — «
T =1 i "
Analogously,
o7 (1 c
w3 AEDL  )
L/ t n
([l
Corollary 5: If the function f(x;y) has a finite number of convexity or con-
cavity intervals with respect to separate variables, then
1 1
15 = Sumlle < o) (wh (5 1)+ (1) )
Proof: In Theorem 3 we assume that p =1, ¢ = 2. Then
Aj(w;y;h; f) >0, AS(w;y;h; f) >0
0365 )] = | Yo (-1 Adwgiyi b f)|
q=1
! 1
_ Lo Y| < (L.
‘§A2($Q7y7hvf)‘ —= c(f)wl<n 7f)7
1 /1
Z ) < o)k (b f>2 < e(fwi (5 :7).
=1 i= 1

Analogously,

— A3(i; f)

S 225D <o (L)

=1

O

Proof: [Proof of Theorem 3] Let T' , ,(2;y) be the Vallée Poussin trigonometric
polynomials which realize the best approximation of the function f(x,y). They are
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written as follows

Tom(x,y) = //fx—i—u Y+ v)Vim (u;v) dudo,

//|Vnmuv|dudv<M

£~ fum == [[ (Fla+wiy+ ) = f@52)) Da(w)Da(0) dudo
T2

:7;ux/g@u@[%@0Dn@0dudm
s

9= 9(w;v) = guy(u;v)
fle+uy+v)— f(zy) — Tom(z+uwsy +v) — Tm(23y),

// nom (T 4wy +v) — Dy (2;y)) Dn(u) Dy (v) dudv

= Sn,m(Tn,m) - Tn,m = 07
wm(f), T =[0;27], T? =[0;2n)%,

If =T,

sup o (i; Tpm) < supok(is f), k=1,2,
3y 3y

sup ok (i3 g) < csup ok (i; f),
x5y Ty
sup o1,2(63 3 Tun) < esuplo(isj: )l 052005 4: )] < el@)loh(is ),
T3y &Y
supo(i;j;9) < esupo(isj; f), U};ﬁ(i;j;f) < C(P)i‘gg(j; Pl
Ty Ty

In [6] we showed that
| / 0] <oup {37 EE )
i? ’

L
’// wv) mmu—‘/( (@m&pﬁmm

— /pn(v)D (v)dv < C(Supz % ],Uz,n;,pn( 2l —i—sgp\pn(v)\),

v
g Jj=1 J

™

Pu(v) = / 9(u;0) Dy (u) ds,

—T
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;
sup |pn(v)] < supz Ui y7 ni9) + sup g(u; v),
v

(TR u;v
=1 )

‘/ A2 (u;vg; 9) D (u) du| =

<csupz Z +Sup02(j;g),

|op (s 75 f)]
1f = Spmllc < sup{ R
(3
=1
S og (i 5 Pl = lopog(337; £)
oy L 5 )
i=1 ij=1 27
Z o) q(z il _ & \/! (i;j)\\/laéaé(z 7)
ij=1 i2j° ij=1 i25°

3 VIe@io3 (i ) 'W (p)iod(j: £)]

i,j=

=1
nm \/\al I\/IU2 33 f)l ) % @W

1+1 1+, 1—£ .L4e ..l
ij=1 i,j:ll 29272 272 "2

applicable ab < 3 (a* + b%)

R op (s )l R o2 (i S
<et)( 3 e+ > e )

ij=1 ij=1
m n 1/
1 |0, (i3 f) o3 ( ] f
(et ey Y
j=1 i=1 i,j=1
n 1/ m .
|0, (4 f) o535 f)]
o) 30+ D )
i=1 j=1
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