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A Nonlinear Equation for the Rectangular Dynamic Shell
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From an initial boundary value problem for the system of nonlinear differential equations,
which describes the large deflection of a rectangular shell, we obtain a nonlinear integro-
differential equation for the transverse displacement. This equation is analogous by its struc-
ture to the Kirchhoff equation for a string, the Woinowsky-Krieger equation for a beam and
the Berger equation for a plate which are united under the common name Kirchhoff type
equations.
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Let us consider a problem of nonlinear vibration of a sloping shell. We will use
the classical model based on the Kirchhoff-Love hypothesis [3, 6].
Equations of the problem can be taken in the form
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where for N1 = N1(x1, x2, t), N2 = N2(x1, x2, t), N12 = N12(x1, x2, t) we have
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Here ul = ul(x1, x2, t), l = 1, 2, and w = w(x1, x2, t) are respectively longitudinal
and transverse displacements of the point (x1, x2) of the shell midsurface at the
moment of time t (Figure 1.), Ω is the domain occupied by the shell in plan, T is the
upper boundary of the time interval, kl = kl(x1, x2, t) are the shell curvatures, l =
1, 2, pl = pl(x1, x2, t), l = 1, 2, q = q(x1, x2, t) are the external force components,
∆ is the Laplace operator, E and 0 < ν < 1

2 are respectively Young’s modulus
and Poisson’s ratio, D is the shell flexural rigidity, ρ is the mass density, h is the
thickness.

Figure 1.

System (1) does not contain the inertia terms ∂2u1

∂t2 and ∂2u2

∂t2 . According to the
author of the paper [7] where the solvability of system (1) is proved, this neglect
can be justified by the fact that, as a rule, the frequencies of shell proper longi-
tudinal vibrations are quite high and essentially higher than proper frequencies of
transverse vibrations. Therefore such a simplification of the problem is practically
admissible if principal frequencies of external forces are assumed much smaller than
first proper frequencies of shell longitudinal vibrations.
The aim of this paper is to obtain from system (1) and formulas (2) the equation

for the transverse displacement function w. To achieve this aim, from the first two
equations of system (1) which form a linear subsystem with respect to u1 and u2,
we have to express these functions through w,

ul = ψl(w), l = 1, 2, (3)

and, after that, using (3) in the third equation of (1), to derive the sought equation
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for w. We have to choose a domain Ω and boundary conditions for the functions
u1 and u2. We take respectively the rectangle and the homogeneous Dirichlet and
Neumann conditions on the boundary ∂Ω of the domain Ω for the functions u1 and
u2. So, let

Ω = {(x1, x2) | 0 < x1 < α, 0 < x2 < β} , (4)

and
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where n is the external normal to the boundary ∂Ω.
As to the initial and boundary conditions with the participation of the function

w, they do not play any special role and can vary in form.
Using the Fourier series method [4], for the shell transverse displacement function

w(x1, x2, t) we have obtained [5] a nonlinear integro-differential equation of the form
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where the integrand coefficients Amn, Bmn, Cmn, d1mn, d2mn and amn, bmn, cmn,
m,n = 1, 2, depend on x1, x2 and ξ1, ξ2, ds is an element of the boundary ∂Ω, δmn

the Kronecker symbol, m,n = 1, 2.
Equation (6) is related to the string equation
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introduced by Kirchhoff [2], the Woinowsky–Krieger beam equation [9]
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and the Berger rectangular plate equation [1] which in Wah’s interpretation [8]
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looks like
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Equations (7)–(9) together with numerous modifications and generalizations of
the first two of them and also their analogues for static problems, form the class
of integro-differential equations called the Kirchhoff class.
As to equation (6), the derivation of which the present paper is dedicated to,

owing to its form and purpose it is a new equation belonging to this class. Note
that there exists a vast bibliography on various aspects of Kirchhoff type equations.
These are the works which deal with problems of the existence and uniqueness of
a solution, stability and control, the construction and investigation of approximate
algorithms, numerical computations. The interest in Kirchhoff type equations is
permanent.
A few words about possible applications of equation (6). If the vibration of a

shell, rectangular in the plan, is described by system (1) with certain initial and
boundary conditions, which include (5) too, then such a problem reduces to the
solution of only one equation (6). After finding w, the functions u1 and u2 are
constructed using (3). As to the initial and boundary conditions for the function w
which accompany equation (6), they are obtained from the corresponding relations
of the initial problem provided that we use (3) in order to exclude u1 and u2 if
they are contained in these relations.
In some cases, to describe the shell it suffices to know only the transverse dis-

placement function. Then the problem reduces to the solution of only equation (6).
We have good reason to believe that the replacement of the domain Ω (4) and

the boundary conditions (5) considered in this paper for u1 and u2 by some other
domain and boundary conditions will not affect the type of equation (6) for w, but
will change only the formulas only for the integrand coefficients Amn, Bmn, Cmn,
d1mn, d2mn and amn, bmn, cmn, which will not be necessarily written in terms of
series. The insertion of inertia terms in the first two equations of system (1) will
not evidently affect the type of the equation for transverse displacement either.
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