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This research and survey work deals exclusively with the study of the approximation of gen-
eralized multivariate trigonometric type singular integrals to the identity-unit operator. Here
we study quantitatively most of their approximation properties. These operators are not in
general positive linear operators. In particular we study the rate of convergence of these inte-
gral operators to the unit operator, as well as the related simultaneous approximation. These
are given via Jackson type inequalities and by the use of multivariate high order modulus
of smoothness of the high order partial derivatives of the involved function. We also study
the global smoothness preservation properties of these integral operators. These multivariate
inequalities are nearly sharp and in one case the inequality is attained, that is sharp. Fur-
thermore we give asymptotic expansions of Voronovskaya type for the error of approximation.
The above properties are studied with respect to Ly norm, 1 < p < co.
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1. Introduction

We start with our motivation for this work. The following comes from [5].
For r e N and n € Z, we set

0= (") =1,
o 1i<<i>>’“j(7f>j", =0, v

j=1

T
that is ) «; = 1. Here it is £ € (0, 1].
j=0

Let f € C"(R), n € Z4, and fn) e L,(R), 1 <p < oo, €N, we define for
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x € R, the trigonometric integral

r sin(§> #
Tre(f;2): W/ Zajf(w+jt) § dt, (2)

° t
7=0

where

|+

()" »
00 S11 o] :
W:/ t dt:2§125/ (SI?t> dt ¥
0

—00

125 ﬂ B 26-1
. 3
2 b Z; —E)(B+Ek)! 3)
T, ¢ operators are not positive operators, see [7].
We mention:
let p and m be integers with 1 < p < m. We define the integral
> (sinz)*™  (sin z)*™
That is an (absolutely) convergent integral.
According to [9], page 210, item 1033, we obtain
m k2p 1
I = )
In particular, for p = m the above formula becomes
 (sin z)*™ L i E2m—1
————dr =7 (-1 -1 . 6
/O mdr =7 (=) m;( =R T R (6)
We need the rth L,-modulus of smoothness
Wy (f(”),h> = sup HAIf(”) (x)‘ , h>0, (7)
P |t<h P
where
AL @)= 3 (-1 () 1 e+ 1), ®
§=0

see [8], p. 44. Here we have w, (f("), h)p < 00, h>0.



Vol. 25, 2021

We need to introduce
O := Zajjk, k=1,...,n €N.
j=1
Call
T(w,2) =Y o f (@ + jw) = 6uf ) ().
=0

Notice also that

According to [2], p. 306, [1], we get
7 (w,z) = AL (2).
Thus

I (w2) e < 0 (£ lu]) o w e R

Using Taylor’s formula one has

- . ) (2)
dooylf (wtjt) = f@)] =D ot + Ra(0,1,2),
j=0 k=1

where
t (t . w)n—l
Rn((),t,x) —/0 WT(’U},LU)dw, n € N.
Assume
C¢ 1= / tkdug (t) ER, k=1,...,n,
where

w t

1 sin (%) 2
due (t) == — dt, VtecR.

Using the above terminology we derive

23

(10)
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where
R* (2) ::/ Ro (0,t,2) dpig (), n €N, (17)

Let [-] denote the ceiling of a real number. We mention

Theorem 1.1: ([5]) Let p,q > 1 such that ;1) +% =1, npBeEN, (> M
and the rest as above. Then

1
((n—1)) (q(n— 1)+ 1)3 (rp+ 1)

1A (@), < (18)

1

[rp]+1 »

n sint 26 ’ n (n)
fo (Tt 25 Z/ fp—1+j (t> ]dt §wr<f ,{)p.

Moreover, as § — 0 we get that [|A (z)]|, — 0.

The counterpart of Theorem 1.1 follows, case of p = 1.

Theorem 1.2: ([5]) Let f € C™ (R) and f™ € L1 (R), n €N, B €N, 3 > 1,
Then

1
(r+ 1) (0 = 1)1 J5° (5t

([ [ (357 )e-0m9)

Jj=1

1A (@), < (19)

) dt]

Hence as § — 0 we obtain |A (x)||; — 0.
The case n = 0 is mentioned next.
Proposition 1.3: (/5]) Let p,q > 1 such that % + % =1,0€EN, > w and

the rest as above. Then

[Tp]

||Tr,£ (f) = f”p < wr (/f, g)p [foo (sijt)w dt] ZO [/ooo v <81?t> ’ dt]
0 t =

Also as & — 0 we obtain T, ¢ — unit operator I in the L, norm, p > 1.

(20)

We also give

Proposition 1.4: ([5]) For B € N, B> ", we have

I Tre (f) — fIl, < [fo;((?ftf;; dt} JZ(:) [/Oootj <Si?t)2ﬁ dt] : (21)
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Moreover as § — 0 we get that T, ¢ — I in the L1 norm.

We also mention:
Case # = 2.

Corollary 1.5: ([5]) Let f € C* (R) and f' € L1 (R). Then

1T (f5) = £ @)y < o (m2 47 ) €n (71,6),.

Corollary 1.6: ([5]) Let f € C* (R) and f' € Ly (R). Then

40 327 5 5 . 256
||T2,§(f;$)f($)flé<3?mln< 1 )+33+227T >§w2(f £,

Corollary 1.7: ([5]) It holds

40 3% 15 . 256 47
_ < o [ - In — + —.
IThg () = flla = wr (£ € 117 1“( 4 ) 227 In 27

Also as £ — 0 we obtain T1 ¢ — unit operator I in the Ly norm.

Corollary 1.8: ([5]) We have

630 . 2% 5671)

[T (f) — fll, S ws (f, )4 (1517T noge T 9416

Moreover as § — 0 we get that T ¢ — I in the L1 norm.

We will use the following:

25

(22)

(23)

(24)

Remark 1: ([6]) Let j,m € Z, m > 1 such that 0 < j < 2m — 1. The integral

/°° o <sinx>2m {2f (Sm“) dz, if jis even.
o T , if jis odd
is an (absolutely) convergent integral.

According to [9], page 210, item 1033, we obtain

case 1: jiseven, j <2m —1

) : 2m 2m m 2m—j—1
; (sinz p (-1 k
/0 v < x v 20+ ( 2m j—l'; — k) (m+ k)

and
case 2: jis odd, j < 2m —1

00 . 2m = m 2m—j—1
/ o (BB dp — (— Z k k —I=1{In (2k)] .
0 x 27 2m j—l )! (m— k) (m+k)!

=1

(26)

(27)

(28)
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In particular, for j = 0 the formula (27) becomes

© fging\ 2™ 4 qym " Ok E2m—1
/0 ( . ) dr =7 (-1)"mY_(-1) CE TSk (29)

k=1

In this work we study the approximation properties of general multivariate
smooth trigonometric singular integral operators:

T?"[:’Z] (fa T1yeeny ‘TN)

. (s, 25
— )\—N [m] : : St (§7> d d
= Ap Z%J f(961+81j7-u7$N+8Nj)H s1...dsn, (30)
=0 R

Py
i=1 v

with 0 € N, and

1-23 8 o k k261
An 1= 2652075 (21 -1 : 31
see [7], [9], p. 210, item 1033.
Notice that
20
N [ sin (E—)
A;N/ [[|—=4| dsi.dsy=1, (32)
RY i=1 5
see also [7], [9], p. 210, item 1033, and [3], p. 16.
We call
5 B . 201
=2m (—1 —1 33
that is
An = €720, (34)
Here r € N, m € Z,, and
(—1)" <’f>j moif =12,
ol J (35)
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and

5,[;:’;] = Za%}j’“, k=1,2,..,méeN. (36)

'
See that X%)ag?;] =1.
iz

Here also &, € (0,1], n € N, and f : RY — R is a Borel measurable function.

The above operator Tr[f;:f] is a special case of a more general operator G,Ln}l] studied
in general in [3] by the author.

Next we mention about HLTL]
Let p¢, be a probability Borel measure on RV, N > 1.

We define the multiple smooth singular integral operators

97[«”;‘9 (fiz1,.2 ZOZ]T / f(x1+ 817,22 + 827, ., oN + snj) dpe, (s),
7=0
(37)
where s := (s1,...,sn), © := (21, ...,xx) € RY.
The operators HTTZ] are not in general positive. For example, consider the function
N
¢ (ur,..,uy) = Y u? and also take r = 2, m = 3; x; = 0, i = 1,..., N. See that

@ > 0, however

2 N
055 (:0.0,000) = | o2 | [ (Zs%) dpg, (5)
J=1 J

= (a[13}2 + 404[3] ) /[RN (i_v: 322> due, (s) = (—2 + ;) /[RN (i_v; sf) dpe, (s) <O.

1=1 =
(38)
N
assuming that [py (Z 322) dpe, (s) < oo.
i=1
Clearly in the case of TT[TZ] we have
oy (o (gn) .
dug, (8) =\, H Hdsl—dwg s), secRYN. (39)

m]

Lemma 1.9: The operator 9[ rm preserves the constant functions in N variables.
We need the following definition.

Definition 1.10: Let f € Cp ([RN), the space of all bounded and continuous
functions or uniformly continuous on RY. Then, the rth multivariate modulus of
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smoothness of f is given by (see, e.g. [4])

wr(fih) = sup (AL o (Do <000 B >0, (40)
A<

where ||-||, is the sup-norm and

Azf (x) = Azl,UQ,...,’U,Nf<x17 "'7$N)

r

= (—1)T_j <§> f(]:l + jui, x2 + jug, ..., TN +juN). (41)
=0

Let m € N and let f € C™ ([RN).

Suppose that all partial derivatives of f of order m are bounded, i.e.

Hamf(.,,...,.) e )

Qg N
0x{"...0xy

’ [e.e]

N
forall oy € 2%, j =1,..,N; 3 aj = m.
j=1

In this work we apply the general theory developed in [3] about 9,[7%] to the

operators T,LTZ}, so we can obtain computationaly specific results and show that the

general theory has applications and it is a valid theory.

So for the very important in various branches of mathematics operators T,[ZL] we

prove the very essential properties of uniform approximation, L, approximation,
global smoothness preservation and simultaneously approximation, Voronovskaya
asymptotic expansions and complex simultaneous approximation.

2. Auxilliary essential results

We will use

Lemma 2.1: Let NeN,r>0, 2 €Ry,v=1,....,N. Then

N r N
(1 + zi> <J[a+=). (43)
=1

=1

Proof: We have

N r N r
<1+Zzi> < <N+Zzi> =[(14+2)+042)+..+1+23)]
i=1 =1
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N r N
B (Z(1+2i)> SH(1+z¢)T, by 142 >1,i=1,..,N.

We give
N
Theorem 2.2: Let r,N,B €N, aj €2, j=1,..,N:|al = > aj =m €N,
j=1
&n € (0,1], n € N. Here we take 3 > MQH, and v, \p, are as in (33) and (34),
respectively. Also we take A =0,1,...,r. When X is even we define

_ =08 (v k?ﬁ“
o T Ay (Z (ﬂ+k)> “

k=1

and when X\ is odd we define

_ DT @A (S, KO I (26)
Y2 = S BE A 1) (; S S CEs TR (45)
and we set
1, if X is even,
Vai= {zp;i if A is odd. (46)

Similarly, it is defined Vi, just set in (44), (45), (46), \+m in place of A. Then

@ [ ( )(HH L) Sm(sn) ﬁﬁd

=1

, N
< 2B(N—D4+moN =N {Z <f\> [1hr + 1/},\+m]}

. N
< 2Ny~ {Z <f\> [vox + %Z),\+m]} < o0, (47)

A=0

uniformly bounded, and convergent to zero as &, — 0, when n — +o0.

Proof: We estimate

A&L(Q)ZA;N/RNC . >< LY gy Sm(fn> ﬁﬂd

i=1 =1
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N N i Si b N
- o Isllo " S \e
ZZNA”N/M (Hsl ) (1+ ;2) II ( s(l )) li[dsi (48)

=1

=1

[RN

+ /1 e (S”;Z> v dz] } (49)
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T [e's) : 243
< Egﬁ(N—1)+m2N7—N {Z (;) [/ A <sm z) &
0 z

A=0

e

Based on [9], p. 210, item 1033 and [6], see (27), (28), and by assuming N > 3 >
el e A < A4+ m < 28— 1, for all A = 0,1,...,7, we have the following
calculations:

Let A\ be even, then

/OOZ/\ sin z %dz— 7 (— ) B)! i kw*)‘*l —
0 2 2T (23 — )\—1 'kzl RN I

Let A be odd, then

o . 283 B 28—A—1
)\ [sinz (=1 25 K k [In (2k)]
[ () dz‘w i 2 OV G e e

(52)
Therefore
OOZ)\ sin 2\ 2 dz = 1y — Y1), when A is even, (53)
0 2 = A7 1 99, when ) is odd.
Similarly, for A + m being even, we get
. 28—A—m
/°° vm (SI02 %dz: m(=1)" 2 (28)! (54)
0 z 22+mtl (28 — X —m —1)!
B 28—-A—m—1
k
2V G~ Vo
RN (RS
And when A +m is odd we get
0o . 2/6 At+m—1 |
)\+m Sz d — (_1) 2 (26) 55
/0 ® ( 2 > T m (28— A—m—1) (55)

o k% A=m=1 [l (2k
2 U (ﬂ[ +(I<:).)] = Ya(m)-

k=1
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Therefore, it holds

oo : 243 .
m [ sinz m), when A+ m is even,
/ A <) Az = Yrim = {jf“ ) | (56)
0

z 2(\+m), When A +m is odd.
That is
, N
I = €2B(N=DFmgN  -N {Z <f\> [¥x + w+m]}
A=0
, N
_ T
A=0
Le. A¢, (@) is uniformly bounded. The theorem is proved. O

We continue with

Theorem 2.3: Letr,n € N, &, € (0,1], B EN: [ > %1, N € N — {1}. Here
Y, An are as in (33) and (34), respectively, and ¥y is defined by (44), (45) and
(46), A\=0,1,....,r. Then

Islls\" Sm(?) T
. \—N 115112 .
B&n . )‘n /RN < > H Ed&

1=

—

r N
< PN TNy N [ (;) w]

< 9NN [i <;> w] ) < 400, (58)

A=0

uniformly bounded, and convergent to zero as &, — 0, when n — +oc.

Proof: We estimate

Islly " Sm(f> T
_y—N 2 ,
Bfn - >\7L /|RN < > H gds%

=1

oo [ (1 BB sm(J wﬁd& 59)
B i=1

i=1
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+

o sin 2\ %8 N
=gy [Ty () e
0 z
( ) " r o0 sin z 28 N
_ (2B(N—=1)gN_—N A
=g S (1) ([T (22 )|

, N
(53) 20(N=1)gN , —N [Z <§\> 7%] (60)

< 2Ny [Z <§) o

A=0

under 3 > % The theorem is proved. O

We also give

N
al =) a; =
j=1
m e N, &, € (0,1], n € N. Here we take § > M’ and v, A, are as in (33)
and (34), respectively, and \ runs as A = 0,1, ..., [rp]. Furthermore 1) is defined

as in (44), (45) and (46). Similarly, it is defined Yximp, just set in (44), (45),
(46), (A + mp) instead of \. Then

N r\ P in (3 20 N
Ce, (a) := AN /[RN ((HLSZ ai’) (1 + H§H2> ) : an) HdSi (61)
i=1 n i=1 ! i=1

Theorem 2.4: Letp > 1;r,B,N €N, a; € Z", j=1,..,N : |
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N

[7p]
< PN rmpgN =N Z <[T>{ﬂ> [Vx + Vxgmp]

A=0

A=0

[rp] N
< 2Ny=N {Z <[rm> [ + ¢>\+mp]} < 400,

uniformly bounded, and convergent to zero as &, — 0, when n — +00.
Above [-] is the ceiling of the number.

Proof: We estimate

o (fler) Vi) e

7

:QNA;N/M«g?)( () )H Sm( ) wﬁld&

1=




Vol. 25, 2021

[p] 1 . 283

e () [ o)
o0 : 243
Aragp [SInz
+/1 z p (z > dz]}
[rp] 1 . 283
(N=1)+m - [rp] sin 2

e (B [ (22

A=0

Nﬂ{%< ) ([ ()
i=1 ° )

[rp] N
<2Ny7W {Z <[r§ﬂ) [thx + ¢A+mp]} < +o0,

A=0

i.e. C¢, (@) is uniformly bounded.

35

We assumed above that N 5 3 > M, ie. A< A4+ m < 28 —1, for all

A=0,1,..., [rp].
The theorem is proved.

We also present

O
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Theorem 2.5: Letp > 1;r,8 €N, N € N— {1}, & € (0,1], n € N. Here we
take 3 > %, and vy, \p, are as in (33) and (34), respectively, and X\ runs as
A=0,1,.., [rp]. Furthermore vy is defined as in (44), (45) and (46). Then

N sl \ 7 & (sin () T
De = A= / (1+> G ds;
En n RN fn H Si H 1

i=1

N

L ( rp]
< 2IN=1)gN =N Z( \ )w (65)
A=0
[7p] rp) N
< oNy=N ;( f >¢>\ < +00,

uniformly bounded, and convergent to zero as &, — 0, when n — +o0.

Proof: We estimate

gy (=)
De. :A”N/[RN< s Hz) 11 T] s (66)

i=1 i=1

S 2BN
o [ (1 ) Sm(f) e
RY -
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o0 25\
— 2B(N-1)gN-N (/ (14 2)7 <sn;z> dz)
0

&0 sin 2\ 2 Y
< 625(1\771)2]\[771\/ / (1 + Z) [rp] < ; > dz
0

f’r‘]fl |VT‘—‘ 0 sin z 24 N
e )] w
A=0 0 z

L ( [rp]
N_.—N
<2 N (M| <4
A=0
under 3 > pr 1+ The theorem is proved. O
We proceed to
Theorem 2.6: Letn,N €N, &, € (0,1], a; €Z2T, j =1,.. |04]—Za]—

m € N. Here B € N : 3 > m+1, and vy, N, are as in (33) and (34), respectwely

Furthemore 1, is defined as in (44), (45) and (46), just replace A by «;, i =
1,...,N. Then

N N Lain (s)\ 7w
e | ({1 ) (2E)
& T e i=1 i=1 i=1 Z

|a|=m

N
< &PV V289N max (H w) (68)
i=1

< 2Ny N max (H¢a1> = @ < 400.

laf=m
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Proof: We estimate

N N [ sin (g—) 20 N

(53

under § > m—“ ie. a; <26—1,i=1,...,N. The theorem is proved.
We make
Remark 1: As in Theorem 2.6, we denote

_ e28(N-1)gN,, NH(/ Lo (sinz>25dz>
z

=1

N

N
) €2ﬁ(N—1)2N,Y—N <H waL> S é‘iﬂ(N_l)QN’y_N max (H wai

i=1 lad=m

|lal=m

< 2NN max (Hwa ) < 400,

where j = 1,...,m, and @ := (a1,..,an), €2t i=1,..,N, |[a] = «; = 7.

By (68) we obtain

<&yt <.

= |[C_
a7n7‘7
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3. Main results for T,[’",,:]
3.1. Uniform approximation

We start with an application to T, r[TZ] of the following theorem.

Theorem 3.1: ([3], p. 11) Let m € N, f € C™ (RY), N > 1, z € RY. Assume
‘ 8m’f('7"'“?')

0z71...0z N
Borel probability measure on RN, for &, > 0, (fn)neN bounded sequence

< oo, foralla; €27, j=1,... ]a!-Zaz—m Let g, be a

Suppose that for all @ := (aq,...,an), ; € ZT, i =1,....N, |a| := Z a; =m
i=1

N
—\ .__ S'Qi ||8||2 " s 00
we, (@ = [ (,Hl"' ><1+£n ) due < @)

~ N ~
For j =1,...m, and @ := (ai,..,an), & € ZT,i=1,..,N, |[a] := Y «aj = j,

we have

j=1
call
N
Can 1= Cqpj = /[RN ]‘_Ilsio”d,ugn (S1y..sSN) - (73)
Then

. ~falx
EI (z) == |07 (f; ) Za[m] 3 Canjfa(®)

arman 20 ] ay!
=7 '

ai,...,an 20; H oy
lal=m i=1

S <‘"<Svff)</ (H)( By dugn<s>>. (74)

vV x € RN.

i)
HE,[f;;} HOO < R.H.S.(7}). (75)

Gwen that &, — 0, as n — oo, and ug, is uniformly bounded, then we derive

that HE’,[{Z] — 0 with rates.
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i11) It holds also that

mo Canil Ifallso
o =S| x Fell ) s,
57 al,.‘lﬁgZO; [T «!
a|=j =1

giwen that || fll,, < oo, for all@ : [a| = 7, j = 1,...,m. Furthermore, as &, —

0 when n — oo, assuming that c. ~ — 0, while ug, is uniformly bounded, we
1] "

conclude that

ol ()= ]| _—0 (77)

with rates.
A uniform approximation result for Tkz] follows:

Theorem 3.2: Let r,N,B,m € N, f € Cm([RN), r € RYN. Assume
‘ 8mf(77’)

Ozt .0z N
1
be the Borel probability measure on RY, see (89), where &, € (0,1], n € N. Here
B> mEEL and Ae (@) as in (47), and Csp =05, 5 as in (70). Then

< oo, foralla; €27, i=1,..,N : |q

N
= > a; = m. Let g,
1

7]
i)
- ] N ] Cy e (@)
By, (2) = \T0) (fra) = f(x) = )& 2 R
}:1 041,-.-,041120; H ogi!
[al=5 i=1
Wr f@fn —
<y @lmbd), g (78)
ag,...,an>0; H ai!
|al=m i=1
vV x e RV,
i)
|| < rHs.(79). (79)

Given that &, — 0, as n — 400, we have that A¢, (@) — 0 and are uniformly
bounded, and then we derive that HELTZ]
i11) It holds also that

— 0 with rates.
o

LN, e | Il
(X N " S L |+ RHES(78),  (80)
& G=1 ’ aq,..,an >0; H «;!

edl=5 i=1
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giwen that || fa||,, < oo, for alla: |a| = 4, j=1,....m. Furthermore, as &, — 0
when n — 400, we have that ¢, = — 0 and A¢, (@) — 0, and both are uniformly

) 1o,

bounded, and we conclude that

Tl (f) —f|_ =0 (81)

with rates.

Proof: Mainly by applying Theorem 3.1. By Theorem 2.2 we get that A¢, (@) — 0
and A¢, (@) are uniformly bounded. By Theorem 2.6 and Remark 1 we get ¢z, — 0
and ¢g,, are uniformly bounded. ]

We mention

Theorem 3.3: ([3/, p. 14) Let f € Cp ([RN), uniformly continuous, N > 1,
&n € (0,1]. Then

ot -1 < ([ (4 12) de ) rred,
0o RN n
under the assumption
o [ (12 sy
€, = + due, (s) < oo. (83)
RN én
Asn — o0 and &, — 0, given that ®¢, are uniformly bounded, we derive
=0 (84)
with rates.
We give

Theorem 3.4: Let f € Cp ([RN), uniformly continuous, B,r € N, N € N — {1},
6> %, &n € (0,1], n € N. Then

Asn — oo and &, — 0, we derive

[
with rates.

Proof: By Theorems 2.3 and 3.3. O

, N
T | <2 N[ (;)m] BNy (£6). (8

A=0

f=f|_—o (86)
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3.2. L, Approzimation for T}jz]
‘We need

Definition 3.5: ([4], [8]) We call

Al f(x):= AR § (1, .y TN) (87)

T

— T . . .
= (=1 (]) f(z1 4 jui, x2 + jug, ..., xN + jun) .
=0

Let p > 1, the modulus of smoothness of order r is given by

wr (f1h), = ||5|th 1AL (O, (88)

h > 0.
We will apply

Theorem 3.6: (/3], p. 24) Let f € C™ (RY), m € N, N > 1, with f5 € L, (RY),
|a| =m, x € RN. Let p,q > 1: %—i—% = 1. Here, p¢, is a Borel probability measure
on RN for &, > 0, (§n)ne bounded sequence. Assume for all @ := (o, ..., an),

N
a; €27, i=1,..,N, |[a| := > a; = m that we have
i=1

/[RN ((f[l |51|a> (1 + ‘;‘2>T>pd,ufn (s) < 0. (89)

~ N ~
For j =1,...m, and @ := (ai,..,an), & € ZT,i=1,..,N, |[a| := . «aj = j,

call

o i /[R s due, (9). (90)

Then

(91)
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m 1
<<q<m— 1>+1>i> Em ] o
=1

IN

P P
d,U,gn (3)] Wy (faa én)p :

(e ) ()

Asn — oo and &, — 0, by (91) we obtain HE%LL}
One also finds by (91) that

— 0 with rates.

of

1]

ol (fi0) — f (@)

2. %

[at|=5 o;!
1

DML Ifall, | +RH.S.(91),  (92)
j=1

<.
Il

given that || fz||, < oo, [@| =4, 7=1,...,m.

Assuming that Cani 0, & — 0, as n — oo, we get

ol () - pr — 0, that

18 HLTZ] — I the unit operator, in L, norm, with rates.
We present

Theorem 3.7: Let f € C™ ([RN), r,B,N,m € N, with fg € L, (IRN), |a| = m,
x €RN. Let p,g > 1: % + % = 1. Here ¢, is a Borel probability measure on RN

as in (39), for &, € (0,1], n € N. Let 5 > M; ajezt, j=1,..,N:|a|:=

N ~
Y. oy =m. Here Cgp := Cqp 5 0S IN (70), where j = 1,...,m, and @ := (a1, ..., N ),
Jj=1

N ~
o, €27, i=1,..,N:|a|:=> «a;=j. Then
=1

—I[m “ m 704n~.fa
B = |1 i) - s - Sl | 37 i
j=1 al=j l‘[la¢!>
1= p,T

sz
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2B(N=1) |
S T e, (93)

jal=m T !
i=1

Asn — oo and &, — 0, by (93) we obtain HE&Z} — 0 with rates.

One also finds by (93) that

m C— -~
|t ey = p@)| < S0 ST T Il |+ RES.(99), (94)
j=1 jal=j ][ !

given that || fz||, < oo, [@ =4, j=1,..,m.

Assuming that &, — 0, as n — oo, we get ’

T () - pr — 0, that is T/™ — I

the unit operator, in L, norm, with rates.

Proof: By Theorem 3.6. From Theorem 2.4 we get that C¢, (@) is uniformly
bounded, see (61) and C¢, (@) — 0, as &, — 0, when n — oo. Also by Theorem 2.6

and Remark 1 we get that ¢, := Canj A€ uniformly bounded and ¢g, — 0, as

&, — 0, when n — oo. O
We continue with an application of

Theorem 3.8: (3], p. 26) Let f € (C(RY)NL,(RY)); N > 1; p,q > 1:
%4—% = 1. Assume p¢, probability Borel measure on RV, (§n)pen > 0 and bounded.

Also suppose
Isllo )™
1+ ¢ due, (s) < oo. (95)
RN n

Then

o ()~ | (96)

p

< ( /. <1 ; ”E”2)p dpe, (s))’l’wr (,60), .

As &, — 0, when n — oo, we derive 97[% (f)— f” — 0, e QL?,]Z — I, the unit
P

operator, in L, norm.
We give
Theorem 3.9: Let f € (C(RY)NL, (RY)); NeN—{1}, B,r €N; p,g>1:
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%+%:1;ﬂ>%,§n6(0,1],n€w Then

3|z

)

[rp] 28(N_1)
|z8hn =i <25a7% Z(“}”)w & 7 wr(fi&),  (O7)

As &, — 0, when n — oo, we derive ‘

)

T,on]l (f) — fH — 0, ie. T7[8']L — I, the unit

operator, in L, norm. ?

Proof: By Theorems 3.8, 2.5. O
We mention

Theorem 3.10: (3], p. 27) Let f € (C (RY) N Ly (RY)); N > 1. Assume pg,
probability Borel measure on RY, (&n)new > 0 and bounded. Also suppose

/[RN <1 + ”gr’j?)rdﬂgn (s) < 00, (98)

Then

-1 = ([ (+ 1) de, ) rrign. 09)

As &, — 0, we get GT% — I, in L1 norm.

We give

Theorem 3.11: Let f € (C (RY)NL (RY)); NeN—{1}, r,B€N, 3> %’
&n € (0,1], n € N. Then

|

As &, — 0, we get Tr[?,l — I, in Ly norm.

. N
T () - 1| <2V [Z (K) w] PNV (f,6),. (100)

Proof: By Theorems 2.3, 3.10. O
We mention

Theorem 3.12: (/[3/, p. 29) Let f € C™ ([RN), m,N € N, with fz € I ([RN),
|a| = m, x € RY. Here, pg, is a Borel probability measure on RN for &, > 0,

(€n)pen s a bounded sequence. Suppose for all @ := (o, ...,an), o € Z7, i =
N

1,...,N, |al = > a; =m that we have
i=1

(S [

i=1
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~ N ~
Forj=1,...m, and @ := (a1,...,an), a; €Z",i=1,...,N, [a| .= > a; = j, call
i=1

Cami /Hs ‘dye, (s (102)

Then
| Bl = okl sy — (@) = Yool |37 (103)
j=1 = ][ o
=1 1,x

< 3 | et [ (Hm )( 1) g 0.

[or]=m H Oéi!
i=1

As &, — 0, we get HE — 0 with rates.

From (103) we get

a7n7]

I fall, | + R-H.S.(103), (104)

‘ 3 ot

J 1 |a‘—J Haz

gien that || f]|l, < oo, [@| =7, 7 =1,...,m.

As n — oo, assuming &, — 0 and Cani = 0, we obtain rn f” — 0,

n,j
that is OLTZ] — I in L1 norm, with rates.
We give
Theorem 3.13: Let f € C™ (IRN), r,N,B,m € N, with fz € L1 (IRN), where
aj €27, j=1,.,N : |a] := g:laj =m, z € RY, & € (0,1, n € N, and

m+r+1 = .= : T = . _
B> "=, Here Cgp = Canj 08 W0 (70), where j = 1,...,m, and @ := (a1, ..., N ),

N ~
ezt i=1,..,N:|a|l:= > o = j. Besides, here @¢, is the Borel probability
i=1

measure on RY, see (39). Then

e

. [m] [m] Eaﬂ—bffa (I)
=T () Za 2 TN (105)

i=1 1,x
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1 —1)+m
< Z N Wy (fa, gn)l Zﬁ(N D+
jal=m | T !
=1

2Ny~ {ZT: <f\> [1hx + ¢A+m]}N-

A=0

As &, — 0, we get H — 0 with rates.

From (105) we get

Q?‘

||fa|]1 + R.H.S.(105), (106)

w1, = Sl | 5 "
= al=j it

given that || fall; < o0, |af =4, j=1,...,m

As n — oo, assuming &, o

T () - le — 0, that
s T}ﬁ] — I in Ly norm, with rates.

Proof: By Theorem 3.12, also by Theorem 2.2, see (47) and by Theorem 2.6 and
Remark 1. m

3.3. Global smoothness preservation and simultaneous approximation of
Tlm]
rn

We need

Definition 3.14: ([3], p. 34) Let f € C ([RN), N > 1, m € N, the mth modulus
of smoothness for 1 < p < oo, is given by

m (fih), == sup [[AF ()], (107)
lItll,<h
h > 0, where
AT (@)=Y (- < ) fatt). (108)
7=0
Denote
win (f31)oe = wm (f,h). (109)

Above, z,t € RN.

We present the related global smoothness preservation result
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Theorem 3.15: We assume Tfﬁ} (f;z) € R, m € Z4, ¥V © € R. Let h > 0,
feCRY), N>1.
i) Assume wp, (f,h) < co. Then

(T[m] ) (Z‘a~ ) wim (f, 1) (110)

it) Assume f € (C (RY) N Ly (RY)). Then

on (1011) = (Z( )wm e )

iii) Assume f € (C’ ([RN) N Ly, ([RN)), p>1. Then

Wi (T;fz}f, ) (Z‘w ) m (f,1), - (112)

Proof: Direct application of ([3]) Theorem 3.2, p. 35. O
We make

Remark 1: Letr=1,m € Z,, then a[ 1] =0, a[m] = 1. Hence

N sm( ) “
1n (f;z)= A, N/ flz+s H dsy..dsy =T, (f;z). (113)
i=1

By Theorem 3.15, we get
Theorem 3.16: We suppose T, (f;z) € R, Vx € R. Let h > 0, f € C([RN),

N>1.
i) Assume wp, (f,h) < 0. Then
Wi (Tnfoh) < w (f,h). (114)
i) Assume f € (C'(R¥) N Ly (RN)). Then
Wi (Tnf,h)y < wm (f,R); - (115)
iti) Assume f € (C (RN)N L, (RY)), p>1. Then

O (T f, 1), < wm (£,1),. (116)

Next, we get an optimality result
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Proposition 3.17:  The above inequality (114):

Wm (Tnf7 h) S Wm (f7 h)

is sharp, namely it is attained by any
fi(@)=27", j=1,..,N, == (21,....,%5,...,7N) € RY. (117)

Proof: Apply Proposition 3.5, p. 38, of [3]. O
We need

Theorem 3.18: (/3/, p. 39) Let f € C' (IRN), [,N € N. Here, i, is a Borel prob-
ability measure on RY, &, > 0, (§n)pen @ bounded sequence. Let B = (B1,.., BN),

_ N
B ezt,i=1,.,N; ’ﬁ‘ = >0 = I. Here f(x+sj), x,8 € RN, is pe, -
i=1

integrable wrt s, for j = 1,...,r. There exist ug, -integrable functions h;, ;, hg, i, ;,
hﬁl:ﬁz,imj’ ) hﬁlvﬁZv'”vﬁN—lyiij >0 (.7 =1, ...,’l“) on RY such that

w < hil,j (8), i1 = 17'__7ﬂ1, (118)
oz}
8/31+i2f (.T + Sj)
} S h 1,02, (8 ) 2.2 = 17"'7627
0xy 0xy" iz (5)

8ﬁl+ﬂ2+-~-+ﬁN—1+iNf (JT + S])

Oz N1 0z ot

< hﬁlﬂ%n-ﬂz\l—l,iz\l,j (5)7 ZN = ]-a "-7ﬂN7

Vx,s€RN.
Then, both of the next exist and

(9,@; <f;x)>5:9§:) (fﬁ;x), mez,. (119)
In particular, it holds
(T (7)), = T (f0) (120)
when

dpe, = dee, (s), s€RY,

see (39).
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Corollary 3.19: (by Theorem 3.18, r = 1) We have

(T (f:2))5 = T (f3i) (121)

We present simultaneous global smoothness results.

Theorem 3.20: Let h > 0 and the assumptions of Theorem 3.18 are valid for
due, = dpe,. Here 7 =0,6 (0=1(0,...,0)), m € Z.
i) Assume wp, (fy,h) < co. Then

wm ((Ti:?z] (f))y,h> <[]} o (110, (122)
7=0

ii) Additionally suppose fy € Ly (IRN). Then

wm (T h) < ’ W‘ m (fo, 1), 123
(), n) < (S]], (123)
7=0
iii) Additionally suppose fy € Ly ([RN), p> 1. Then
W <(T,lfz] ). h) < (X | ) o (5.1, (124)
T )y T
We have
Corollary 3.21: (to Theorem 3.20) Let h >0, r =1 and 5 = 0, 3.
i) Assume wp, (fy,h) < co. Then
o (T (9)5h) < wm (F5:0). (125)
ii) Additionally suppose fy € Ly (IRN). Then
Wm ((Tn (f))77 h) 1 < wm (f% h)1 . (126)
iti) Additionally suppose fy € L, (RY), p> 1. Then
om (T (1)g:h) < wm (f5:1), (127)

Next comes multi-simultaneous approximation. We give

Theorem 3.22: Let f € C™ ([RN), m,l, N € N. The assumptions of Theorem
3.18 are valid for dug, = dpe,. Call 5 = 0,3. Assume | f+all, < oo, and let
& € (0,1, n € N. Here B,r € N, 8 > ZHEL and A (@) as in (47), and
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Can i=Cq,,5 as in (70). Then

a,n

() () = S g Cangfrta ()
<Tr,n (fa ))7 f“/ ( ) Z(%$ Z N (128)
j=1 al,.‘.,ajvaO; H ai!
Joe|=j i=1 0o
Wy (ff ay gn)) —
< Z (+A§n (@).
20 (H aﬂ)
i=1
Proof: Based on Theorems 3.2, 3.18. |

We continue with

Theorem 3.23: Let f € C’fg ([RN), r,l,8 € N (functions l-times continuously
differentiable and bounded), N € N — {1}. The assumptions of Theorem 3.18 are
valid for due, = dpe,. Cally = 0,0, &, € (0,1], n € N. Let also § > # Then

r

N
(@), - 55| < 2% [Z(Q)w] POy (fr6). (129)

A=0

If &, — 0, as n — oo, then (Tif)gljf)7 — f5 uniformly.

Proof: By Theorems 3.4, 3.18. O
We present

Theorem 3.24: Let f € O™t ([RN), r, B, N,m,l € N. The assumptions of The-

orem 3.18 are wvalid for due, = deg,, & € (0,1], n € N. Call 5 = 0,3. Let

fe+a) € Lp(IRN), @l = m, z € RN, and p,q > 1 : %4—% = 1. Let also
N

6 > m; aj € Zt, j =1,.,N, |[a| := Y a; = m. Here ¢ay = Conj
j=1
as in (70), where j = 1,...m, and @ = (a1,..,ay), oy € Z7, i = 1,.... N,
N ~
|a| := > «a; =j. Then
i=1
- Cs ~f’7+a($)
(T (F)) = £ ) = 3000 | 30 2
j=1 =3 H oy!
=1 px
N
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1 25(11\:*1) +m
> = gﬁ )i (frm:&n), (130)
[al=m [T a!
i=1
Proof: Theorems 3.7 and 3.18. O

We continue with

Theorem 3.25: Let f € C ([RN), B,r,l € N, N € N —{1}. The assumptions
of Theorem 5.18 are valid for due, = dype,, & € (0,1], n € N. Cally = 0, (. Let
fqeLp(lRN) andp,q>1:]%+%:1. Here 8 > %. Then

H (T5n)_~ 15| <
v P
[rp] % 2B8(N—1)
N N r =
25475 Z(W)m b " wr(fra), (131)
A=0
[0 lI-1l,
Asn — +oo and &, — 0, then (Tr,n (f)), — f5.
gl
Proof: By Theorems 3.9 and 3.18. O

We continue with

Theorem 3.26: Let f € C! (IRN), [ € N, N € N—{1}. The assumptions of

Theorem 3.18 are walid for due, = dye,, & € (0,1], n € N. Call 7 = 0,8. Let
7€ Ly ([RN) and B,r €N, 3> % Then

, N
< 9NN [Z (;) w] BNy, (6, (132)
1

A=0

H (T8 ()~ &5

Asn — +oo and &, — 0, then (T7[‘8’L (f))f |ﬂ>1 I3

Proof: By Theorems 3.11, 3.18. O
We continue with

Theorem 3.27: Let f € C™H (IRN), r,N,B,m,l € N. The assumptions of The-
orem 3.18 are walid for due, = dye,, & € (0,1], n € N. Call 7 = 0,8. Let
J+a) € In ([RN), @l = m, z € RY, 3 > %’"H Here ¢5p = ¢ =~ as in (70),

a’n?]

~ N ~
where j = 1,....,m, and @ := (a1,...,ay), &; €Z7,i=1,..,N, |[a| := > a; = .
i=1
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Then

=1 1,z

<

N
[al=m [T ;! o
i=1

(133)

Proof: By Theorems 3.13, 3.18. O

3.4. Voronovskaya asymptotic expansions for Ti’mn]

We will apply

Theorem 3.28: ([3], p. 53) Let f € C™ (RY), m, N € N, with all || fx]|, < M,
M >0, ala: |a = m. Let & > 0, (&n),cn bounded sequence, g, probability
Borel measures on RY.

N ~
Call c; 5 = Jg~ <H sza) due, (s), all o = j = 1,..,m — 1. Suppose

i=1

N
& f[RN <H1 |51|a> due, (s) < p, all @ = [@] = m, p > 0, for any such (fn)neN'
Also 0 <~v* <1, z € RN. Then

When m = 1, the sum collapses.
Above we assume GLTL] (f;x) €R,V z € RV,

We give
Theorem 3.29: Let r,m,8,N € N, 3 > mTH, & € (0,1], n € N. Besides,
N
oa; €2V, j=1,..,N:[al:= Y aj=m. Here f € C™ (RN, with all || fz .. < M,
j=1

M >0, for all@: |@| = m; and dug, (s) = depe, (), as in (39),V s € RY. Assume
TT[%} (fiz) €R, ¥V x € RN. Here Canj s i (70), all |a] = j=1,...,m—1. Let
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When m = 1, the sum collapses.

Proof: By Theorems 2.6, 3.28. Here p = ¢, see (68). O
We give

Corollary 3.30: (to Theorem 3.29) Let f € C* (RY), N € N, with all H%Hw <

M, M>0,i=1,...N. Let 0 < v* < 1. Assume Tiﬂ(f;x) €R,VzeRN. Here
r €N and 3 €N — {1}, &, € (0,1], n € N. Then

T (fio) = f(2) =0 (&™), (136)
Proof: By Theorems 2.6, 3.29. Here it is p = ¢, apply (68) for m = 1. O
We continue with
Corollary 3.31: (to Theorem 3.29) Let f € C* (R?), a g%é K
|o2]| <M. >0, 6 € (0,1], m e . Cau
c] = /[R2 sldgozn (s), co= /[R2 Sgdtpzn (s), (137)

where
dsidss, s = (s1,82) € R2.

Let 0 < ~* <1 and assume T7[2,]L(f,a:) €R,V 2z €R? Herer,3 €N and 3 > %
Then

0 .
18 (752 Zaj ) (et @ eyt @) +0(E ). (3

Proof: By Theorems 2.6, 3.29. O
We also give

Theorem 3.32: Let f € C™*! ([RN), m,l,N € N. Assumptions of Theorem
.18 are valid for dpe, (s), s € RN, &, € (0,1], n € N. Call 5 = 0, 3. Suppose
[ f5+alle < M, M >0, for alla: [a| = m. Herec, = is as in (70), all [a] = j =
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1,.om—1;0<y* < 1. Assume TAZ] (fyiz) eR, Ve RN, Let also r,3 € N and
8> mTH Then

(Tl (1 w)) - mz o %”N 74 +0(em ). (139)

i)

Proof: Use of Theorem 2.6 and Theorem 4.6, p. 54 of [3]. Here it is p = ¢, see
(68). O

||:12

Ia\ =j

When m = 1, the sum collapses.

3.5. Swmultaneous approrimation by multivariate complex T}ﬁ]
We make

Remark 2: We consider here complex valued Borel measurable functions f :
RN — C such that f = fi +ifs, i = /—1, where fi, fo : RY — R are implied to be
real valued Borel measurable functions.

We define the multivariate complex Trigonometric singular operators

o (i) =T (fiw) + T (fasw), @ € RY. (140)

We assume that TT[ZLL] (fi;z) ER,Va eRYN, j=1,2.
One notices easily that

T (fFi0) - £ ()] < | T (fis0) = (@) +

T (fs0) = fa (@) (141)

also
|zl (o) s @) < | ml (e - p @)+ T () - @)
’ ’ (142)
and
[CAIGE I AR )~ £ . (143)
Furthermore, it holds
fa(x) = fia (x) + ifom (x), (144)

where @ denotes a partial derivative of any order and arrangement.

We give
Theorem 3.33: Let f : RV — C, such that f = fi + ifs, j = 1,2. Here
r,N,B,m € N, fj € C™ (IRN), x € RN. Assume Hffi”’)‘ < 00, for all

o
@] BINN
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N
€2, i=1,..,N:[a] =3 a; = m. Let p¢, be the Borel probability measure
i=1
on RY, see (39), where &, € (0,1], n € N. Here 8 > ™t qnd Ae (@) as in
(47), and ¢apn :=7¢5 = as in (70). Then

S m 7anN'fa
T (fi) - f) - 3od |y Sl

}:1 al,...,ajvaO; ai!
[o]=5 i=1 00,z
( f )+w7” f2a7€n)) —
< ¥ ) Ag, (@). (145)
ay,...,an>0;
(13 )
Proof: By Theorem 3.2. O

We proceed with

Theorem 3.34: Let f : RY — C: f = fi +ifs, N e N— {1}, j = 1,2. Here
fi€Cp ([RN) uniformly continuous, 8,7 € N, 8 > ’”51, &n € (0,1], n € N. Then

, N
O =g =2 [Z <§> w] g (146)
A=0

(wr (flvgn) + wr (fZafn)) >

Asn — oo and &, — 0, we derive

o g~ (4

with rates.
Proof: By Theorem 3.4. O
Next comes multi-simultaneous approximation.

Theorem 3.35: Let f: RN —C: f=fi+ifs, j=1,2. Here fi € cml ([RN),
N,m,l € N. The assumptions of Theorem 3.18 are valid for f; and due, = dpg, .
Call 5 = 0,. Assume | fig+alls, < 00, and let &, € (0,1], n € N. Here 3,7 € N,
B> mtt Dand Ae (@) as in (47), and Cgp = Cqn; 0sin (70). Then

[m] . ey U N[m} %’njfﬁ—l-a ()
(T (729)~ 10 =040 2 o (148)
j=1 e o
|a|:.7 =1

o0
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Z (w"" (flvﬁ'i‘a? §NJ)V+ Wr (f277+a7 fn)) Agn (a) ]
R (1)

Proof: Based on Theorems 3.18, 3.22. O

<

We continue with

Theorem 3.36: Let f : RN — C: f = fi+ifs, j =1,2. Here fi € Cfg ([RN),
N e N — {1}, I € N (functions l-times continuously differentiable and bounded).
The assumptions of Theorem 3.18 are valid for f; and dpe, = dpe, . Call ¥y = 0,5,
&n € (0,1], n € N. Let also B,7 €N, 3 > ’”JQF—I Then

S (1)w]

H (705 - f~yH < 2Ny
o0 A=0

Zﬁ(N—].) (wT (flﬁa fn) +wr (f2,77 gn)) . (149)

If &, — 0, as n — oo, then (T,[Vo,lf)7 — f5 uniformly.

Proof: By Theorems 3.23 and 3.18. O
We proceed with L, approximations

Theorem 3.37: Let f : RN — C: f = fi+ifs, j = 1,2. Here f; € C™ (RY),

r,B,N,m € N, with fja € Ly ([RN), |a| =m, z € RN, Let p,qg > 1: %—I—é = 1.

Here @, is a Borel probability measure on RY as in (39), for &, € (0,1], n € N.
N

Let 3 > M; o €2, i=1,..,N:[al:= > a; = m. Here cqy, :=C_, =
i=1 ’

as in (70) where j = 1,...,m, and @ = (aq,...,an), oy € Z%, i = 1,...,N,

|a] —Zal—j Then
i=1

T (f:2) i s

a
«,
j=1 |a\—J < >

I:12 S.z

N
P

[rp]
m Ty [7p]
é((q(m )+1);>2 vy < A >(¢)\+w)\+mp)
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1 (25(1\7*1) m)
— e T e (e, ter(hmt),| . (150)
[al=m [T ay!
i=1
Proof: By Theorem 3.7. O

We continue with

Theorem 3.38: Let f : RN — C : f = f1 + ifo,
(C([RN)ﬂLp([RN)) N eN-—-{1}, B,r € N; p,g > 1: 1

= 1,2. Here f; €
1,1
» T4
&n € (0,1], n € N. Then

. rp|+1
=1; 8> 2l

‘T[O] (f) _fH <2vyr %(”’zﬂ)% ’
o < ,

2B(N—1)

fn 7 r (1,60 + wr (2 6n), | (151)

As &, — 0, when n — oo, we derive ‘

T,[nf fH — 0, i.e. TT[JL—>I the unit

operator, in L, norm.
Proof: By Theorem 3.9. O

We also give

Theorem 3.39: Let f : RN — C : f = fi +ifs, j = 1,2. Here f; €
(C(IRN)OLl([RN));NED\I—{l}, r,ﬁEN,ﬁ>%,fn€(0,1],n€N. Then

s o, <2 [ (5) ]

ﬁr—v
3_.

Zﬁ(N_l) (WT (f17 gn)l + wr (f27 fn)1) : (152)

As &, — 0, we get TT[?T]L — I, in Ly norm.

Proof: By Theorem 3.11. O
We further present

Theorem 3.40: Let f: RN — C: f = fi+ifs, j =1,2. Here fi € Cm ([RN)

N,B,m,r € N, with fj5 € L (RN),whereai€Z+,i:1, , N, @ —Zal—

7

z €RN, & €(0,1], n €N and B > ™HEL Here ¢5,, := ¢, = as in (70) where

a,n,j

j=1,..,m, and @ := (ai,...,an), a; € Z*, i =1,....N, |[a| := Zai = 4. Also
i=1
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here ¢, is the Borel probability measure on RY, see (39). Then

N m Canjla (@)
T (i) = f (@) = o S8 (153)
j=1 lol=5 ][ a!
1=1 1,z

1 - m
< N [Wr (fl,a) fn)l + wp (fQ»aﬂ én)l] ggﬁ(N 1)+
‘a|:m H a2|
i=1
r N
- r
oN~—N {Z <A) [a +%+m]} ,
A=0
Proof: By Theorem 3.13. .

We continue with simultaneous L, approximations.

Theorem 3.41: Let f:RY = C: f= fi+ifs, j=1,2. Here fi € cm ([RN),
r,3,N,m,l € N. The assumptions of Theorem 3.18 are valid for due, = dpg,,
& € (0,1, n € N and fj. Cally =0,03. Let Ji5+a) € Lyp ([RN), |a| =m, z € RY,
N
1 . _
andp,q>1: %—l—% =1.Let3 > %;ai €zt,i=1,..,N:|a|:= ;:1042‘ =m.
Here ¢qy :=¢. = as in (70), where j=1,...,m, and @ = (aq,...,an), a; € ZT,

a?”?]

N ~
i=1,..,N, |a|:= > «a;j=7j. Then
i=1

=1 p,x

N
P

( “ > 20y 4y <[r){ﬂ) (x + Patmp) (154)

(q(m—1)+ 1)

IN

1 (zﬁ(z;f-1)+m)
Z N &n
\E|=m ai'

=1

|:wr (fra+a:&n), + wr (fo7+a,6n),| -
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Proof: By Theorems 3.18 and 3.24. O
We give also

Theorem 3.42: Let f : RN — C: f = fi+ifs, j =1,2. Here fj € C! ([RN),
N e N — {1}, l € N. The assumptions of Theorem 3.18 are valid for due, = dy, ,
&n €(0,1], n €N and f;. Cally =0,0. Let fj5 € L, ([RN) and p,q > 1: ]%qL% =1.

Here B,r € N, 8 > %. Then

[rp] >
H (Z8(h)_— 5| <2507 |2 (“}’1 > U
K P A=0
2B(N—-1)

& " [wr (1. 60), +wr (o ), | (155)

Asn — +oo and &, — 0, then (TT[,OJL )7 I, f5.
.

Proof: By Theorems 3.18 and 3.25. O

We continue with

Theorem 3.43: Let f : RN — C: f = fi+ifs, j =1,2. Here fij € C! ([RN),
NeN-—{1},l €N. The assumptions of Theorem 3.18 are valid for dpe, = dee,,,
& €(0,1], n €N and fj. Cally =0,0. Let fj5 € L1 (RY) and 3,7 € N, g > =51,
Then

< oNy=N [Z_: <§> w]N

H (Thh ().~ 1

1

721[3(]\[71) [Wr (fl,% gn)l + wr (f2777 é‘n)l] : (156)

Asn — +oo and &, — 0, then (Tr[gl (f)), I, f5.

5

Proof: By Theorems 3.18, 3.26. O
We finish with

Theorem 3.44: Let f : RN — C: f = fi +ifs, j =1,2. Here f; € C™T (RY),
N,B.r,m,l € N. The assumptions of Theorem 3.18 are valid for dug¢, = dpe, , &, €
(0,1], n € N and f;. Cally =0,0. Let f; m4a) € L1 ([RN), @l =m, x € RYN. Here

+r4l = - - =
B> "5 and Ty = Canj 08 in (70), where j = 1,...,m, and @ := (a1, ...,an),
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N ~
a; €27, i=1,..,N, |a| := > a; =j. Then
i=1

CHIGE) ORI A DY) g T

=1 1,z

<> —— [wr (fig+a &n)y +wr (fo+a,&n)y]

N
al=m | T a!
=1

P N

g721,@(1\/—1)+m2zv7—N Z <;> [tV + Yrsm] . (157)

A=0

Proof: By Theorems 3.18, 3.27. O
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