Bulletin of TICMI
Vol. 25, No. 01, 2021, 63-75

Finite Dimensional Applications of the Dunford-Taylor Integral

Diego Caratelli!, Ernesto Palini2, Paoclo Emilio Ricci®*

L The Antenna Company, High Tech Campus 41, 5656 AE
& Eindhoven University of Technology, PO Box 513, 5600 MB - FEindhoven
The Netherlands
2 Ezxcogita, Via Renare, 12, 06031 - Bevagna, Italia
3 International Telematic University UniNettuno

Corso Vittorio Emanuele II, 89, 00186 - Roma, Italia
(Received February 28, 2021; Revised March 20, 2021; Accepted March 31, 2021)
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1. Introduction

A classic equation of functional analysis, which takes place in the framework of
Cauchy’s integral formula is known as the Dunford-Taylor integral.

Actually this equation traces back to Luigi Fantappié [5], creating the theory of
analytic functionals and Frigyes Riesz [16], who made fundamental contributions
to functional analysis. For this reason the corresponding equation is also called the
Riesz-Fantappie integral.

This equation has been recently used in order to compute the nth roots of a
non-singular complex matrix [3]. The same methodology is applied in what follows
to basic problems of matrix analysis such as the solution of algebraic systems of
equations, the solution of matrix equations and of initial value problem for a linear
system of ordinary differential equations.

We strongly emphasize that the method proposed here does not claim to replace
the results of numerical analysis that solve the same problems in the case of very
large or ill conditioned matrices. We only believe that this procedure can sometimes
be more convenient, because it avoids having to determine the eigenvalues and
sometimes also the eigenvectors of the involved matrices.

As the tools we have used are basic elements of Complex Analysis, we are confi-
dent that the considered method become part of the undergraduate teaching.

*Corresponding author. Email: paoloemilioricci@gmail.com

ISSN: 1512-0082 print
(© 2021 Thilisi University Press



64 Bulletin of TICMI

Some of the computations, obtained by the first author, by using the computer
program Mathematica® are reported in the last section.

The described technique could also be applied to higher order matrices, but we
would find it difficult to report results due to the size of the Journal page.

2. The Dunford-Taylor integral

The Dunford-Taylor integral [9, 16] in functional analysis is the analog of the
Cauchy integral in function theory. It works for holomorphic functions of an oper-
ator. In the finite dimensional case, the operator is represented by a matrix A.

Theorem 2.1: Suppose that f(X) is a holomorphic function in a domain A C C,
containing all the eigenvalues Ay, of A, and let v C A be a simple closed smooth
curve with positive direction enclosing all the Ay, in its interior.

Then the matriz function f(A) is defined by the Dunford-Taylor integral

F(A) = - 74 £ (0T — A)~ L, (1)

27

where (AZ — A)~! denotes the resolvent of A.
An example is the computation of all the square roots of a non-singular complex
matrix A, which are given by the formula:

PU— 7{ AV — A) A, (2)
Y

2mi

as it has been shown in [3].

It is worth to note that there exists in literature another method for computing
matrix powers using the Cayley-Hamilton theorem and the so called Fj, ,, functions,
which are solutions of linear recursions [14]. This method is purely algebraic, can
be used for computing the matrix exponential [11] and does not require quadrature
rules, which are necessary for avoiding Cauchy’s residue theorem.

If A is non-singular, both equation (3) and that reported in [14] still work for
negative values of the integer n, as the FKN functions [1] are defined there even if
n < 0.

It is worth noting that the application of the Dunford-Taylor’s integral requires
only the knowledge of matrix entries (and the relevant invariants), whereas for
using the Cauchy’s residue theorem it is necessary to know the eigenvalues and
their multiplicity. Therefore, the first method is computationally more convenient.

3. Recalling the resolvent of a matrix

The resolvent of an operator is an important tool for using methods of complex
analysis in the theory of operators on Banach spaces [9]. The holomorphic func-
tional calculus gives a formal justification of the used procedure.

In the present case, we are in the finite dimensional case, so that the operator
under consideration is a r X r complex matrix A.
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Definition 3.1: - Given the r x r, matrix A = (a;;), whose invariants are
Lr
up = tr A, ug = Z ZZ ZZ -, up = det A, (3)
i<j
putting for shortness u := (uy,ua,...,u,), and (ug := 1), its characteristic polyno-

maeal is given by
P(u;\) = det(ANT — A) =X —ug N up N 24+ (=D, (4)
and the relative characteristic equation writes:
P(\):=P(u;\) =0. (5)

The coefficients of the characteristic polynomial are called the invariants of A,
because they are invariant under similarity transformations [10]. The roots of P(A),

)\17A27"'7)\T’7 (6)

are the eigenvalues of A.

In [4], pp. 93-95, the following representation equation for the resolvent (A\Z —
A)~!, in terms of the invariants of A is proved:

(/\I—.A)*l = b i [rkl(_l)hu )\Tkhl] Ak (7)
h .

By using equations (4) and (6), we find a representation formula for matrix
functions [7], reported in [2].

Theorem 3.2: Let f(A\) be a holomorphic function in a domain A C C, con-
taining the spectrum of A, and denote by v C A a simple contour enclosing all the
zeros of P(X\). Then the Dunford-Taylor integral writes:

r k=1(_{\hy, \e—h—1
f(.A) _ %m [;é f()‘) hOED(/l\; h A d\ Ar—k] ) (8)

Note that, if A does not contain the origin, a simple choice of v is a circle
centered at the origin and radius greater then the spectral radius of A. This radius
can be determined, only using the entries of A, as a consequence of the Gershgorin
circle theorem.

The most useful application deals with the computation of the matrix exponen-
tial, which writes:

1
27

exp(A) 7{ A (AT — A)1d). )
v

Remark 1: It is worth noting that the use of series expansion for defining a
holomorphic matrix function f(.A) is useless, since, according to the general theory
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in the Gantmacher book [6], any holomorphic matrix function is a polynomial of
the same matrix, that is: f(A) = P(A), where P is the polynomial interpolating
the function f on the eigenvalues of A) (see e.g. [2, 12] and the references therein).

Consider now the function f(A) = A~!. As this function is holomorphic in the
open set C—{0}, i.e. in the whole plane excluding the origin, the preceding theorem
becomes

Theorem 3.3: If A, is a non-singular complex matriz and v = 1 U~y is a
simple contour enclosing all the zeros of P(X\) (were 1, oriented counter-clockwise,
encircles all the eigenvalues of A and ~ye, oriented clockwise, is a circle enclosing
the origin and no eigenvalues of A ), then the inverse of A is represented by

1 r k:l(_l)hUh )\k—h—l
A_l = — f\ h=0 d\ Ar_k ‘ 10
2mi Lg o AP 10)
Recalling Cauchy’s residue theorem [17], and denoting by ®; = ®x(N), (k =
1,2,...,r) the integrand in equation (8), the contour integral is given by:
k-1 hy  \k—h—1 r
heo(—1)"up A B )
é " NPV d\ = (27i) ZR@Sq)k (A\¢) — Resg, (0)] . (11)
1 2 £:1

Supposing, for simplicity, the eigenvalues are all distinct, and putting
PA) = (A =A)A=Ag) - (A= Ap),
we find:

1)huh )\k—h—l

ZR@Sq)k o) = Z hm (A=) (/\P()\)

r k—1 k—h—1 (12)
_ heo(=1)"un A"
= (Ao = A1) (e = Aem) (A= Aa) - (e = Ap)
where we have put, by definition: (A — Ag) = (A — A\py1) := 1.
Furthermore,
kil(—l)huh \k—h-1 (_1)k71uk71
Resg, (0) = lim &h=0 = . (13)

) P()) P(0)

Then, equation (8), noting that P(0) = (—1)"u,, becomes:

T T

AT =301 AT + (-1 REEEL ] ArR (14)
Sl de Qe = A1) - (e = A1) (Mo = Aggr) - (Ao — Ar) Uy
A similar result can be found in case of multiple roots of the characteristic poly-
nomial, by using the more general equation, which holds for a pole of order m at
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the point Ay:

1 . dm! oy
Resg, (\) = (m_l)!)\h_)n)}( T (A=) A7 . (15)

Examples of computations using Cauchy’s residue theorem are given in [15].

Remark 2: Note that the knowledge of eigenvalues is not strictly necessary. It
is mandatory if we compute the integral in equation (10) by Cauchy’s residue
theorem, but actually only the knowledge of the invariants is necessary, since we
could compute the contour integral by choosing as 7; a circle centered at the origin
with radius greater than the spectral radius of A, and 5 with radius less than the
minimum modulus of the eigenvalues.

Remark 3: Recalling Cauchy’s bounds for the roots of polynomials [8, 13], it
immediately follows that, in case of the characteristic equation (5), the highest (in
modulus) eigenvalue is bounded by

r— - 1
1—|—max{’u i Jur—l } (16)

lurl 7 ] v |ur|
Making the substitution z = A~! in the polynomial (4), multiplying by " and
applying the Cauchy bound, we find the upper bound of the zeros of u" P(u~1).
Then, returning to the variable A\, we find the lower bound to the roots of P()\),
which is given by

[1 4 max {|u1], |ug], ..., [u-]}] 7" . (17)

4. Applications

4.1. Solving linear algebraic systems

A is a r X r non-singular complex matrix, b and x are r X 1 column vectors

Ax=Db & x=A"b. (18)

4.2. Solving matriz equations

A, B and X are r X r non-singular complex matrices and O is the zero matrix.

# 1.
AX+B=0 & X =-A"'B. (19)
# 2.

AX"+B=0 & X=(-A"'B)"". (20)
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4.3. Solving the Cauchy problem for a linear systems of ODE

A is a r X r non-singular complex matrix, y(¢) is a r x 1 column vector

{y/(t) = Ay(t)
y Yo

(0) = A y(t) = exp(At)yp- (21)

4.4. Numerical examples

4.4.1.  Computations with non-singular matriz of sixth order

Let us consider the matrix:

3 =20 1 5 5

2 2 0 0 -1 0
—18 4 —1 -2 -20-19
A=l 0 111 —2 1 (22)
7 0 0 1 6 7
-8 1 0 -1 -8 -9
The relevant invariants are:
up =2, u =2, uz3=0, ug=-1, us=-2, ug=-2.

Therefore, it would not be not difficult to verify that the corresponding eigenvalues
are:

M=141i, X=1—-i, A3=-1, M=1i, As=-i, X¢=1.

By using the Dunford-Taylor integral formula (10) in combination with the Gauss-
Kronrod integration rule, the following representation of the inverse of A is ob-
tained:

AT =3 AT,
k=1
with:

51:1/27 52:_1> 53:13 54207 55:_1/27 56:1a

this leading to the conclusion that:

3 1 1
L B
2 21 -13 0
9 9 2 -3-7-5
A= 5 ] 3 (23)
5 3 00 5 2
—-2-30 0 4 2
3 3 1 —-1-3-3
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From here, given the vector of known terms:
b=(-6,2,1,1,3,-6)" , (24)

one can readily find out that the system of linear algebraic equation A -x = b has
the solution:

17 31 r
-1
= ‘b={-,-,-28,——,6,— . 2
x=A <2,2, 8, 2,6, 3) (25)
With reference to the matrix equation (19), under the assumption that:
200000
020000
002000
B=2Zs= 1000200 | (26)
000020
000002
it follows, by trivial algebra, that:
3 1 2 -21 -2
-1 1 -22 -50
41 p_ | —18-18—-4 6 14 10
X=-A"-B=1 3 10034 (27)
4 6 0 0 —8—-4
-6 —6 -22 6 6
The invariants of the matrix X are given:
UX1:—2, UX2:2, UX3:O, UX4:—16, UX5:32, uX6:_32a

whereas the relevant eigenvalues are:
Axi=—2, Axa=2i, Axs=-2i, Axs=2, Axs=—1+, Axe=—1-i.
In this way, upon implementing the technique detailed in [3], and setting:
X2 = Re {X'/2} +i1m {x!/2} .
we easily find that one determination of the square root of X is such that:

Re {X1/2} = % (B1| B2) ,
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70
where
By =
40 — 4v2 + 6V2 + 10v2 —2(—1o+2ﬁ+\/m) 4(3+\/§—2\/ﬁ)
—30+v2+6V2+ 10V2 30+ v2 — 2v/10v2 — 2 —18-v2-8/V2 -1
— 50 4+ 7v2 — 12/167 + 145v2 —190 + 7v2 + 41/ 145v2 — 167 18 — Tv2 — 8y/58v2 — 82
—10-7v2 - 6V/10vV2 — 2 10-7v2-2V2+10vV2 -6+ 7v2 82 4cos (3) 7
6023/4005(%)75(24»\/5) 75(714+\/§+4\/ﬁ) —18+5\/§78\/m
10 (-2+v2-624cos (%)) 20(74+%+\/ﬁ) 8710\/§+8\/2(5\/§77>
8V1+5v2—28 2 (V46 +130v2 — 6) -4(5+3v2-3V7+5V2)
1248/1+5v2  2(V46+130v2 — 36) 3(—10+ V2 +4V7+5V32)
68 — 81/200v/2 — 254 —4 (\/2329 + 18852 — 78) 190 + 212 — 121/238 + 2902
By = ,
44+8V5vV2—1 72(12+\/Wﬂ) 10 —21v2 4+ 12VBv2 — 7
8(V50v2—-34—1) 4(V359+325v2-33) 5(-14-3v2+62%%csc(F))
28 — 8/50v/2 — 34 —4(\/M—33) 10(s+3\/§—323/4c5c(g))
and:

2.6-2 4 4 6
1 3 1 -2 -2 -3
1133 11 —22 —22 33
m{X"2} =517 5 1 5 5 3
3-9-36 6 9
412 4 -8 -8 —12

It is not difficult to verify that:
A- X2+ B=0g,

where Og denotes the zero matrix of order 6.

Let us finally consider the system of linear of ODEs of the first order:

y'(t)=A-y(t),
{y(O) =yo = (0,-1,0,-1,1,0)" . (28)

As reported in (21), the formal solution of (28) can be expressed as:

y(t) = exp(tA) - yo,
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where:
_ 1 £\ iy % r—k
exp(t A) = Mﬁe (= A)ldr =3 e (1) AF,
k=1
with:
1 tA S h=10 1k, \k—h—1
o (0) = g § BT gy
27i J, P(X)

for k = 1,2,...,7 = 6. In the specific case, using Cauchy’s residue theorem, one

can determine:

1
e (t) = 10 [—sint —2cost + (3 —2sint)sinht — 2(sint — 1) cosht],

1

€ (t) = 0 [4sint + 3cost — 2sinh ¢(—sint + cost + 2)

+ cosht(2sint — 2cost — 1)],
. .
€3 (t) = 5 (sinht —sint),
1
eq(t) = B (cosht — cost),
1 . L .
€5 (t) = = [cost + sinh ¢ + sint(sinh ¢ + 3) 4 (sint — 1) cosh ],

1
€6 (1) = £ [-2sint + cost + sinht(—sint + cost + 2)

+ cosht(—sint + cost + 3)] .

As a result, it follows that:

31sint — 33 cost + (16 cost + 13)sinht + (16 cost + 17) cosh t
—39sint — 7sinht¢ + 2 cost(8sinht — 9) + 8(2cost — 1) cosht
1 19sint + 198 cost — sinh ¢t(48sint 4 112cost + 79) — 2 cosh t(24sint + 56 cos t + 43)
yt) = 10 | —13sint —6cost — (16sint + 11) sinh ¢t — 4(4sint + 1) cosh ¢
—34sint — 63 cost + 4sinht(4sint 4+ 12cost + 5) 4 cosh t(16sint 4 48 cos t + 25)
9sint + 83 cost — sinh t(16sint + 48 cost 4+ 25) — cosh t(16sint 4+ 48 cost + 35)
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4.4.2.  Computations with non-singular matriz of third order

Let us consider the matrix:

310
A= -101] . (29)
—-100
The relevant invariants are:
U1:3, U2:1, U3:—1.

Therefore, it would not be not difficult to verify that the corresponding eigenvalues
are:

M=1+V2, X=1, N=1-V2.

By using the Dunford-Taylor integral formula (10) in combination with the Gauss-
Kronrod integration rule, the following representation of the inverse of A is ob-
tained:

AT =Yg oA, (30)
k=1

with:

51:_17 52:37 53:_1)

this leading to the conclusion that:

00—1
A1t=110 3
01 -1

From here, given the vector of known terms:
b=(1,-1,1)", (31)

one can readily find out that the system of linear algebraic equation A -x = b has
the solution:

x=A"1 b= (-1,4,-2)". (32)
With reference to the matrix equation (19), under the assumption that:
1 -1-1

B=1 11|, (33)
~10 -1
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it follows, by trivial algebra, that:

-1 0 -1
X=-A1B=|2 1 4 |. (34)
—2-1-2
The invariants of the matrix X are given:
UX1:—2, UX2:1, uX3:—2,
whereas the relevant eigenvalues are:
)\X1:72a )\X2:ia >\X3:71'

In this way, upon implementing the technique detailed in [3], and setting:
X!/3 = Re {X1/3} +ilm {X1/3} ,
we easily find that one determination of the cubic root of X is such that:

3+4V2+V3  2+4V2-V3  1+3V2-3V3
2(-3-4V2+4V3)1-2V2+7V32(4-3V2+3V3) |,

Re{Xl/g}:i
2(-14+2V2-2v3) =3+ V2-V3 —4+392+2V3

10

Im{><l/3}:g —492V3 — 23 —392V3
2Bk

It is not difficult to verify that:
A-X34+B=05,
where O3 denotes the zero matrix of order 3.

Let us finally consider the system of linear of ODEs of the first order:

y(t)=A-y(t),
{y(O) =yo=(1,1,0". (35)

As reported in (21), the formal solution of (35) can be expressed as:
y(t) = exp(t A) - yo,

where:

exp(t A) = i ]4 NN - A) A= e (t) ATF,

v k=1
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with:
1 tA k:1 -1 h )\k—h—l
e (1) = ,7{6 n=o(=1) dx,
27i J, P(\)
for k = 1,2,...,r = 3. In the specific case, using Cauchy’s residue theorem, one

can determine:
€1 (t) = e sinh? (t)
\/5 )

€ (t) = %et [\@sinh (\/575) — 2 cosh (\/515) + 2} ,

€3 (t) = %et [—\/ﬁsinh (\/ﬁt) + cosh (\@t) + 1] .
As a result, it follows that:

%et (3\/5 sinh (\/it) + 4 cosh (\/it) - 2)
y(t) = —et (\/5 sinh (ﬂt) + cosh (\/ﬁt) — 2) _ (36)
—1 @+ V) eV (VB 1) (/% - 34 2v2)

5. Conclusion

The Dunford-Taylor integral is a classical mathematical tool in complex analysis,
which is also ascribed to Luigi Fantappie and Frigyes Riesz.

We have proved that the Dunford-Taylor integral can be used for deriving the
solution of some basic problems of matrix theory, avoiding the knowledge of eigen-
values and eigenvectors.

This formula is sometimes ignored in applications of mathematical physics, eco-
nomics, and engineering. The basic examples, computed in last section show that
the same method could be used in every problem in which a fast computation of
the inverse of a non singular complex matrix is crucial.

Furthermore, it permits the computation of the matrix exponential in the solu-
tion of the Cauchy problem for a linear system of ordinary differential equations
with constant coefficients without the use of a series expansion, and the knowledge
of the matrix eigenvectors.

Another field is the analysis of linear dynamical systems, in which, according
to the most popular texts, the solution using the matrix exponential, requires the
knowledge of eigenvectors and eigenvectors, quite a long way to go.

In our opinion J. Hadamard reasoned when he said that “Le plus court chemin
entre deux vérités dans le domaine réel passe par le domaine complexe” (The
shortest path between two truths in the real domain passes through the complex
domain), as quoted in an article on Jacques Hadamard by Jean-Pierre Kahane in
Math. Intelligencer, 1991, 13 (1), 26.
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An extension of the used technique to more general matrices will be shown in a
subsequent article.
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