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ON THE SOME REMARKS ABOUT ONE CLASS
OF GEOMETRICAL FIGURES

Tavkhelidze I.

I.Vekua Institute of Applied Mathematics
I.Javakhishvili Tbilisi State University

Let PRm ≡ A1A2 · · ·AmA′
1A

′
2 · · ·A′

m be an orthogonal prism, whose ends
A1 · · ·Am and A′

1 · · ·A′
m are regular polygons Pm and m is a number of its

angels (verteces). OO′ is axis of symmetry of this prism.
Definition. Generelized Möbius Listing’s body GMLm

n is obtained by iden-
tifying of the opposite ends of the prism PRm in such a way that:

A) for any n ∈ Z and i = 1,m, each vertex Ai coincides with A′
i+n ≡

A′
modm(i+n), and each edge AiAi+1 coincides with the edge

A′
i+nA

′
i+n+1 ≡ A′

modm(i+n)A
′
modm(i+n+1)

correspondingly.1

B) n ∈ Z is a number of rotations of the end of the prism with respect to
the axis OO′ before the identification.

if n > 0 rotations are counter-clockwise, and if n < 0 rotations are clock-
wise.

In particular, if m=2, then PR2 ≡ A1A2A
′
1A

′
2 is a rectangle, A1A2 is a

segment of the straight line, and GML2
1 becomes a classical Möbius band (see

for example [1-3]); GML2
0 is a cylinder or a ring.

I. In this parts of the article we give parametric represantation of the
GMLm

n under the following restrictions:
i) middle line OO′ transforms in the circle;
ii) the end rotation is evenly along the middle line.
Let {

x = p(τ, ψ),
z = q(τ, ψ)

(1)

parametric represantation of the regular polygon Pm, where (τ, ψ) ∈ Q ⊂ R2,
such that p(0, 0) ≡ q(0, 0) = 0, the point (0, 0) be a center of symmetry of the
Pm.

Let Ω = Ω1 ∪ · · · ∪ Ωm and Ω∗ = Ω∗
1 ∪ · · · ∪ Ω∗

m, where for any i = 1,m

Ωi = {(x, z, θ) ∈ R3; (x, z) ∈ Pm, 2π(i− 1)R ≤ θ < 2πiR}
Ω∗

i = {(τ, ψ, θ) ∈ R3; (τ, ψ) ∈ Q, 2π(i− 1)R ≤ θ < 2πiR}.
1If we have two numbers m ∈ N, n ∈ Z, then n = km + i ≡ km + modm(n), where k ∈ Z

and i ≡ modm(n) ∈ N ∪ {0}.
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Theorem 1. The transformation F : Ω∗ → GMLm
n with

F =





x(τ, ψ, θ) =

(
R + p(τ, ψ) cos

nθ

mR
− q(τ, ψ) sin

nθ

mR

)
cos

θ

R
,

y(τ, ψ, θ) =

(
R + p(τ, ψ) cos

nθ

mR
− q(τ, ψ) sin

nθ

mR

)
sin

θ

R
,

z(τ, ψ, θ) = p(τ, ψ) sin
nθ

mR
+ q(τ, ψ) cos

nθ

mR
,

(2)

where (τ, ψ, θ) ∈ Ω∗ is parametric represantation of GMLm
n . R is an arbitrary

positive number, but R > ρ(0, Ai) is distance between center of symmetry of
polygon Pm and its vertex Ai.

Examples:
a) if m = 2, n = 0, q(τ, ψ) ≡ 0, p(τ, ψ) ≡ τ , −τ ∗ < τ < τ ∗, then GML2

0 is
a circular ring;

b) if m = 2, n = 0, p(τ, ψ) ≡ 0, q(τ, ψ) ≡ τ , −τ ∗ < τ < τ ∗, then GML2
0 is

a cylinder;
c) if m = 2, n = 1, then (2) is a parametric represantation of Möbius band

(see for example [2]);
d) if m = 2, n is even number, then GML2

n ≡ Mn is Möbius-Listing’s type
surface (see [4]) which is one-sided surface and if n is an odd number, then
GML2

n = Mn is two-sided surface.
Remark 1. If k is the greatest common divisor of m and modm(n) then

GMLm
n is k - sided surface (i.e. it is possible to paint the surface of this figure

in k different colours without taking away of the brush. It is prohibited to
cross the edge of this figure).

In particular, GML2
1 is one-sided surface, properly, the classical Möbius

band, but GML2
2 is two-sided surface. GMLm

0 is m-sided surface, for any
m ∈ N .

Remark 2. If m = 2k, for any k ∈ N, modm(n) = k, then any diagonal
cross-section AiAi+kA

′
iA

′
i+k of the prism PRm after transformation (2) passes

into one-sided surface, but if n = k, then the one-sided surface is the classical
Möbius band.

Remark 3. (Limiting case) If m = ∞, then PR∞ is circular cylinder
and its end P∞ is a disk

p(τ, ψ) = τ cos ψ, τ ∈ (0, τ ∗),
q(τ, ψ) = τ sin ψ, ψ ∈ (0, 2π).

(3)

In this case transformation (2) has the following form:

F =





x(τ, ψ, θ) =

(
R + τ cos ψ cos

nθ

R
− τ sin ψ sin

nθ

R

)
cos

θ

R
,

y(τ, ψ, θ) =

(
R + τ cos ψ cos

nθ

R
− i sin ψ sin

nθ

R

)
sin

θ

R
,

z(τ, ψ, θ) = τ cos ψ sin
nθ

R
+ τ sin ψ cos

nθ

R
,

(4)
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where n is any real number.
Remark 4. If n = 0, formula (4) gives a parametric represantation of the

classical torus (see, e.g., [3]).

Remark 5. If n =
1

2
, then every diametral cross-section of PR∞ which con-

tains OO′ after transformation (4) passes into classical Möbius band CLM2
1 ≡

M1 (see [2] or [4]).
Remark 6. For any n figure GML∞n is geometrically identical to the torus.
Remark 7. If (τ0, ψ0) is an arbitrary fixed point of ∂P∞ (circle), then

ln(θ) = (x(τ0, ψ0, θ), y(τ0, ψ0, θ), z(τ0, ψ0, θ))

is a courve lying on the torus.
a) If n ∈ Z, the ln(θ) = ln(θ + 2π) is a closed courve, and n is a number of

coils around of little parts of the torus.

b) If n =
1

k
, k ∈ Z, then ln(θ) = ln(θ + 2πk) is a closed courve, but after

k rotations around of big parts of the torus we have only one coil around of
little part of the torus.

c) If n =
p

k
, p, k ∈ Z, then ln(θ) = ln(θ +2πk) is a closed courve, and after

k rotations around of big parts of torus we have p coils around of little part of
the torus.

d) If n ∈ R\Q is irrational number, then ln(θ) is nonclosed courve. This
courve makes infinite coils after infinite circuits arournd the torus, but this
courve is not self-crossing.

II. In this part of the article we give parametric represantation of the
GMLm

n under the following restrictions:
i) middle line OO′ transforms in the some closed courve;
ii) the end rotation the end is semi-regular.
Let

Lρ =

{
x = f1(ρ, θ)
y = f2(ρ, θ)

(5)

be some one-parametric familly of closed courves, morever:
a) for every fixed ρ ∈ [0, ρ∗], Lρ is a closed courve and fi(ρ, θ + 2π) =

fi(ρ, θ), i = 1, 2
b) for any ρ1, ρ2 ∈ [0, ρ∗], ρ1 6= ρ2, courves Lρ1 and Lρ2 have not common

points.
Let g(θ) : [0, 2π] → [0, 2π] be arbitrary functions and for every Φ ∈ [0, 2π]

exist θ ∈ [0, 2π] such that Φ = g(θ).
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Theorem 2. The transformation F : Ω∗ → GMLm
n with

F =





x(τ, ψ, θ) = f1

((
R + ρ(τ, ψ) cos

ng(θ)

mR
− q(τ, ψ) sin

ng(θ)

mR

)
,

θ

R

)
,

ϕ(τ, ψ, θ) = f2

((
R + ρ(τ, ψ) cos

ng(θ)

mR
− q(τ, ψ) sin

ng(θ)

mR

)
,

θ

R

)
,

z(τ, ψ, θ) = ρ(τ, ψ) sin
ng(θ)

mR
+ q(τ, ψ) cos

ng(θ)

mR
,

(6)
where (τ, ψ, θ) ∈ Ω∗, is parametric represantation of GMLm

n . R is a arbitrary
positive number, but R > ρ(0, Ai) is a distance between center of symmetry of
the polygon Pm and its vertex Ai.

Remark 8. If (1) is a parametric represantation of an arbitrary plane
figure, then in formula (6) m ≡ 1, for any n ∈ Z.

Remark 9. If P∞ is a disk, then in formula (6) m ≡ 1 and n is an arbitrary
real number.
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