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H-space structure on pointed mapping spaces
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Abstract We investigate the existence of an H-space structure on the
function space, F.(X,Y, ), of based maps in the component of the trivial
map between two pointed connected CW-complexes X and Y. For that,
we introduce the notion of H(n)-space and prove that we have an H-space
structure on F.(X,Y,*) if Y is an H(n)-space and X is of Lusternik-
Schnirelmann category less than or equal to n. When we consider the
rational homotopy type of nilpotent finite type CW-complexes, the exis-
tence of an H(n)-space structure can be easily detected on the minimal
model and coincides with the differential length considered by Y. Kotani.
When X is finite, using the Haefliger model for function spaces, we can
prove that the rational cohomology of F.(X,Y,x) is free commutative if
the rational cup length of X is strictly less than the differential length of
Y, generalizing a recent result of Y. Kotani.

AMS Classification 55R80, 55P62, 55T'99
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1 Introduction

Let X and Y be pointed connected CW-complexes. We study the occurrence
of an H-space structure on the function space, F.(X,Y,*), of based maps in
the component of the trivial map. Of course when X is a co-H-space or Y is
an H -space this mapping space is an H -space. Here, we are considering weaker
conditions, both on X and Y, which guarantee the existence of an H -space
structure on the function space. In Definition 3, we introduce the notion of
H (n)-space designed for this purpose and prove:

Proposition 1 Let Y be an H(n)-space and X be a space of Lusternik-

Schnirelmann category less than or equal to n. Then the space F,(X,Y,*) is
an H -space.
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714 Yves Félix and Daniel Tanré

The existence of an H (n)-structure and the Lusternik-Schnirelmann category
(LS-category in short) are hard to determine. We first study some properties of
H (n)-spaces and give some examples. Concerning the second hypothesis, we are
interested in replacing cat(X) < n by an upper bound on an approximation
of the LS-category (see [5, Chapter 2]). We succeed in Proposition 7 with
an hypothesis on the dimension of X but the most interesting replacement is
obtained in the rational setting which constitutes the second part of this paper.

We use Sullivan minimal models for which we refer to [6]. We recall here that
each finite type nilpotent CW-complex X has a unique minimal model (AV,d)
that characterises all the rational homotopy type of X . We first prove that the
existence of an H(n)-structure on a rational space Xy can be easily detected
from its minimal model. It corresponds to a valuation of the differential of this
model, introduced by Y. Kotani in [11]: The differential d of the minimal
model (AV,d) can be written as d = dy +dy + - -+ where d; increases the word
length by i. The differential length of (AV,d), denoted dl(X), is the least
integer n such that d,,_1 is non zero. As a minimal model of X is defined up
to isomorphism, the differential length is a rational homotopy type invariant of
X, see [11, Theorem 1.1]. Proposition 8 establishes a relation between dl(X)
and the existence of an H (n)-structure on the rationalisation of X .

Finally, recall that the rational cup-length cupy(X) of X is the maximal length
of a nonzero product in H>°(X;Q). In [11], by using this cup-length and
the invariant d1(Y"), Y. Kotani gives a necessary and sufficient condition for
the rational cohomology of F.(X,Y,*) to be free commutative when X is a
rational formal space and when the dimension of X is less than the connectivity
of Y. We show here that a large part of the Kotani criterium remains valid,
without hypothesis of formality and dimension. We prove:

Theorem 2 Let X and Y be nilpotent finite type CW-complexes, with X
finite.

(1) The cohomology algebra H*(F.(X,Y,*);Q) is free commutative if
cupgy(X) < dli(Y).

(2) If dim(X) < conn(Y), then the cohomology algebra H*(F.(X,Y,*); Q)
is free commutative if, and only if, cupg(X) < dl(Y").

As an application, we describe in Theorem 12 the Postnikov tower of the ra-
tionalisation of F.(X,Y,*) where X is a finite nilpotent space and Y a fi-
nite type CW-complex whose connectivity is greater than the dimension of X.
Our description implies the solvability of the rational Pontrjagin algebra of
QF(X,Y,%)).
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H -space structure on pointed mapping spaces 715

Section 2 contains the topological setting and the proof of Proposition 1. The
link with rational models is done in Section 3. Our proof of Theorem 2 uses
the Haefliger model for mapping spaces. In order to be self-contained, we
recall briefly Haefliger’s construction in Section 4. The proof of Theorem 2 is
contained in Section 5. Finally, Section 6 is devoted to the description of the
Postnikov tower.

In this text, all spaces are supposed of the homotopy type of connected pointed
CW-complexes and we will use cdga for commutative differential graded algebra.
A quasi-isomorphism is a morphism of cdga’s which induces an isomorphism in
cohomology.

2 Structure of H(n)-space

First we recall the construction of Ganea fibrations, p:X : G, (X) — X.

. X

o Let Fy(X) 2 Go(X) %, X denote the path fibration on X, QX —

PX — X.
. X

e Suppose a fibration F, (X)LGn(X)LX has been constructed. We
extend pX toamap g,: Gn(X)UC(F,(X)) — X, defined on the mapping
cone of i,, by setting g,(x) = pX (x) for x € G(X) and q,([y,1]) = *
for [y,t] € C(Fn(X)).

e Now convert ¢, into a fibration pX,;: Gn41(X) — X.

This construction is functorial and the space G, (X) has the homotopy type of
the n'-classifying space of Milnor [12]. We quote also from [8] that the direct
limit Goo(X) of the maps Gy, (X) — Gp41(X) has the homotopy type of X. As
spaces are pointed, one has two canonical applications ¢!, : G,,(X) — G (X x X)
and ¢ Gp(X) — Gp(X x X) obtained from maps X — X x X defined
respectively by x — (x,%) and z — (x, ).

Definition 3 A space X is an H(n)-space if there exists a map p,: Gp(X X
X) — X such that p, o, = p, 0 =pX: G, (X) — X.

Directly from the definition, we see that an H (co)-space is an H -space and that
any space is a H(1)-space. Recall also that any co- H-space is of LS-category
1. Then, Proposition 1 contains the trivial cases of a co- H-space X and of an
H-space Y.
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716 Yves Félix and Daniel Tanré

Proof of Proposition 1 From the hypothesis, we have a section o: X —
Gn(X) of the Ganea fibration p;X and amap p,,: G, (Y xY) — Y extending the
Ganea fibration p) , as in Definition 3. If f and g are elements of F,(X,Y,*),
we set

f.g:MnoGn(fxg)oGn(AX)OU7

where Ay denotes the diagonal map of X. One checks easily that f e % ~
xe fr~ f. o

In the rest of this section, we are interested in the existence of H(n)-structures
on a given space. For the detection of an H(n)-space structure, one may
replace the Ganea fibrations p;X by any functorial construction of fibrations
pn: Gn(X) — X such that one has a functorial commutative diagram,

Gn(X) Gn(X)
PPz

Such maps p, are called fibrations a la Ganea in [13] and substitutes to Ganea
fibrations here. Moreover, as we are interested in product spaces, the following
filtration of the space Goo(X) X Goo(Y) plays an important role:

(GX) X GV ) = Ui jmnGil X) % G(Y)

In [10], N. Iwase proved the existence of a commutative diagram

(G(X) x G(Y))n Gn(X xY)

U(p;x Xp}/) 4

X xY

and used it to settle a counter-example to the Ganea conjecture. Therefore,
in Definition 3, we are allowed to replace the Ganea space G,(X x X) by
(G(X) x G(X))n. Moreover, if p,: Gp(X) — X are substitutes to Ganea
fibrations as above, we may also replace G,,(X x X) by

(G(X) % GV = UntyenGi(X) x Gy (V).
We will use this possibility in the rational setting.

In the case n = 2, we have a cofibration sequence,

S(G1(X) A G1(X)) -G (X) V G1(X)—=G1(X) x G1(X),
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H -space structure on pointed mapping spaces 17

coming from the Arkowitz generalisation of a Whitehead bracket, [2]. Therefore,
the existence of an H(2)-structure on a space X is equivalent to the triviality
of (py* Vi) o Wh. As the loop Qpf of the Ganea fibration pf: G1(X) — X
admits a section, we get the following necessary condition:

— if there is an H(2)-structure on X, then the homotopy Lie algebra of X is
abelian, i.e. all Whitehead products vanish.

Example 4 In the case X is a sphere S™, the existence of an H(2) structure
on S™ implies n =1, 3 or 7, [1]. Therefore, only the spheres which are already
H-spaces endow a structure of H(2) space. Omne can also observe that, in
general, if a space X is both of category n and an H(2n)-space, then it is an
H-space. The law is given by

X x X—Z5Gon(X x X)X
where the existence of the section o to péleX comes from cat(X x X) <
2cat(X).

Example 5 If we restrict to spaces whose loop space is a product of spheres or
of loop spaces on a sphere, the previous necessary condition becomes a criterion.
For instance, it is proved in [3] that all Whitehead products are zero in the
complex projective 3-space. This implies that CP3 is an H(2)-space. (Observe
that CP? is not an H-space.) From [3], we know also that the homotopy Lie
algebra of CP? is not abelian. Therefore CP? is not an H(2)-space.

The following example shows that we can find H(n)-spaces, for any n > 1.

Example 6 Denote by ¢,: K(Z,2) — K(Z,2r) the map corresponding to the
class " € H*" (K (Z,2);Z), where z is the generator of H?(K(Z,2);7Z). Let E
be the homotopy fibre of ¢,. We prove below that E is an H(r — 1)-space.

First we derive, from the homotopy long exact sequence associated to the map
©r, that QF has the homotopy type of S' x K(Z,2r — 2). Therefore, the
only obstruction to extend G,_1(E)V G,_1(F) — E to (G(E) X G(E))r-1 =
Ui+j:fr-71 GZ(E) X GJ(E) lies in

HOID(HQT((G(E) X G(E))Tfl;Z), WQT,Q(E)).
If A and B are CW-complexes, we denote by A ~,, B the fact that A and B

have the same n-skeleton. If we look at the Ganea total spaces and fibres, we
get:

YOF ~o, §2V 8771y 8% FI(E) = QF % QF ~y, S3 Vv 8% v 877,
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718 Yves Félix and Daniel Tanré

and more generally, Fy(E) ~g, S?**1 for any s, 2 < s < r — 1. Observe
also that Hop(F2(FE);Z) — Hop(G1(E);Z) is onto. (As we have only spherical
classes in this degree, this comes from the homotopy long exact sequence.)

As a conclusion, we have no cell in degree 2r in (G(E) x G(E)),—1 and E is
an H(r — 1)-space.

We end this section with a reduction to a more computable invariant than the
LS-category. Consider pX: X — G (X) the homotopy cofibre of the Ganea
fibration p;X. Recall that, by definition, wcatg(X) < n if the map p;\ is
homotopically trivial. Observe that we always have wcatg(X) < cat(X), see
[5, Section 2.6] for more details on this invariant.

Proposition 7 Let X be a CW-complex of dimension k and Y be a CW-
complex (¢ — 1)-connected with k < ¢— 1. If Y is an H(n)-space such that
weatg(X) <n, then F.(X,Y,*) is an H -space.

Proof Let f and g be elements of F,(X,Y,*). Denote by iX: F,,(X) — X
the homotopy fibre of pX: X — G (X). This construction is functorial and

the map (f,g): X — Y xY induces a map Fo(f,9): Fo(X) — E,(Y xY) such
that &, o Fu(f,9) = (f.9) o Ty -

By hypothesis, we have a homotopy section ¢: X — Fo(X) of iX. Therefore,
one gets amap X — F,(Y xY) as F,,(f,g9)035.

Recall now that, if A — B — C' is a cofibration with A (a — 1)-connected and
C' (¢ —1)-connected, then the canonical map A — F in the homotopy fibre of
B — C is an (a + ¢ — 2)-equivalence. We apply it in the following situation:

Y XY Y XY

Gu(Y xY) 2y xy — 2 = Gpy(Y xY)
j}:xyl %

E,(Y xY)

The space G,(Y x Y) is (¢ — 1)-connected and G, (Y x Y) is c-connected.
Therefore the map j}*Y is (2¢ — 1)-connected. From the hypothesis, we get

k<c—1<2c—1 and the map 5. *Y induces a bijection

(X, G (Y x Y)] (X, F,(Y x Y)].

o)

Denote by gn: X — Gn(Y x Y) the unique lifting of F,(f,g) o 5. The compo-
sition g e f is defined as p, o g, where p, is the H(n)-structure on Y.
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H -space structure on pointed mapping spaces 719

If we set g = *, then F,(f,g) is obtained as the composite of F,(f) with
the map F,(Y) — F,(Y xY) induced by y — (y,*). As before, one has an
isomorphism

(X, Gn(Y)] [X, Fu (V)

o

A chase in the following diagram shows that f e x = f as expected,

Gu(Y) — Go(Y x V)
£ (x) — ) FjY)—>Fn(le Y)
"
X Y. o

3 Rational characterisation of H(n)-spaces

Define mp(X) as the greatest integer n such that X admits an H (n)-structure
and denote by X the rationalisation of a nilpotent finite type CW-complex X .
Recall that dl(X) is the valuation of the differential of the minimal model of
X, already defined in the introduction.

Proposition 8 Let X be a nilpotent finite type CW-complex of rationalisation
Xo. Then we have:
mp(Xo) + 1 =dI(X).

Proof Let (AV,d) be the minimal model of X. Recall from [7] that a model
of the Ganea fibration an is given by the following composition,

(AV,d) — (AV/ A"V, d) — (AV/ A" V,d) @ S,

where the first map is the natural projection and the second one the canonical
injection together with S-S = S-V =0 and d(S) = 0. As the first map is
functorial and the second one admits a left inverse over (AV,d), we may use the
realisation of (AV,d) — (AV/ A" V,d) as substitute for the Ganea fibration.

Suppose dl(X) = r. We consider the cdga (AV',d') @ (AV",d")/I,. where
(AV' d') and (AV”,d") are copies of (AV,d) and where I, is the ideal I, =
Ditjsr A"V @ AV, Observe that this cdga has a zero differential and that
the morphism

0 (AV,d) — (AV',d)@ (AV" d") /I,
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defined by ¢(v) = v’ + 0" satisfies ¢(dv) = 0. Therefore ¢ is a morphism of
cdga’s and its realisation induces an H (n)-structure on the rationalisation Xj.
That shows: my(Xo) +1 > dI(X).

Suppose now that mg(Xp) + 1 > dI(X) = r. By hypothesis, we have a mor-
phism of cdga’s

0 (AV,d) — (AV',d)Y@ (AV" d") /141 .

By construction, in this quotient, a cocycle of wedge degree r cannot be a
coboundary. Since the composition of ¢ with the projection on the two factors
is the natural projection, we have ¢(v)—v'—v" € ATV'QATV”. Now let v € V,
of lowest degree with d,(v) # 0. From d,(v) = )

we get

1,82, nir Citig...i Uiy Vig -« - U4,y

pldv) = D Cirigeuy (Vi +01,) - (0], i) o (v], +0f).

11,8250 0bp

This expression cannot be a coboundary and the equation dp(z) = ¢(dx) is
impossible. We get a contradiction, therefore one has my(Xo)+1=dl(X). O

4 The Haefliger model

Let X and Y be finite type nilpotent CW-complexes with X of finite dimension.
Let (AV,d) be the minimal model of Yand (A,d4) be a finite dimensional
model for X, which means that (A,d4) is a finite dimensional cdga equipped
with a quasi-isomorphism v from the minimal model of X into (A, d4). Denote
by AY the dual vector space of A, graded by

(AY)™" = Hom(A", Q).

We set AT = @2, A%, and we fix an homogeneous basis (ai,--- ,a,) of AT.
The dual basis (a®)1<s<p is a basis of B = (A1)Y defined by (a®;a;) = ds.

We construct now a morphism of algebras
w:A\V—->ARANBRV)
by

o) =3 a,® (a* ®0).
s=1

In [9] Haefliger proves that there is a unique differential D on A(B ® V') such
that ¢ is a morphism of cdga’s, i.e. (dq ® D)oy =pod.
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In general, the cdga (A(B®V), D) is not positively graded. Denote by Dy: B®
V — B ®YV the linear part of the differential D. We define a cdga (AZ, D) by
constructing Z as the quotient of B® V' by @®,<o(B ® V)7 and their image by
Dy. Haefliger proves:

Theorem 9 [9] The commutative differential graded algebra (AZ,D) is a
model of the mapping space F,(X,Y, ).

5 Proof of Theorem 2

Proof We start with an explicit description of the Haefliger model, keeping
the notation of Section 4. The cdga (AV,d) is a minimal model of Y and
we choose for V' a basis (vy), indexed by a well-ordered set and satisfying
d(v) € A(vp)r< for all k. As homogeneous basis (as)i<s<p of A, we choose
elements h;, e; and b; such that:

— the elements h; are cocycles and their classes [h;] form a linear basis of the
reduced cohomology of A;

— the elements e; form a linear basis of a supplement of the vector space of
cocycles in A, and b; = da(e;).

We denote by h', e/ and b/ the corresponding elements of the basis of B =
(AT)V. By developing Dy(}, as ® (a®* ®v)) = 0, we get a direct description of
the linear part Dg of the differentiel D of the Haefliger model:

Dy(V @v) = —(—1)|bj|ej ® v and Dy(h? @ v) = 0, for each v € V.
A linear basis of the graded vector space Z is therefore given by the elements:

V@uvg, with [V @ vl > 1,
el @uv, with |/ @ vy| > 2,
R @y, with | @ vy > 1.

Now, from ¢(dv) = (D—Dg)e(v) and d(v) = Y i ig-i, Viy Viy * - - U5, , we deduce:

(D — Dg)(a® ®@v) =
£ Cirigie Xy, sy g, (@5 i Gy~ - 0iy) (@i @ 03y) - (aiy @ 03y) - -+ (ai, @ vy,

where, as usual, the sign + is entirely determined by a strict application of the
Koszul rule for a permutation of graded objects.

Suppose first that cupy(X) < dl(Y).
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We prove, by induction on k, that in (AZ, D) the ideal I generated by the

elements ,
{ V®uvs, s<k, with degree at least 1,

ed @uvg, s<k, with degree at least 2,

is a differential ideal and that the elements h! ®vs, with s < k and |h!®@wvs| > 1,
are cocycles in the quotient ((AZ)/I, D). Note that this ideal is acyclic as
shown by the formula given for Dy. Therefore the quotient map p: (AZ, D) —
((NZ) /Iy, D) is a quasi-isomorphism. The induction will prove that the differ-
ential is zero in the quotient, which is the first assertion of Theorem 2.

Begin with the induction. One has dv; = 0 which implies (D—Dp)(a*®v;) = 0.
Therefore, we deduce D(V ® v;) = —(—=1)”le/ @ v; and D(h' @ v;) = 0. That
proves the assertion for k = 1.

We suppose now that the induction step is true for the integer k. Taking the
quotient by the ideal I gives a quasi-isomorphism

p: (AZ,D) — (AT, D) := (AZ)/Iy, D).

As the elements ¥ ®vs and e/ ®v,, s < k, have disappeared and as cupy(X) <
dl(Y), we have po @(dvgy1) = 0. Therefore DV @ vp11) = —(—=1)I¥led @ vy y
and D(h! ® vg41) = 0. The induction is thus proved.

We consider now the case cupy(X) > dl(Y) in the case dim(X) < conn(Y).

We choose first in the lowest possible degree ¢ an element y € V' that satisfies
dy = dyy + -+ with d,(y) # 0 and r < cupy(X). As above we can kill all
the elements ¢/ ® v and ¥ ® v with |[v| < ¢ and keep a quasi-isomorphism
p: (NZ,D) — (AT, D) := (ANZ/14-1,D).

Next we choose cocycles, hy,ha,- -, hy,, such that the class |w], associated to
the product w = hy - ho - - - by, is not zero. We choose m > r and suppose that
w is in the highest degree for such a product. Let w’ be an element in AV such
that (w’;w) = 1. Then, by the Haefliger formula, the differential D is zero in
AT in degrees strictly less than |w’ ® y|. Observe that |’ ® y| > 2 and that
the D, part of the differential D(w’ ® y) is a nonzero sum. This proves that
the cohomology is not free. O

Example 10 Let X be a space with cupy(X) = 1, which means that all prod-
ucts are zero in the reduced rational cohomology of X . Then, for any nilpotent
finite type CW-complex Y, the rational cohomology H*(F.(X,Y,*);Q) is a
free commutative graded algebra. For instance, this is the case for the (non-
formal) space X = S3 Vv S3 U, e®, where the cell €® is attached along a sum of
triple Whitehead products.
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Example 11 When the dimension of X is greater than the connectivity of
Y, the degrees of the elements have some importance. The cohomology can
be commutative free even if cupy(X) > dl(Y). For instance, consider X =
S% x St and Y = S%. One has cupy(X) = dI(Y) = 2 and the function
space Fi(X,Y, %) is a rational H-space with the rational homotopy type of
K(Q,3)x K(Q,4)x K(Q,10), as a direct computation with the Haefliger model
shows.

6 Rationalisation of F.(X,Y,*) when dim(X) <
conn(Y')

Let X be a finite nilpotent space with rational LS-category equal to m — 1 and
let Y be a finite type nilpotent CW-complex whose connectivity c is greater
than the dimension of X. We set r = dl(Y) and denote by s the maximal
integer such that m/r® > 1, i.e. s is the integral part of log, m.

Theorem 12 There is a sequence of rational fibrations Ky — F, — Fy_1, for
k=1,...,s, with Fy = %, Fs is the rationalisation of F,(X,Y,*) and each
space Ky, is a product of Eilenberg-MacLane spaces. In particular, the rational
loop space homology of F.(X,Y, ) is solvable with solvable index less than or
equal to s.

Proof By a result of Cornea [4], the space X admits a finite dimensional
model A such that m is the maximal length of a nonzero product of elements
of positive degree. We denote by (AV,d) the minimal model of Y.

We consider the ideals I, = A>™/ "”k, and the short exact sequences of cdga’s
Iy /I — A/ — A/l

These short exact sequences realise into cofibrations Ty, — Ty_1 — Z) and the
sequences

(AN(AT/1)Y @ V), D) = (A(AT/I;-1)" @ V), D) = (A(Ix/Ix—1)" @ V), D)
are relative Sullivan models for the fibrations
f*(Zkv va *) - f*(kabYa *) - F*(Tkv va *)

Now since the cup length of the space Zj is strictly less than r, the function
spaces Fi(Zk,Y,*) are rational H-spaces, and this proves Theorem 12. O
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