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Abstract

Let M and N be smooth manifolds without boundary. Immersion theory
suggests that an understanding of the space of smooth embeddings emb(M,N)
should come from an analysis of the cofunctor V 7→ emb(V,N) from the poset
O of open subsets of M to spaces. We therefore abstract some of the properties
of this cofunctor, and develop a suitable calculus of such cofunctors, Goodwillie
style, with Taylor series and so on. The terms of the Taylor series for the
cofunctor V 7→ emb(V,N) are explicitly determined. In a sequel to this paper,
we introduce the concept of an analytic cofunctor from O to spaces, and show
that the Taylor series of an analytic cofunctor F converges to F . Deep excision
theorems due to Goodwillie and Goodwillie–Klein imply that the cofunctor
V 7→ emb(V,N) is analytic when dim(N)− dim(M) ≥ 3.
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0 Introduction

Recently Goodwillie [9], [10], [11] and Goodwillie–Klein [12] proved higher ex-
cision theorems of Blakers–Massey type for spaces of smooth embeddings. In
conjunction with a calculus framework, these lead to a calculation of such spaces
when the codimension is at least 3. Here the goal is to set up the calculus frame-
work. This is very similar to Goodwillie’s calculus of homotopy functors [6],
[7], [8], but it is not a special case. Much of it has been known to Goodwillie
for a long time. For some history and a slow introduction, see [23]. If a reckless
introduction is required, read on—but be prepared for Grothendieck topologies
[18] and homotopy limits [1], [23, section 1].

Let M and N be smooth manifolds without boundary. Write imm(M,N) for
the space of smooth immersions from M to N . Let O be the poset of open
subsets of M , ordered by inclusion. One of the basic ideas of immersion theory
since Gromov [14], [16], [19] is that imm(M,N) should be regarded as just one
value of the cofunctor V 7→ imm(V,N) from O to spaces. Here O is treated as
a category, with exactly one morphism V → W if V ⊂ W , and no morphism
if V 6⊂W ; a cofunctor is a contravariant functor.

The poset or category O has a Grothendieck topology [18, III.2.2] which we
denote by J1 . Namely, a family of morphisms {Vi → W | i ∈ S} qualifies as
a covering in J1 if every point of W is contained in some Vi . More generally,
for each k > 0 there is a Grothendieck topology Jk on O in which a family of
morphisms {Vi →W | i ∈ S} qualifies as a covering if every finite subset of W
with at most k elements is contained in some Vi . We will say that a cofunctor
F from O to spaces is a homotopy sheaf with respect to the Grothendieck
topology Jk if for any covering {Vi → W | i ∈ S} in Jk the canonical map

F (W ) −→ holim
∅6=R⊂S

F (∩i∈RVi)

is a homotopy equivalence. Here R runs through the finite nonempty subsets of
S . In view of the homotopy invariance properties of homotopy inverse limits,
the condition means that the values of F on large open sets are sufficiently
determined for the homotopy theorist by the behavior of F on certain small
open sets; however, it depends on k how much smallness we can afford.— The
main theorem of immersion theory is that the cofunctor V 7→ imm(V,N) from
O to spaces is a homotopy sheaf with respect to J1 , provided dim(N) is greater
than dim(M) or dim(M) = dim(N) and M has no compact component.

In this form, the theorem may not be very recognizable. It can be decoded as
follows. Let Z be the space of all triples (x, y, f) where x ∈ M , y ∈ N and
f : TxM → TyN is a linear monomorphism. Let p: Z → M be the projection
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to the first coordinate. For V ∈ O we denote by Γ(p ;V ) the space of partial
sections of p defined over V . It is not hard to see that V 7→ Γ(p ;V ) is a
homotopy sheaf with respect to J1 . (Briefly: if {Vi →W} is a covering in J1 ,
then the canonical map q: hocolimR ∩i∈RVi → W is a homotopy equivalence
according to [24], so that Γ(p ;W ) ' Γ(q∗p) ∼= holimR Γ(p ;∩i∈RVi) . ) There
is an obvious inclusion

(∗) imm(V,N) ↪→ Γ(p ;V )

which we regard as a natural transformation between cofunctors in the variable
V . We want to show that (∗) is a homotopy equivalence for every V , in partic-
ular for V = M ; this is the decoded version of the main theorem of immersion
theory, as stated in Haefliger–Poenaru [15] for example (in the PL setting). By
inspection, (∗) is indeed a homotopy equivalence when V is diffeomorphic to
Rm . An arbitrary V has a smooth triangulation and can then be covered by
the open stars Vi of the triangulation. Since (∗) is a homotopy equivalence for
the Vi and their finite intersections, it is a homotopy equivalence for V by the
homotopy sheaf property.

Let us now take a look at the space of smooth embeddings emb(M,N) from
the same point of view. As before, we think of emb(M,N) as just one value
of the cofunctor V 7→ emb(V,N) from O to spaces. The cofunctor is clearly
not a homotopy sheaf with respect to the Grothendieck topology J1 , except in
some very trivial cases. For if it were, the inclusion

(∗∗) emb(V,N) ⊂−→ imm(V,N)

would have to be a homotopy equivalence for every V ∈ O , since it is clearly a
homotopy equivalence when V is diffeomorphic to Rm . In fact it is quite appro-
priate to think of the cofunctor V 7→ imm(V,N) as the homotopy sheafification
of V 7→ emb(V,N), again with respect to J1 . The natural transformation (∗∗)
has a suitable universal property which justifies the terminology.

Clearly now is the time to try out the smaller Grothendieck topologies Jk
on O . For each k > 0 the cofunctor V 7→ emb(V,N) has a homotopy
sheafification with respect to Jk . Denote this by V 7→ Tk emb(V,N). Thus
V 7→ Tk emb(V,N) is a homotopy sheaf on O with respect to Jk and there is
a natural transformation

(∗∗∗) emb(V,N) −→ Tk emb(V,N)

which should be regarded as the best approximation of V 7→ emb(V,N) by a
cofunctor which is a homotopy sheaf with respect to Jk . I do not know of any
convincing geometric interpretations of Tk emb(V,N) except of course in the
case k = 1, which we have already discussed. As Goodwillie explained to me,
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his excision theorem for diffeomorphisms [9], [10], [11] and improvements due
to Goodwillie–Klein [12] imply that (∗∗∗) is (k(n−m− 2) + 1−m)–connected
where m = dim(M) and n = dim(N). In particular, if the codimension n−m
is greater than 2, then the connectivity of (∗∗∗) tends to infinity with k . The
suggested interpretation of this result is that, if n−m > 2, then V 7→ emb(V,N)
behaves more and more like a homotopy sheaf on O , with respect to Jk , as k
tends to infinity.

Suppose now that M ⊂ N , so that emb(V,N) is a based space for each open
V ⊂ M . Then the following general method for calculating or partially calcu-
lating emb(M,N) is second to none. Try to determine the cofunctors

V 7→ homotopy fiber of [Tk emb(V,N)→ Tk−1 emb(V,N)]

for the first few k > 0. These cofunctors admit a surprisingly simple description
in terms of configuration spaces; see Theorem 8.5, and [23]. Try to determine
the extensions (this tends to be very hard) and finally specialize, letting V = M .
This program is already outlined in Goodwillie’s expanded thesis [9, section In-
tro.C] for spaces of concordance embeddings (a special case of a relative case),
with a pessimistic note added in revision: “ . . . it might never be [written up]
...”. It is also carried out to some extent in a simple case in [23]. More details
on the same case can be found in Goodwillie–Weiss [13].

Organization Part I (this paper) is about the series of cofunctors
V 7→ Tk emb(V,N), called the Taylor series of the cofunctor V 7→ emb(V,N).
It is also about Taylor series of other cofunctors of a similar type, but it does
not address convergence questions. These will be the subject of Part II ([13],
joint work with Goodwillie).

Convention Since homotopy limits are so ubiquitous in this paper, we need
a “convenient” category of topological spaces with good homotopy limits. The
category of fibrant simplicial sets is such a category. In the sequel, “Space” with
a capital S means fibrant simplicial set. As a rule, we work with (co–)functors
whose values are Spaces and whose arguments are spaces (say, manifolds). How-
ever, there are some situations, for example in section 9, where it is a good idea
to replace the manifolds by their singular simplicial sets. Such a replacement
is often understood.
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1 Good Cofunctors

1.1 Definition A smooth codimension zero embedding i1: V → W between
smooth manifolds without boundary is an isotopy equivalence if there exists a
smooth embedding i2: W → V such that i1i2 and i2i1 are smoothly isotopic
to idW and idV , respectively.

In the sequel M is a smooth manifold without boundary, and O is the poset of
open subsets of M , ordered by inclusion. Usually we think of O as a category,
with exactly one morphism V → W if V ⊂ W , and no morphism if V 6⊂ W .
A cofunctor (=contravariant functor) F from O to Spaces is good if it satisfies
the following conditions.

(a) F takes isotopy equivalences to homotopy equivalences.

(b) For any sequence {Vi | i ≥ 0} of objects in O with Vi ⊂ Vi+1 for all
i ≥ 0, the following canonical map is a weak homotopy equivalence:

F (∪iVi) −→ holim
i

F (Vi) .

1.2 Notation F is the category of all good cofunctors from O to Spaces.
The morphisms in F are the natural transformations. A morphism g: F1 → F2

is an equivalence if gV : F1(V ) −→ F2(V ) is a homotopy equivalence for all V
in O . Two objects in F are equivalent if they can be related by a chain of
equivalences.

1.3 Examples For any smooth manifold N without boundary, there are co-
functors from O to Spaces given by V 7→ emb(V,N) (Space of smooth em-
beddings) and V 7→ imm(V,N) (Space of smooth immersions). To be more
precise, we think of emb(V,N) and imm(V,N) as geometric realizations of
simplicial sets: for example, a 0–simplex of imm(V,N) is a smooth immersion
V → N , and a 1–simplex in imm(V,N) is a smooth immersion V×∆1 → N×∆1

respecting the projection to ∆1 .

1.4 Proposition The cofunctors imm(—,N) and emb(—,N) are good.

Embeddings from immersion theory : I

Geometry and Topology, Volume 3 (1999)

71



Part (a) of goodness is easily verified for both imm(—,N) and emb(—,N).
Namely, suppose that i1: V → W is an isotopy equivalence between smooth
manifolds, with isotopy inverse i2: W → V and isotopies {ht: V → V }, {kt: W
→W} from i2i1 to idV and from i1i2 to idW , respectively. Then {ht: V → V }
gives rise to a map of simplicial sets

imm(V,N)×∆1 → imm(V,N)

which is a homotopy from (i2i1)∗ to the identity. Similarly {kt: W → W}
gives rise to a homotopy connecting (i1i2)∗ and the identity on imm(W,N).
Therefore imm(—,N) is isotopy invariant. The same reasoning applies to
emb(—,N).

To establish part (b) of goodness, we note that it is enough to consider the
case where M is connected. Then a sequence {Vi} as in part (b) will either be
stationary, in which case we are done, or almost all the Vi are open manifolds
(no compact components).

1.5 Lemma Suppose that V ∈ O has no compact components. Suppose also
that V = ∪iKi where each Ki is a smooth compact manifold with boundary,
contained in the interior of Ki+1 , for i ≥ 0. Then the canonical maps

imm(V,N)→ holim
i

imm(Ki,N) , emb(V,N)→ holim
i

emb(Ki,N)

are homotopy equivalences.

Proof By the isotopy extension theorem, the restriction from emb(Ki+1,N)
to emb(Ki,N) is a Kan fibration of simplicial sets. It is a standard result of
immersion theory, much more difficult to establish than the isotopy extension
theorem, that the restriction map from imm(Ki+1,N) to imm(Ki,N) is a Kan
fibration. See especially Haefliger–Poenaru [15]; although this is written in PL
language, it is one of the clearest references.

Let emb!(V,N) be the Space of thick embeddings V → N , that is, embeddings
f : V → N together with a sober extension of f to an embedding D(νf )→ N ,
where D(νf ) is the total space of the normal disk bundle of f . (The word sober
means that the resulting bundle isomorphism between the normal bundle of M
in D(νf ) and νf itself is the canonical one.) Define emb!(Ki,N) similarly. In
the commutative diagram

emb!(V,N) =−−−−→ limi emb!(Ki,N)yforget

yforget

emb(V,N) −−−−→ limi emb(Ki,N)
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the left–hand vertical arrow is a homotopy equivalence by inspection, and the
right–hand vertical arrow is a homotopy equivalence because, according to
Bousfield–Kan [1], the canonical map from the limit to the homotopy limit of a
tower of Kan fibrations is a homotopy equivalence of simplicial sets. (Hence the
limits in the right–hand column could be replaced by homotopy limits.) Hence
the lower horizontal arrow is a homotopy equivalence. Note: the lower horizon-
tal arrow is not always an isomorphism of simplicial sets—injective immersions
are not always embeddings.

Suppose now that V = ∪iVi as in part (b) of goodness, and that V has no
compact components. Each Vi can be written as a union ∪jKij where each
Kij is smooth compact with boundary, and Kij is contained in the interior of
Ki(j+1) . Moreover we can arrange that Kij is also contained in the interior of
K(i+1)j . Writing F (—) to mean imm(—,N), we have a commutative diagram
of restriction maps

F (V ) −−−−→ holimi F (Vi)y y
holimi F (Kii) ←−−−− holimi holimj F (Kij)

where the vertical arrows are homotopy equivalences by 1.5 and the lower
horizontal arrow is a homotopy equivalence by [4, 9.3]. (Here we identify
holimi holimj with holimij .) This shows that the cofunctor imm(—,N) has
property (b). The same argument applies to the cofunctor emb(—,N). Hence
1.4 is proved.

2 Polynomial Cofunctors

The following, up to and including Definiton 2.2, is a quotation from [23].
Suppose that F belongs to F and that V belongs to O , and let A0, A1, . . . , Ak
be pairwise disjoint closed subsets of V . Let Pk+1 be the power set of [k] =
{0, 1, . . . , k}. This is a poset, ordered by inclusion. We make a functor from
Pk+1 to Spaces by

(∗) S 7→ F
(
V r ∪i∈SAi

)
for S in Pk+1 . Recall that, in general, a functor X from Pk+1 to Spaces is
called a (k + 1)–cube of Spaces.

Embeddings from immersion theory : I

Geometry and Topology, Volume 3 (1999)

73



2.1 Definition ([6], [7]) The total homotopy fiber of the cube X is the
homotopy fiber of the canonical map

X (∅) −→ holim
S 6=∅

X (S) .

If the canonical map X (∅) → holimS 6=∅ X (S) is a homotopy equivalence, then
X is homotopy Cartesian or just Cartesian.

A cofunctor Y from Pk+1 to spaces will also be called a cube of spaces, since
Pk+1 is isomorphic to its own opposite. The total homotopy fiber of Y is the
homotopy fiber of Y([k])→ holimS 6=[k] Y(S).

Inspired by [7, 3.1] we decree:

2.2 Definition The cofunctor F is polynomial of degree ≤ k if the (k + 1)–
cube (∗) is Cartesian for arbitrary V in O and pairwise disjoint closed subsets
A0, . . . , Ak of V .

Remark In Goodwillie’s calculus of functors, a functor from spaces to spaces
is of degree ≤ k if it takes strongly cocartesian (k + 1)–cubes to Cartesian
(k + 1)–cubes. The pairwise disjointness condition in 2.2 is there precisely to
ensure that the cube given by S 7→ V r ∪i∈SAi is strongly cocartesian.

2.3 Example The cofunctor V 7→ imm(V,N) is polynomial of degree ≤ 1 if
either dim(N) > dim(M) or the dimensions are equal and M has no compact
component. This amounts to saying that for open subsets V1 and V2 of M ,
the following square of restriction maps is a homotopy pullback square:

imm(V1 ∪ V2,N) −−−−→ imm(V1,N)y y
imm(V2,N) −−−−→ imm(V1 ∩ V2,N).

To prove this we use lemma 1.5. Accordingly it is enough to prove that

(∗∗)

imm(K1 ∪K2,N) −−−−→ imm(K1,N)y y
imm(K2,N) −−−−→ imm(K1 ∩K2,N)

is a homotopy pullback square whenever K1,K2 ⊂ M are smooth compact
codimension zero submanifolds of M whose boundaries intersect transversely.
(Then K1 ∩K2 is smooth ”with corners”.) But (∗∗) is a strict pullback square
of Spaces in which all arrows are (Kan) fibrations, by [15].
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2.4 Example Fix a space X , and for V ∈ O let
(
V
k

)
be the configuration

space of unordered k–tuples in V . This is the complement of the fat diagonal
in the k–fold symmetric product (V ×V ×. . .×V )/Σk . The cofunctor

V 7→ map
((

V

k

)
,X

)
where map denotes a simplicial set of maps, is polynomial of degree ≤ k . Here
is a sketch proof: Let A0 , A1 , . . . , Ak be pairwise disjoint closed subsets of
V . Any unordered k–tuple in V must have empty intersection with one of the
Ai . Therefore (

V

k

)
=
⋃
i

(
V rAi
k

)
and it is not hard to deduce that the canonical map

hocolim
S⊂{0,1,...,k}

S 6=∅

(
V r ∪i∈SAi

k

)
−→

(
V

k

)
is a homotopy equivalence. Compare [24]. Applying map(—,X) turns the
homotopy colimit into a homotopy limit and the proof is complete.

2.5 Example Let A be a small category and let φ: A → F be a functor,
which we will write in the form a 7→ φa . Suppose that each φa is polynomial
of degree ≤ k . Then

V 7→ holim
a

φa(V )

is in F , and is polynomial of degree ≤ k . Special case: For A take the poset
of nonempty subsets of {0, 1}, and conclude that F is closed under homotopy
pullbacks.

3 Special Open Sets

Let Ok consist of all open subsets of M which are diffeomorphic to a disjoint
union of at most k copies of Rm , where m = dim(M). We think of Ok as
a full subcategory of O . There is an important relationship between Ok and
definition 2.2 which we will work out later, and which is roughly as follows.
A good cofunctor from O to Spaces which is polynomial of degree ≤ k is
determined by its restriction to Ok , and moreover the restriction to Ok can
be arbitrarily prescribed.— In this section, however, we merely examine the
homotopy type of |Ok| and use the results to study the process of inflation
(right Kan extension) of a cofunctor along the inclusion Ok ↪→ O .
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For the proof of lemma 3.9 below, we need double categories [17]. Recall first
that a category C consists of two classes, ob(C) and mor(C), as well as maps
s, t: mor(C)→ ob(C) (source and target) and 1: ob(C)→ mor(C) and

◦: mor(C)t×smor(C) −→ mor(C)
(composition), where t×s denotes the fibered product (or pullback) over ob(C).
The maps s, t, 1 and ◦ satisfy certain relations. A double category is a category
object in the category of categories. Thus a double category C consists of two
categories, ob(C) and mor(C), as well as functors s, t: mor(C)→ ob(C) (source
and target) and 1: ob(C)→ mor(C) and

◦: mor(C)t×smor(C) −→ mor(C)
(composition) where t×s denotes the fibered product (or pullback) over ob(C).
These functors s, t, 1 and ◦ satisfy the expected relations. Alternative def-
inition: A double category consists of four classes, ob(ob(C)), mor(ob(C)),
ob(mor(C)) and mor(mor(C)), and certain maps relating them . . . This defi-
nition has the advantage of being more symmetric. In particular, we see that
a double category C determines two ordinary categories, the horizontal cate-
gory Ch and the vertical category Cv , both with object class ob(ob(C)). The
morphism class of Ch is ob(mor(C)), that of Cv is mor(ob(C)).

The nerve of a double category C is a bisimplicial set, denoted by |C|.

3.1 Example Suppose that two groups H and V act on the same set S (both
on the left). Make a double category C with ob(ob(C)) = S , ob(mor(C))=S×H ,
mor(ob(C)) = S×V , and

mor(mor(C)) := {(s, h1, h2, v1, v2) | v2h1s = h2v1s} .

Thus an element in mor(mor(C)) is a ”commutative diagram”

v1s
h2−−−−→ h2v1s = v2h1sxv1

xv2

s
h1−−−−→ h1s

where the vertices are in S and the labelled arrows indicate left multiplication
by suitable elements of H or V .

3.2 Example An ordinary category A gives rise to a double category denoted
AA with (AA)h = A = (AA)v and with mor(mor(AA)) equal to the class of
commutative squares in A. More generally, if A is a subcategory of another
category B containing all objects of B , then we can form a double category AB
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such that (AB)h = B , (AB)v = A, and such that mor(mor(AB)) is the class
of commutative squares in B whose vertical arrows belong to the subcategory
A:

C −−−−→ Dx x
A −−−−→ B .

3.3 Lemma [22, Lemma 1.6.5] The inclusion of nerves |B| → |AB| is a ho-
motopy equivalence.

Recall that the homotopy limit of a cofunctor F from a small (ordinary) cat-
egory C to T , the category of Spaces, is the totalization of the cosimplicial
Space

p 7→
∏

G: [p]→C
F (G(0))

where the product is taken over all functors G from [p] = {0, 1, . . . , p} to C .
What can we do if C is a double category and F is a (double) cofunctor from
C to T T ? Then we define the homotopy limit as the totalization of the bi–
cosimplicial Space

(p, q) 7→
∏

H: [p]×[q]→C
F (G(0, 0)) .

Note that [p]×[q] is a double category, horizontal arrows being those which do
not change the second coordinate and vertical arrows being those which do not
change the first coordinate.

We need a variation on 3.3 involving homotopy limits. In the situation of 3.3,
assume that F is a cofunctor from B to Spaces (=T ) taking all morphisms in
A to homotopy equivalences. We can think of F as a double cofunctor from
AB to T T .

3.4 Lemma The projection

holim
AB

F → holim
B

F

is a homotopy equivalence.
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Proof Let ApB be the ordinary category whose objects are diagrams of the
form A0 → · · · → Ap in A, with natural transformations in B between such
diagrams as morphisms. It is enough to show that the face functor

d: (A0 → · · · → Ap) 7→ A0

induces a homotopy equivalence

d∗: holim
B

F −→ holim
ApB

Fd .

The face functor d has an obvious left adjoint, say e. Thus there is a natural
transformation τ from ed to the identity on ApB . The natural transformation
is a functor

τ : [1]×ApB −→ ApB .

Now the key observation is that Fdτ equals the composition

[1]×ApB
projection−−−−−−−→ ApB Fd−−→ T .

Hence τ∗ can be defined as a map from holimFd to holim(Fd · proj). Now
i∗0τ
∗ = (ed)∗ and i∗1τ

∗ = id, where i0 and i1 are the standard injections of
ApB in [1]×ApB . Therefore (ed)∗ is homotopic to the identity. Also, de is an
identity functor.

To be more specific now, let Ik ⊂ Ok be the subcategory consisting of all
morphisms which are isotopy equivalences. Eventually we will be interested in
the double category IkOk . Right now we need a lemma concerning Ik itself.

3.5 Lemma

|Ik| '
∐

0≤j≤k

(
M

j

)
.

Proof Observe that Ik is a coproduct
∐
I(j) where 0 ≤ j ≤ k and the objects

of I(j) are the open subsets of M diffeomorphic to a union of j copies of Rm .
We have to show

|I(j)| '
(
M

j

)
.

For j = 0 this is obvious. Here is a proof for j = 1, following [5, 3.1]. Let
E ⊂ |I(1)|×M consist of all pairs (x, y) such that the (open) cell of |I(1)|
containing x corresponds to a nondegenerate simplex (diagram in I(1) )

V0 → V1 → · · · → Vr
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where y ∈ Vr . The projection maps

|I(1)| ←− E −→M

are almost locally trivial in the sense of [20, A.1], since E is open in |I(1)|×M .
By [20, A.2] it is enough to verify that both have contractible fibers. Each fiber
of E −→ |I(1)| is homeomorphic to euclidean space Rn .

Let Ey be the fiber of E → M over y ∈ M . This embeds in |I(1)| under the
projection, and we can describe it as the union of all open cells corresponding
to nondegenerate simplices (U0 → · · · → Uk) where Uk contains y . There is
a subspace Dy ⊂ Ey defined as the union of all open cells corresponding to
nondegenerate simplices (U0 → · · · → Uk) where U0 contains y . Note the
following:

• Dy is a deformation retract of Ey . Namely, suppose that x in Ey belongs
to a cell corresponding to a simplex (U0, . . . , Uk) with y ∈ Uk . Let
(x0, x1, . . . , xk) be the barycentric coordinates of x in that simplex, all
xi > 0, and let j ≤ k be the least integer such that y ∈ Uj . Define a
deformation retraction by

h1−t(x) :=(txno + xyes)−1(tx0, . . . , txj−1, xj , . . . , xk)

xno :=
∑
i<j

xi xyes :=
∑
i≥j

xi

for t ∈ [0, 1], using the barycentric coordinates in the same simplex.

• Dy is homeomorphic to the classifying space of the poset of all U ∈ I(1)

containing y . The opposite poset is directed, so Dy is contractible.

Hence Ey is contractible, and the proof for j = 1 is complete. In the general
case j ≥ 1 let

E ⊂ I(j)×
(
M

j

)
consist of all pairs (x, S) such that the (open) cell of |I(j)| containing x corre-
sponds to a nondegenerate simplex

V0 → V1 → · · · → Vr

(diagram in I(j) ) where each component of Vr contains exactly one point from
S . Again the projections from E to |I(j)| and to

(
M
j

)
are homotopy equiva-

lences.
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For p ≥ 0 let IkOkp be the category whose objects are functors G: [p] → Ok
and whose morphisms are double functors

[1]×[p] −→ IkOk .
(Note that the nerve of the simplicial category p 7→ IkOkp is isomorphic to
the nerve of the double category IkOk .) The rule G 7→ G(p) is a functor from
IkOkp to Ik . In the next lemma we have to make explicit reference to M and
another manifold V , so we write Ok(M), Ik(M) and so on.

3.6 Lemma For any object V in Ik(M), the homotopy fiber over the 0–
simplex V of the map

|IkOkp(M)| −→ |Ik(M)|
induced by G 7→ G(p) is homotopy equivalent to |IkOkp−1(V )|.

3.7 Remark Combining 3.6 and 3.5, and induction on p, we can get a very
good idea of the homotopy type of |IkOkp(M)|. In particular, the functor

V 7→ |IkOkp(V )|
from O = O(M) to Spaces takes isotopy equivalences to homotopy equivalences
because the functors V 7→

(
V
j

)
have this property.

Proof of 3.6 Using Thomason’s homotopy colimit theorem [21] we can make
the identification

|IkOkp(M)| ' hocolim
V ∈Ik(M)

|IkOkp−1(V )| .

Then the map under investigation corresponds to the projection from the ho-
motopy colimit to the nerve of Ik(M). This map is already a quasifibration
of simplicial sets. Namely, all morphisms V1 → V2 in Ik(M) are isotopy
equivalences by definition, and inductively we may assume that the functor
V 7→ |IkOkp−1(V )| takes isotopy equivalences to homotopy equivalences (see
remark 3.7). Therefore the homotopy fiber that we are interested in has the
same homotopy type as the honest fiber.

Let E be a cofunctor from Ok = Ok(M) to Spaces taking morphisms in Ok
which are isotopy equivalences to homotopy equivalences. Use this to define a
cofunctor E! from O to Spaces by the formula

E!(V ) = holim
U∈Ok(V )

E(U) .

In categorical patois: E! is the homotopy right Kan extension of E along the
inclusion functor Ok → O .
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3.8 Lemma E! is good.

Proof From 3.4 we know that the projection

holim
U∈IkOk(V )

E(U) −→ holim
U∈Ok(V )

E(U)

is a homotopy equivalence. The domain of this projection can be thought of as
the totalization of the cosimplicial Space

p 7→ holim
U0→···→Up

E(U0)

where the homotopy limit, holimE(U0), is taken over IkOkp(V ) as defined
just before 3.6. Note that the cofunctor (U0 → · · · → Up) 7→ E(U0) takes
all morphisms to homotopy equivalences. Hence its homotopy colimit is quasi-
fibered over the nerve of the indexing category, and its homotopy limit may be
identified (up to homotopy equivalence) with the section Space of the associated
fibration. Using 3.6 and 3.7 now we see that

V 7→ holim
U0→···→Up

E(U0)

is a good cofunctor E!
p for each p. Hence E! is good, too.

We come to the main result of the section. It is similar to certain well–known
statements about small simplices, for example [2, III.7.3], which are commonly
used to prove excision theorems. Let ε be an open cover of M . We say that
V ∈ Ok is ε–small if each connected component of V is contained in some open
set of the cover ε. Let εOk = εOk(M) be the full sub–poset of Ok consisting
of the ε–small objects. For V ∈ O let

εE!(V ) := holim
U∈εOk(V )

E(U) .

3.9 Theorem The projection E!(V )→ εE!(V ) is a homotopy equivalence.

Proof Using the notation from the proof of 3.8, and obvious ε–modifications,
we see that it suffices to prove that the projection E!

p(V ) → εE!
p(V ) is a

homotopy equivalence, for all V and p. However, the analysis of E!
p(V ) as a

section Space (proof of 3.8) works equally well for εE!
p(V ), and gives the same

result up to homotopy equivalence. In particular 3.5 and 3.6 go through in the
ε–setting.
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4 Construction of Polynomial Cofunctors

We continue to assume that E is a cofunctor from Ok to Spaces taking isotopy
equivalences to homotopy equivalences.

4.1 Theorem The cofunctor E! on O is polynomial of degree ≤ k .

Proof We have to verify that the condition in 2.2 is satisfied. Without loss of
generality, V = M . Then A0, A1, . . . , Ak are pairwise disjoint closed subsets of
M . Let Mi = M rAi and MS = ∩i∈SMi for S ⊂ {0, 1, . . . , k}. Using 3.9, all
we have to show is that the (k + 1)–cube of Spaces

S 7→ εE!(MS)

is homotopy Cartesian. Here ε can be any open cover of M , and in the present
circumstances we choose it so that none of the open sets in ε meets more than
one Ai . Then

εOk =
⋃
i

εOk(Mi) .

(This is the pigeonhole principle again: Each component of an object U in εOk
meets at most one of the Ai , but since U has at most k components, U∩Ai = ∅
for some i.) With lemma 4.2 below, we conclude that the canonical map

holim
εOk

E −→ holim
S 6=∅

holim
εOk(MS)

E

is a homotopy equivalence. But this is what we had to show.

In lemma 4.2 just below, an ideal in a poset Q is a subset R of Q such that
for every b ∈ R, all a ∈ Q with a ≤ b belong to R.

4.2 Lemma Suppose that the poset Q is a union of ideals Qi , where i ∈ T .
For finite nonempty S ⊂ T let QS = ∩i∈SQi . Let E be a cofunctor from Q
to Spaces. Then the canonical map

holim
Q

E −→ holim
S 6=∅

holim
QS

E

is a homotopy equivalence.
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Proof Let
∫
QS be the poset consisting of all pairs (S, x) where S ⊂ T is

finite, nonempty and where (S, x) ≤ (S′, y) if and only if S ⊂ S′ and x ≤ y in
Q. The forgetful map taking (S, x) to x is a functor u:

∫
QS → Q. It is right

cofinal, ie the under category y↓u is contractible for every y in Q. Therefore,
by the cofinality theorem for homotopy inverse limits [1, ch. XI, 9.2], [4, 9.3]
the obvious map

holim
x∈Q

E(x) −→ holim
(S,x)∈

∫
QS

E(x)

is a homotopy equivalence. (Note that it has to be right cofinal instead of the
usual left cofinal because we are dealing with a cofunctor E .) By inspection,
the codomain of this map is homeomorphic to

holim
S 6=∅

holim
QS

E .

Remark Note that the obvious map E(U) → E!(U) is a homotopy equiva-
lence for every U in Ok . This is again an application of the cofinality theorem
for homotopy inverse limits, although a much more obvious one. In this sense
E! extends E .

5 Characterizations of Polynomial Cofunctors

5.1 Theorem Let γ: F1 → F2 be a morphism in F . Suppose that both F1

and F2 are polynomial of degree ≤ k . If γ: F1(V ) → F2(V ) is a homotopy
equivalence for all V ∈ Ok , then it is a homotopy equivalence for all V ∈ O .

Proof Suppose that γ: F1(V ) → F2(V ) is a homotopy equivalence for all
V ∈ Ok . Suppose also that W ∈ Or , where r > k . Let A0, A1, . . . , Ak be
distinct components of W and let WS = ∩i∈S(W r Ai) for S ⊂ {0, 1, . . . , k}.
Then

Fi(W ) ' holim
S 6=0

Fi(WS)

for i = 1, 2 and therefore γ: F1(W ) → F2(W ) is a homotopy equivalence pro-
vided γ from F1(WS) → F2(WS) is a homotopy equivalence for all nonempty
S ⊂ {0, 1, . . . , k}. But WS for S 6= ∅ has fewer components than W , so by
induction the proviso is correct. This takes care of all W ∈ ∪rOr .

Next, suppose that W = int(L) where L is a smooth compact codimension
zero submanifold of M . Choose a handle decomposition for L, let s be the
maximum of the indices of the handles, and let t be the number of handles of
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index s that occur. If s = 0 we have W ∈ Or for some r and this case has
been dealt with. If s > 0, let e: Dm−s×Ds → L be one of the s–handles. We
assume that e−1(∂L) is ∂Dm−s×Ds . Since s > 0 we can find pairwise disjoint
small closed disks C0, . . . , Ck in Ds and we let

Ai := e(Dm−s×Ci) ∩W
for 0 ≤ i ≤ k . Then each Ai is closed in W and W r Ai is the interior of a
smooth handlebody in M which has a handle decomposition with no handles
of index > s, and fewer than t handles of index s. The same is true for
WS := ∩i∈S(W rAi) provided S 6= ∅. Therefore, by induction,

γ: F1(WS) −→ F2(WS)

is a homotopy equivalence for ∅ 6= S ⊂ {0, 1, . . . , k} and consequently the
right–hand vertical arrow in

F1(W ) −−−−→ holim
S 6=∅

F1(WS)yγ yγ
F2(W ) −−−−→ holim

S 6=∅
F2(WS)

is a homotopy equivalence. But the two horizontal arrows are also homotopy
equivalences, because F1 and F2 are polynomial of degree ≤ k . Therefore the
left–hand vertical arrow is a homotopy equivalence. This takes care of every
W ∈ O which is the interior of a compact smooth handlebody in M .

The general case follows because F1 and F2 are good cofunctors; see especially
property (b) in the definition of goodness, just after 1.1.

For F in F let TkF be the homotopy right Kan extension of the restriction of
F to Ok . The explicit formula is

TkF (V ) := holim
U∈Ok(V )

F (U) .

From section 3 and section 4 we know that TkF is good and polynomial of
degree ≤ k . There is an obvious forgetful morphism ηk: F → TkF . Clearly the
natural map ηk: F (U)→ TkF (U) is a homotopy equivalence for every U ∈ Ok .
Hence, by 5.1, if F is already polynomial of degree ≤ k , then ηk from F (V )
to TkF (V ) is a homotopy equivalence for every V ∈ O . In this sense an F
which is polynomial of degree ≤ k is determined by its restriction E to Ok .
The restriction does of course take isotopy equivalences in Ok to homotopy
equivalences. We saw in section 4 that that is essentially the only condition it
must satisfy.

The polynomial objects in F can also be characterized in sheaf theoretic terms.
Recall the Grothendieck topologies Jk on O , from the introduction.
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5.2 Theorem A good cofunctor F from O to Spaces is polynomial of degree
≤ k if and only if it is a homotopy sheaf with respect to the Grothendieck
topology Jk .

Proof Suppose that F is a homotopy sheaf with respect to Jk . Let V ∈ O
and pairwise disjoint closed subsets A0, . . . , Ak of V be given. Let Vi = V rAi .
Then the inclusions Vi for 0 ≤ i ≤ k form a covering of V in the Grothendieck
topology Jk . Hence

F (V ) −→ holim
R

F (∩i∈RVi)

is a homotopy equivalence; the homotopy limit is taken over the nonempty
subsets R of {0, . . . , k}. This shows that F is polynomial of degree ≤ k .

Conversely, suppose that F is polynomial of degree ≤ k . Let W ∈ O be given
and let {Vi →W | i ∈ S} be a covering of W in the Grothendieck topology Jk .
Let E be the restriction of F to Ok . Define εE! as in section 3, just before
3.9, where ε is the covering {Vi}. Up to equivalence, F and εE! are the same.
By 4.2, the canonical map

εE!(W ) −→ holim
R

εE!(∩i∈RVi)

is a homotopy equivalence. Here again, R runs through the finite nonempty
subsets R of S .

6 Approximation by Polynomial Cofunctors

From section 5, we have for every k ≥ 0 an endofunctor Tk: F → F given by
the rule F 7→ TkF , and a natural transformation from the identity F → F
to Tk given by ηk: F → TkF for all F . It is sometimes convenient to define
T−1 as well, by T−1F (V ) := ∗. The following theorem is mostly a summary of
results from section 5. It tries to say that Tk is essentially left adjoint to the
inclusion functor Fk → F . Here Fk is the full subcategory of F consisting of
the objects which are polynomial of degree ≤ k . Compare [25, Thm.6.1].

6.1 Theorem The following holds for every F in F and every k ≥ 0.

(1) TkF is polynomial of degree ≤ k .

(2) If F is already polynomial of degree ≤ k , then ηk: F → TkF is an
equivalence.

(3) Tk(ηk): TkF → Tk(TkF ) is an equivalence.

Embeddings from immersion theory : I

Geometry and Topology, Volume 3 (1999)

85



Proof Properties (1) and (2) have been established in section 5. As for (3),
we can use 5.1 and we then only have to verify that

Tk(ηk): TkF (W )→ Tk(TkF (W ))

is a homotopy equivalence for every W ∈ Ok . Written out in detail the map
takes the form

holim
V ∈Ok(W )

F (V ) −→ holim
V ∈Ok(W )

TkF (V )

= holim
V ∈Ok(W )

holim
U∈Ok(V )

F (U)

and it is induced by the maps F (V ) → holimU F (U) for V in Ok(V ). These
maps are clearly homotopy equivalences, since the identity morphism V → V
is a terminal object in Ok(V ).

Remark One way of saying that the inclusion of a full subcategory, say A →
B , has a left adjoint is to say that there exists a functor T : B → B and a natural
transformation η: idB → T with the following properties.

(1) T (b) belongs to A for every b in B .

(2) For a in A, the morphism η: a→ T (a) is an isomorphism.

(3) For b in B , the morphism T (η): T (b)→ T (T (b)) is an isomorphism.

From the definitions, there are forgetful transformations rk: TkF → Tk−1F for
any F and any k > 0. They satisfy the relations rkηk = ηk−1: F → Tk−1F .
Therefore

(∗) {ηk}: F −→ holim
k

TkF

is defined. The codomain, with its inverse filtration, may be called the Taylor
tower of F . Usually one wants to know whether (∗) is a homotopy equivalence.
More precisely one can ask two questions:

• Does the Taylor tower of F converge?

• If it does converge, does it converge to F ?

Regarding the first question: although holimk TkF is always defined, we would
not speak of convergence unless the connectivity of rk: TkF (V ) → Tk−1F (V )
tends to infinity with k , independently of V .
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7 More Examples of Polynomial Cofunctors

7.1 Example Let p: Z →
(
M
k

)
be a fibration. For U ⊂

(
M
k

)
let Γ(p ;U)

be the Space of partial sections of p defined over U . The cofunctor F on O
defined by F (V ) := Γ(p ;

(
V
k

)
) is good and, moreover, it is polynomial of degree

≤ k . This can be proved like 2.4.

Keep the notation of 7.1. Let NkV be the complement of
(
V
k

)
in the k–fold

symmetric power spk V := (V ×V ×. . .×V )/Σk . The homotopy colimit in the
next lemma is taken over the poset of all neighborhoods Q of NkV in spk V .

7.2 Lemma The cofunctor G on O given by

G(V ) := hocolim
Q

Γ(p ;
(
V
k

)
∩Q)

is good.

Proof We concentrate on part (b) of goodness to begin with. Fix V and
choose a smooth triangulation on the k–fold product (V )k , equivariant with
respect to the symmetric group Σk . Then spk V has a preferred PL structure
and NkV is a PL subspace, so we can speak of regular neighborhoods of NkV .
It is clear that all regular neighborhoods of NkV have the same homotopy type,
and that each neighborhood of NkV contains a regular one. Therefore, if L is
a regular neighborhood of NkV , then the canonical inclusion

Γ(p ;
(
V
k

)
∩ int(L)) −→ hocolim

Q
Γ(p ;

(
V
k

)
∩Q)

is a homotopy equivalence. This observation tends to simplify matters. Another
observation which tends to complicate matters is that for an open subset U of
V and a regular neighborhood L as above, the intersection of L with spk U
will usually not be a regular neighborhood of NkU . However, we can establish
goodness as follows. Suppose that

V = ∪iKi

where each Ki is a smooth compact codimension zero submanifold of V , and
Ki ⊂ int(Ki+1). As in the proof of 1.4, it is enough to show that the canonical
map

G(V ) −→ holim
i

G(int(Ki))

is a homotopy equivalence. Abbreviate int(Ki) = Vi . Choose a regular neigh-
borhood L of NkV in spk V such that L ∩ spk(Ki) is a regular neighborhood
of Nk(Ki) in spk(Ki) for each i. Then it is not hard to see that the inclusion

Γ(p ;
(
Vi
k

)
∩ int(L)) −→ hocolim

R
Γ(p ;

(
Vi
k

)
∩R)
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is a homotopy equivalence, for each i. Therefore, in the commutative diagram

Γ(p ;
(
V
k

)
∩ int(L)) −−−−→ holimi Γ(p ;

(
Vi
k

)
∩ int(L))y y

hocolimQ Γ(p ;
(
V
k

)
∩Q) −−−−→ holimi hocolimR Γ(p ;

(
Vi
k

)
∩R)

the two vertical arrows are homotopy equivalences. The upper horizontal arrow
is also a homotopy equivalence by inspection. Hence the lower horizontal arrow
is a homotopy equivalence. This completes the proof of part (b) of goodness.

Proof of part (a) of goodness: Suppose that W ↪→ V in O is an isotopy
equivalence. Let {jt: V → V } be a smooth isotopy of embeddings, with j0 =
idV and im(j1) = W . Let

X := hocolim
R

Γ(j∗p ; (
(
V
k

)
×I) ∩ R)

where I = [0, 1] and j∗p is the pullback of p under the map(
V

k

)
× I −→

(
V

k

)
; (S, t) 7→ jt(S)

and R runs over the neighborhoods of NkV × I in spk V × I . Key observation:
Every R contains a neighborhood of the form Q×I , where Q ⊂ spk V . This
implies that the restriction maps

G(W )
ρW←−− X ρV−−→ G(V )

(induced by the bundle maps j∗1p −→ j∗p ←− j∗0p) are homotopy equivalences.
The restriction map G(V ) → G(W ) that we are interested in can be written
as a composition

G(V ) j∗−→ X
ρW−−→ G(W )

where the arrow labelled j∗ is right inverse to ρV . Therefore the restriction
map G(V )→ G(W ) is a homotopy equivalence.

7.3 Lemma The cofunctor G in 7.2. is polynomial of degree ≤ k .

Proof Fix W ∈ O and let A0, . . . , Ak be closed and pairwise disjoint in W .
Let Wi := W rAi and choose neighborhoods Qi of NkWi in spkWi . Let

WS = ∩i∈SWi

QS = ∩i∈SQi
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for nonempty S ⊂ {0, 1, . . . , k}, and W∅ = W , Q∅ = ∪iQi . Then(
W

k

)
∩Q∅ =

⋃
i

(
Wi

k

)
∩Qi ' hocolim

S 6=∅

(
WS

k

)
∩QS

which shows, much as in the proof of 2.4, that the obvious map

Γ
(
p ;
(
W
k

)
∩Q∅

)
−→ holim

S 6=∅
Γ
(
p ;
(
WS

k

)
∩QS

)
is a homotopy equivalence. We can now complete the proof with two observa-
tions. Firstly, the neighborhoods of NkWS of the form QS , as above, form an
initial subset [17] in the poset of all neighborhoods. Secondly, there are situa-
tions in which homotopy inverse limits commute (up to homotopy equivalence)
with homotopy direct limits, and this is one of them. Here we are interested in
a double homotopy limit/colimit of the form

holim
S 6=∅

hocolim
Q0,...,Qk

(—)

where the blank indicates an expression depending on S and the Qi (actually
only on the Qi for i ∈ S ). Clearly sublemma 7.4 below applies.

7.4 Sublemma Let X be a functor from a product A×B to Spaces, where
A and B are posets. Suppose that A is finite and that B is directed. Then

hocolim
b∈B

holim
a∈A

X(a, b) ' holim
a∈A

hocolim
b∈B

X(a, b) .

Proof Since B is a directed poset, the homotopy colimits may be replaced by
honest colimits [1]. The universal property of colimits yields a map

colim
b∈B

holim
a∈A

X(a, b) ' holim
a∈A

colim
b∈B

X(a, b)

which is an isomorphism, by inspection.

7.5 Proposition The cofunctor G in 7.2 and 7.3 is in fact polynomial of
degree ≤ k − 1.

Proof We must show that ηk: G → Tk−1G is an equivalence. Since G and
Tk−1G are both polynomial of degree ≤ k , it is enough to check that

ηk: G(V ) −→ Tk−1G(V )

is an equivalence for every V ∈ Ok . See 5.1. If V belongs to Or for some r < k ,
this is obvious. So we may assume that V has exactly k connected components,
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each diffeomorphic to Rm . Denote these components by A0, . . . , Ak−1 . If we
can show that the upper horizontal arrow in

G(V ) −−−−→ holim
S 6=∅

G(∪i/∈SAi)y y
Tk−1G(V ) −−−−→ holim

S 6=∅
Tk−1G(∪i/∈SAi)

is a homotopy equivalence, then we are done because the lower horizontal and
the right–hand vertical arrows are homotopy equivalences. However, this follows
in the usual manner (compare proof of 2.4 and of 7.3) from the observation that(

V

k

)
∩Q =

⋃
i

(
V rAi
k

)
∩Q

for sufficiently small neighborhoods Q of NkV in spk V . Notice that the obser-
vation as such is new because this time the closed subsets Ai are k in number,
not k + 1.

We are now in a position to understand the relationship between F in 7.1 and
G in 7.2. There is an obvious inclusion e: F (V )→ G(V ), natural in V .

7.6 Proposition The morphism Tk−1e: Tk−1F → Tk−1G is an equivalence.

Proof By 5.1, it suffices to show that e: F (V )→ G(V ) is a homotopy equiv-
alence for any V which is diffeomorphic to a disjoint union of ` copies of Rm ,
where ` < k . For such a V choose open subsets

V = V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ . . .

such that the inclusions Vi+1 → Vi are isotopy equivalences, such that the
closure of Vi+1 in Vi is compact, and such that ∩iVi is a discrete set consisting
(necessarily) of ` points, one in each component of V . In the commutative
square

(∗)

F (V ) ⊂−−−−→ hocolimi F (Vi)y⊂ y⊂
G(V ) ⊂−−−−→ hocolimiG(Vi)

the horizontal arrows are now homotopy equivalences because F and G take
isotopy equivalences to homotopy equivalences. On the other hand, suppose
that Q is a neighborhood of NkVi in spk Vi for some i. Then clearly there
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exists an integer j > i such that all of spk Vj is contained in Q. It follows that
the inclusion of hocolimi F (Vi) in

hocolim
i

G(Vi) = hocolim
i

hocolim
Q

Γ
(
p ;
(
Vi
k

)
∩Q

)
is a homotopy equivalence. Hence all arrows in (∗) are homotopy equivalences.

8 Homogeneous Cofunctors

8.1 Definition A cofunctor E in F is homogeneous of degree k , where k ≥ 0,
if it is polynomial of degree ≤ k and if Tk−1E(V ) is contractible for each V ∈ O .

Remark The cofunctor given by E(V ) = ∗ for all V is homogeneous of degree
k for any k ≥ 0. Conversely, if E is homogeneous of degree k and homogeneous
of degree `, where ` < k , then clearly E(V ) ' Tk−1E(V ) ' ∗ .

8.2 Example Let F in F be arbitrary, and select a point in F (M), if one
exists. Then TkF (V ) is pointed for all V and k . Therefore a new cofunctor
LkF can be defined by

LkF (V ) := hofiber [TkF (V ) −→ Tk−1F (V )] .

It follows from 6.1 that E is homogeneous of degree k .

8.3 Example Starting with a fibration p: Z →
(
M
k

)
, define F as in 7.1 and

define G as in 7.2. Select a point in G(M). Then

E(V ) := hofiber [F (V ) ⊂−→ G(V )]

is defined. It follows from 7.6 that E is homogeneous of degree k .

Example 8.3 deserves to be studied more. Ultimately E has been constructed in
terms of the fibration p, and a partial section of p defined near the fat diagonal
NkM . Is it possible to recover p from E? In particular, for S ∈

(
M
k

)
, can we

describe the fiber p−1(S) in terms of E?

Note that S is a subset of M with k elements. Let V be a tubular neighborhood
of S ⊂ M , so that V is diffeomorphic to a disjoint union of k copies of Rm .
Then S belongs to

(
V
k

)
⊂
(
M
k

)
and therefore we have maps

E(V ) −→ F (V ) = Γ(p ;
(
V
k

)
) evaluation−−−−−−−→ p−1(S) .
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8.4 Proposition The composite map E(V )→ p−1(S) is a homotopy equiva-
lence.

Hence we can indeed describe p−1(S) in terms of E , up to homotopy equiva-
lence: namely, as E(V ) for a tubular neighborhood V os S in M .

Proof of 8.4 Much as in the proof of 7.6 we choose a sequence of open subsets

V = V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ . . .
such that the inclusions Vi+1 → Vi are isotopy equivalences, such that the
closure of Vi+1 in Vi is compact, and such that ∩iVi = S . We note that

F (V ) =
∏
j

Γ(p ;Uj)

where the Uj are the connected components of
(
V
k

)
. Among these components

we single out U0 , the component containing S . It is the only component whose
closure in spk V does not meet NkV . For the remaining components we can
use an idea as in the proof of 7.6, and find

G(V ) '
∏
j 6=0

Γ(p ;Uj) .

Therefore F (V ) ' E(V )×G(V ) and the composition

E(V )→ F (V )→ Γ(p ;U0)→ p−1(S)

is a homotopy equivalence.

Digression Knowing all the fibers of a fibration is not the same as knowing
the fibration. However, in the present case we can also “describe” the entire
fibration p in 8.3 in terms of the cofunctor E . Recall from the proof of 3.5 the
poset I(k) . Its elements are the open subsets of M which are diffeomorphic to
a disjoint union of k copies of Rm , and for V,W ∈ I(k) we decree V ≤ W if
and only if V ⊂W and the inclusion is an isotopy equivalence. We saw that

|I(k)| '
(
M

k

)
.

Since I(k) ⊂ O , we can restrict E to I(k) . The restricted cofunctor takes all
morphisms to homotopy equivalences, so that the projection

hocolim
I(k)

E −→ |I(k)|

is a quasifibration. The associated fibration is the one we are looking for. This
motivates the following classification theorem for homogeneous cofunctors.
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8.5 Theorem Up to equivalence, all objects in F which are homogeneous of
degree k are of the type discussed in 8.3.

Outline of proof Of course, the digression just above already gives the idea
of the proof, but we have to proceed a little more cautiously. The plan is: Given
E , homogeneous of degree but not necessarily defined in terms of some fibration,
construct the appropriate F , polynomial of degree ≤ k , and a morphism E →
F . Then show that F is equivalent to a cofunctor of type V 7→ Γ(p ;

(
V
k

)
).

as in 7.1. This step requires a lemma, 8.6 below. Finally identify E with the
homotopy fiber of the canonical morphism from F to Tk−1F .

8.6 Lemma [3, 3.12] Suppose that Y is a functor from a small category A
to the category of Spaces. If Y takes all morphisms in A to homotopy equiva-
lences, then the canonical projection hocolimA Y → |A| is a quasifibration. The
section Space of the associated fibration is homotopy equivalent to holimAX .

Sketch proof of 8.6 The quasifibration statement is obvious. We denote
the total Space of the associated fibration by T , so that hocolimA Y ⊂ T by
a homotopy equivalence. For the statement about the section Space, recall
that holimY can be defined as the Space of natural transformations ∗̃A → Y ,
where ∗A is the constant functor a 7→ ∗ on A, and ∗̃A is a CW–functor weakly
equivalent to it (some explanations below). The standard choice is

∗̃A(a) := |A↓a| .

CW–functor refers to a functor with a CW–decomposition where the cells are
of the form Ri×mor(b,—) for some b ∈ A and some i. Weakly equivalent to
∗A means here that there is an augmentation ∗̃A(a) → ∗A(a), natural in a,
which is a homotopy equivalence for each a. In other words, ∗̃A(a) is always
contractible.— Suppose now that X is any CW–functor from A to spaces.
There are obvious embeddings

nat(X,Y ) ⊂−→ map|A|(hocolimX , hocolim Y ) ⊂−→ map|A|(hocolimX , T )

where map|A| is for Spaces of maps over |A|. One shows by induction over the
skeletons of X that the composite embedding is a homotopy equivalence. In
particular, this holds for X = ∗̃A .

Proof of 8.5 Suppose that E in F is homogeneous of degree k . Define a
cofunctor F0 from O to Spaces by

F0(V ) := holim
U∈I(k)(V )

E(U) .
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Here I(k)(V ) ⊂ I(k) is the full sub–poset consisting of all U ∈ I(k) which are
contained in V . For the meaning of I(k) , see the digression preceding 8.5. By
8.6, the cofunctor F0 is equivalent to another cofunctor F1 given by a formula
of type

F1(V ) = Γ(qV )

where qV is a certain fibration on |I(k)(V )|. The fibration qV is natural in W ,
in the sense that a morphism V ⊂W in O induces a map from the total Space
of qV to that of qW , covering the inclusion

|I(k)(V )| ↪→ |I(k)(W )| .

By inspection, this map of total Spaces maps each fiber of qV to the corre-
sponding fiber of qW by a homotopy equivalence. Hence F1 is equivalent to
the cofunctor F2 given by

F2(V ) := Γ
(
qM ; |I(k)(V )|

)
.

Finally we know from 3.5 (and proof) that |I(k)(V )| '
(
V
k

)
, and this can be

understood as a chain of natural homotopy equivalences (natural in V ∈ O).
It follows easily that F2 is equivalent to a cofunctor F3 given by a formula of
type

F3(V ) := Γ
(
p ;
(
V
k

))
where p is a fibration on

(
M
k

)
. This is exactly the kind of cofunctor introduced

in section 7, so we now write F := F3 . From the definition, F belongs to F .
Replacing E by an equivalent cofunctor if necessary, we can assume that E
maps directly to F instead of F0 . If S ∈

(
M
k

)
and V is a tubular neighborhood

of S ⊂M , then the composition

E(V ) −→ F (V ) = Γ
(
p ;
(
V
k

)) eval.−−−−→ p−1(S)

is a homotopy equivalence, by construction and inspection. This is of course
reminiscent of 8.4. Now form the commutative square

(∗)

E −−−−→ Fyηk−1

yηk−1

Tk−1E −−−−→ Tk−1F

and recall that Tk−1E(V ) is contractible for all V ∈ O . Given our analysis of
Tk−1F in section 7, we can complete the proof of 8.5 by showing that (∗) is
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homotopy Cartesian. By 2.5 and 5.1, it suffices to check that

(∗∗)

E(V ) −−−−→ F (V )yηk−1

yηk−1

Tk−1E(V ) −−−−→ Tk−1F (V )

is homotopy Cartesian for all V ∈ Ok . If it happens that V ∈ Or ⊂ Ok for
some r < k , then we have E(V ) ' ∗ by homogeneity and F (V ) → Tk−1F (V )
is a homotopy equivalence, by section 5 and section 6. If not, then V has k
connected components and is a tubular neighborhood of some S ⊂ M , where
S ∈

(
M
k

)
. Using 8.4 now (and 7.6), and our observation above which seemed so

reminiscent of 8.4, we find that (∗∗) is again homotopy Cartesian.

9 The Homogeneous Layers of a Good Cofunctor

In this section we work with a fixed F in F and a distinguished element ∗ ∈
F (M), which we call the base point. Since M is the terminal object in O ,
we may then regard F as a cofunctor from O to pointed Spaces. Define LkF
as in 8.2, and call it the k–th homogeneous layer of F . According to 8.5, the
homogeneous cofunctor LkF can be classified by some fibration p: Z →

(
M
k

)
,

and a partial section of it defined near the fat diagonal NkM . What does p
look like? The answer is implicit in the last section. Recall that(

M

k

)
' |I(k),

in the notation of 3.5 and sequel. For any V ∈ I(k) with components Vs , where
s ∈ π0(V ), the rule taking a subset R of π0(V ) to the Space F (∪s∈RVs) is a
k–cube of Spaces:

(∗) R 7→ F (∪s∈RVs) (R ⊂ π0(V )) .

As such it has a total homotopy fiber (see 2.1) which we denote by Φ(V ). Note
that V 7→ Φ(V ) is a cofunctor from I(k) to Spaces taking all morphisms to
homotopy equivalences.

9.1 Proposition The fibration which classifies LkF is the one associated with
the quasifibration

hocolim
V ∈I(k)

Φ(V ) −→ |I(k)| .
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Remark Our classifying fibrations on
(
M
k

)
should always come with partial

sections defined near the fat diagonal. Note that Φ is a cofunctor from I(k) to
pointed Spaces, so that the (quasi)–fibration in 9.1 does in fact have a preferred
global section.

Proof of 9.1 Write j = k − 1 (for typographic reasons). By section 8, it
is enough to show that LkF (V ) ' Φ(V ) for V ∈ I(k) , by a chain of natural
pointed homotopy equivalences. Since V ∈ I(k) ⊂ Ok , we have

ηk: F (V ) '−→ TkF (V )

so that LkF (V ) is homotopy equivalent to the homotopy fiber of the map
ηj : F (V ) −→ TjF (V ). Recall that TjF (V ) is defined as

holim
U∈Oj(V )

F (U) .

Now observe that the inclusion of posets

{∪s∈RVs | R ⊂ π0(V ), R 6= π0(V )} ↪→ Oj(V )

is right cofinal. Complete the proof by applying the cofinality theorem for
homotopy inverse limits.

In the case of an embedding cofunctor, F (V ) = emb(V,N) as in 1.3, proposition
9.1 can be made much more explicit. We need a base point in emb(M,N), so
we may as well assume that M is a smooth submanifold of N . For S ∈

(
M
k

)
let Ψ(S) be the total homotopy fiber of the k–cube of pointed Spaces

(∗∗)
{

emb(R,N) | R ⊂ S
}
.

These Spaces are pointed because R ⊂ S ⊂M ⊂ N .

9.2 Theorem For k ≥ 2, the homogeneous cofunctor Lk emb(—,N) is clas-
sified by the fibration p: Z →

(
M
k

)
with fibers p−1(S) = Ψ(S) .

Proof The first and most important observation here is that, for every V in
I(k) and every S ∈

(
M
k

)
which has exactly one point in each component of V ,

the obvious restriction map

ρ: Φ(V ) −→ Ψ(S)

is a homotopy equivalence. This can be seen as follows. For each R ⊂ S , there
is a homotopy pullback square

emb(VR,N) −−−−→ mono(TM |R, TN)y y
emb(R,N) ⊂−−−−→ NR
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where mono denotes a Space of bundle monomorphisms (vector bundle mor-
phisms which are mono in each fiber of the domain). Allowing R to be a variable
subset of S we may think of it as a square in which each vertex is a k–cube
of Spaces. The total homotopy fibers of these k–cubes will then again form a
homotopy pullback square. But the two k–cubes in the right–hand column are
fibrant, so their total homotopy fibers agree with their total fibers, which reduce
to a single point if k ≥ 2 (but not if k = 1). Therefore the total homotopy
fibers of the k–cubes in the left–hand column are homotopy equivalent, which
amounts to saying that ρ: Φ(V )→ Ψ(V ) is a homotopy equivalence.

Now let E[ be the homotopy colimit of the cofunctor taking V ∈ I(k) to the
space of sections of V → π0(V ). There are obvious forgetful maps

|I(k)| ←− E[ −→
(
M
k

)
.

The first of these is a homotopy equivalence by inspection. Comparison with
the space E in the proof of 3.5 (towards the end) shows that the second map is
also a homotopy equivalence. In more detail, there is a commutative diagram

|I(k)| '←−−−− E[ −−−−→
(
M
k

)y=

y⊂ y=

|I(k)| '←−−−− E
'−−−−→

(
M
k

)
.

Let p1 be the pullback of the quasifibration in 9.1 to E[ , and let p2 be the
pullback of the fibration in 9.2 to E[ . From the observation made at the
beginning of this proof, it is clear that there is a map over E[ from p1 to p2

which maps each fiber of p1 to the corresponding fiber of p2 by a homotopy
equivalence.

In proposition 9.2, the case k = 1 has been excluded because it is different.
However, it is also well understood: We have

T1 emb(—,N) = L1 emb(—,N) ' imm(—,N) .

This follows easily from 5.1 and the observation that all arrows in the commu-
tative square

emb(V,N) ⊂−−−−→ imm(V,N)yη1

yη1

T1 emb(V,N) ⊂−−−−→ T1 imm(V,N)

are homotopy equivalences if V ∈ O1 .
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10 Boundary Conditions

So far all manifolds considered were without boundary. When there are bound-
aries, the theory looks slightly different. The following is an outline.

Suppose that Mm is smooth, possibly with boundary. Let O be the poset of
all open subsets of M which contain ∂M . A cofunctor from O to Spaces is
good if it satisfies conditions (a) and (b) just before 1.2, literally. In (a) we
use a definition of isotopy equivalence which is appropriate for manifolds with
boundary: a smooth codimension embedding (V, ∂V )→ (W,∂W ) is an isotopy
equivalence if, and so on.

10.1 Example Suppose that M is a neat smooth submanifold of another
smooth manifold N with boundary. That is, M meets ∂N transversely, and
∂M = M ∩ ∂N . For V in O let F (V ) be the Space of smooth embeddings
V → N which agree with the inclusion near ∂M ⊂ V . Then F is good.

10.2 Example Suppose that M is a smooth submanifold with boundary of
another smooth manifold N without boundary. For V in O let F (V ) be
the Space of smooth embeddings V → N which agree with the inclusion near
∂M ⊂ V . Then F is good.

In practice example 10.1 is more important because it cannot be reduced to
simpler cases, whereas 10.2 can often be so reduced. For example, with F as
in 10.2 there is a fibration sequence up to homotopy

F (M) −→ emb(M r ∂M,N) −→ emb(∂M,N)

provided ∂M is compact. This follows from the isotopy extension theorem. It
is a mistake to think that a similar reduction is possible in the case of 10.1.
(Unfortunately I made that mistake in [23, section 5], trying to avoid further
definitions; the calculations done there are nevertheless correct.)

In both examples, 10.1 and 10.2, the values F (V ) are contractible for collar
neighborhoods V of ∂M . For general F , this may not be the case.

The definition of a polynomial cofunctor of some degree ≤ k is again literally
the same as before (2.2); we must insist that the closed subsets A0, . . . Ak of
V ∈ O have empty intersection with ∂M , since otherwise F (V r ∪i∈SAi) is
not defined.

The definition of the full subcategory Ok is more complicated. An element
V ∈ O belongs to Ok if it is a union of two disjoint open subsets V1 and
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V2 , where V1 is a collar about ∂M (diffeomorphic to ∂M × [0, 1)) and V2 is
diffeomorphic to a disjoint union of ≤ k copies of Rm .

Later we will need a certain subcategory I(k) of Ok . An object of Ok belongs
to I(k) if it has exactly k components not meeting ∂M ; the morphisms in I(k)

are the inclusions which are isotopy equivalences.

As before, TkF can be defined as the homotopy right Kan extension along
Ok → O of F |Ok . It turns out to be polynomial of degree ≤ k , and it turns
out that ηk: F → TkF has the properties listed in 6.1.

If F (M) comes with a selected base point, then we can define LkF (V ) as the
homotopy fiber of TkF (V ) → Tk−1F (V ). The cofunctor LkF is homogeneous
of degree k (definition like 8.1).

A general procedure for making homogeneous cofunctors of degree k on O is as
follows. Notation: ι is the “delete boundary” command. Let p: Z →

(
ιM
k

)
be

a fibration. Suppose that it has a distinguished partial section defined near K ,
where K consists of all the points in the symmetric product spkM having at
least two identical coordinates, or having at least one coordinate in ∂M . For V
in O let E(V ) be the Space of (partial) sections of p defined over

(
ιV
k

)
which

agree with the distinguished (zero) section near K . Then E is homogeneous
of degree k .

There is a classification theorem for homogeneous cofunctors of degree k on O ,
to the effect that up to equivalence they can all be obtained in the way just
described. The classifying fibration p for a homogeneous E of degree k can
be found/recovered as follows. Suppose that S ⊂ ιM has k elements. Choose
V ∈ Ok so that V contains S ∪ ∂M as a deformation retract. For R ⊂ S , let
VR be the union of the components of V which meet ∂M ∪ R . Let Φ(V ) be
the total homotopy fiber of the k–cube

R 7→ F (VR) .

Then Φ(V ) ' p−1(S). If more detailed information is needed, one has to resort
to quasifibrations: the rule V 7→ Φ(V ) can be regarded as a cofunctor on I(k)

and it gives rise to a quasifibration on |I(k)| '
(
ιM
k

)
. The associated fibration

is p.

10.3 Example In the situation of 10.1, the classifying fibration pk for LkF
has p−1

k (S) equal to the total homotopy fiber of the k–cube

R 7→ emb(R, ιN)

for R ⊂ S , provided k ≥ 2. The case k = 0 is uninteresting (fiber contractible,
base a single point). The case k = 1 is different as usual; for s ∈ ιM , the
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fiber p−1
1 ({s}) is the space of linear monomorphisms TsM → T (ιN). All this

is exactly as in 9.2. For example, suppose that M is compact (with boundary).
Then LkF (M) is homotopy equivalent to the space of sections of pk with
compact support. In other words, we are dealing with sections defined on all of
the configuration space

(
ιM
k

)
and equal to the zero section outside a compact

set.
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