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In this paper, we will discuss an algebraic version of intersection numbers which
was introduced by Scott in [14]. First we need to discuss intersection numbers
in the topological setting. Let F denote a surface and let L and S each be a
properly immersed two-sided circle or compact arc in F . Here ‘properly’ means
that the boundary of the 1{manifold lies in the boundary of F . One can de�ne
the intersection number of L and S to be the least number of intersection points
obtainable by homotoping L and S transverse to each other. (The count is to
be made without any signs attached to the intersection points.) It is obvious
that this number is symmetric in the sense that it is independent of the order of
L and S . It is also obvious that L and S have intersection number zero if and
only if they can be properly homotoped to be disjoint. It seems natural to de�ne
the self-intersection number of an immersed two-sided circle or arc L in F to
be the least number of transverse intersection points obtainable by homotoping
L into general position. With this de�nition, L has self-intersection number
zero if and only if it is homotopic to an embedding. However, in light of later
generalisations, it turns out that this de�nition should be modi�ed a little in
order to ensure that the self-intersection number of any cover of a simple closed
curve is also zero. No modi�cation is needed unless L is a circle which can be
homotoped to cover another immersion with degree greater than 1. In this case,
suppose that the maximal degree of covering which can occur is k and that L
covers L0 with degree k . Then we de�ne the self-intersection number of L to
be k2 times the self-intersection number of L0 . With this modi�ed de�nition,
L has self-intersection number zero if and only if it can be homotoped to cover
an embedding.

In [7], Freedman, Hass and Scott introduced a notion of intersection number
and self-intersection number for two-sided �1{injective immersions of compact
surfaces into 3{manifolds which generalises the preceding ideas. Their inter-
section number cannot be described as simply as for curves on a surface, but it
does share some important properties. In particular, it is a non-negative integer
and it is symmetric, although this symmetry is not obvious from the de�nition.
Further, two surfaces have intersection number zero if and only if they can
be homotoped to be disjoint, and a single surface has self-intersection number
zero if and only if it can be homotoped to cover an embedding. These two
facts are no longer obvious consequences of the de�nition, but are non-trivial
applications of the theory of least area surfaces.

In [14], Scott extended the ideas of [7] to de�ne intersection numbers in a purely
group theoretic setting. The details will be discussed in the �rst section of this
paper, but we give an introduction to the ideas here. It seems clear that every-
thing discussed in the preceding two paragraphs should have a purely algebraic
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interpretation in terms of fundamental groups of surfaces and 3{manifolds, and
the aim is to �nd an interpretation which makes sense for any group. It seems
natural to attempt to de�ne the intersection number of two subgroups H and
K of a given group G. This is exactly what the topological intersection number
of simple closed curves on a surface does when G is the fundamental group of a
closed orientable surface and we restrict attention to in�nite cyclic subgroups H
and K . However, if one considers two simple arcs on a surface F with bound-
ary, they each carry the trivial subgroup of G = �1(F ), whereas we know that
some arcs have intersection number zero and others do not. Thus intersection
numbers are not determined simply by the groups involved. We need to look
a little deeper in order to formulate the algebraic analogue. First we need to
think a bit more about curves on surfaces. Let L be a simple arc or closed curve
on an orientable surface F , let G denote �1(F ) and let H denote the image of
�1(L) in G. If L separates F then, in most cases, it gives G the structure of
an amalgamated free product A �H B , and if L is non-separating, it gives G
the structure of a HNN extension A�H . In order to avoid discussing which of
these two structures G has, it is convenient to say that a group G splits over a
subgroup H if G is isomorphic to A�H or to A �H B , with A 6= H 6= B . (Note
that the condition that A 6= H 6= B is needed as otherwise any group G would
split over any subgroup H . For one can always write G = G �H H .) Thus, in
most cases, L determines a splitting of G = �1(F ). Usually one ignores base
points, so that the splitting of G is only determined up to conjugacy. In [14],
Scott de�ned the intersection number of two splittings of any group G over any
subgroups H and K . In the special case when G is the fundamental group of a
compact surface F and these splittings arise from embedded arcs or circles on
F , the algebraic intersection number of the splittings equals the topological in-
tersection number of the corresponding 1{manifolds. The analogous statement
holds when G is the fundamental group of a compact 3{manifold and these
splittings arise from �1{injective embedded surfaces. In general, the algebraic
intersection number shares some properties of the topological intersection num-
ber. Algebraic intersection numbers are symmetric, and if G, H and K are
�nitely generated, the intersection number of splittings of G over H and over
K is a non-negative integer.

The �rst main result of this paper is a generalisation to the algebraic setting
of the fact that two simple arcs or closed curves on a surface have intersection
number zero if and only if they can be isotoped apart. Of course, the idea
of isotopy makes no sense in the algebraic setting, so we need some algebraic
language to describe multiple disjoint curves on a surface. Let L1; : : : ; Ln be
disjoint simple arcs or closed curves on a compact orientable surface F with
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fundamental group G, such that each Li determines a splitting of G. Together
they determine a graph of groups structure on G with n edges. We say that a
collection of n splittings of a group G is compatible if G can be expressed as
the fundamental group of a graph of groups with n edges, such that, for each
i, collapsing all edges but the i-th yields the i-th splitting of G: We will say
that the splittings are compatible up to conjugacy if collapsing all edges but
the i-th yields a splitting of G which is conjugate to the i-th given splitting.
Clearly disjoint essential simple arcs or closed curves on F de�ne splittings of
G which are compatible up to conjugacy. The precise statement we obtain is
the following.

Theorem 2.5 Let G be a �nitely generated group with n splittings over
�nitely generated subgroups. This collection of splittings is compatible up to
conjugacy if and only if each pair of splittings has intersection number zero.
Further, in this situation, the graph of groups structure on G obtained from
these splittings has a unique underlying graph, and the edge and vertex groups
are unique up to conjugacy.

So far, we have not discussed any algebraic analogue of non-embedded arcs or
circles on surfaces. There is such an analogue which is the idea of an almost
invariant subset of the quotient HnG, where H is a subgroup of G. This
generalises the idea of an immersed curve in a surface or of an immersed �1{
injective surface in a 3{manifold which carries the subgroup H of G. We give
the de�nitions in section 1. There is also an idea of intersection number of such
things, which we give in De�nition 1.3. This too was introduced by Scott in
[14]. Our second main result, Theorem 2.8, is an algebraic analogue of the fact
that a singular curve on a surface or a singular surface in a 3{manifold which
has self-intersection number zero can be homotoped to cover an embedding.
It asserts that if HnG has an almost invariant subset with self-intersection
number zero, then G has a splitting over a subgroup H 0 commensurable with
H . We leave the precise statement until section 2.

In a separate paper [17], we use the ideas about intersection numbers of split-
tings developed in [14] and in this paper to study JSJ decompositions of Haken
3{manifolds. The problem there is to recognize which splittings of the funda-
mental group of such a manifold arise from the JSJ decomposition (see [10]
and [11]). It turns out that a class of splittings which we call canonical can
be de�ned using intersection numbers and we use this to show that the JSJ
decomposition for Haken 3{manifolds depends only on the fundamental group.
This leads to an algebraic proof of Johannson’ Deformation Theorem. It seems
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very likely that similar ideas apply to Sela’s JSJ decompositions [18] of hy-
perbolic groups and thus provide a common thread to the two types of JSJ
decomposition. Thus, the use of intersection numbers seems to provide a tool
in the study of diverse topics in group theory and this paper together with [14]
provides some of the foundational material.

This paper is organised as follows. In section 1, we recall from [14] the basic
de�nitions of intersection numbers in the algebraic context. We also prove a
technical result which was essentially proved by Scott [13] in 1980. However,
Scott’s results were all formulated in the context of surfaces in 3{manifolds,
so we give a complete proof of the generalisation to the purely group theoretic
context. Section 2 is devoted to the proofs of our two main results discussed
above.

There is a second natural idea of intersection number, which we discuss in
section 3. We call it the strong intersection number. It is not symmetric
in general, but this is not a problem when one is considering self-intersection
numbers. We also discuss when the two kinds of intersection number are equal,
which then forces the strong intersection number to be symmetric. We use these
ideas to give a new approach to a result of Kropholler and Roller [8] on splittings
of Poincar�e duality groups. We also discuss applications of our ideas to prove a
special case of a conjecture of Kropholler and Roller [9] on splittings of groups
in general. We point out that these ideas lead to an alternative approach to the
algebraic Torus Theorem [5]. We end the section with a brief discussion of an
error in [14]. In section 3 of that paper, Scott gave an incorrect interpretation
of the intersection number of two splittings. His error was caused by confusing
the ideas of strong and ordinary intersection. However, the arguments in [14]
work to give a nice interpretation of the intersection number in the case when
it is equal to the strong intersection number. Without this condition, �nding
nice interpretations of the two intersection numbers is an open problem.

1 Preliminaries and statements of main results

We will start by recalling from [14] how to de�ne intersection numbers in the
algebraic setting. We will connect this with the natural topological idea of
intersection number already discussed in the introduction. Consider two simple
closed curves L and S on a closed orientable surface F . As in [6], it will be
convenient to assume that L and S are shortest geodesics in some Riemannian
metric on F so that they automatically intersect minimally. We will interpret
the intersection number of L and S in suitable covers of F , exactly as in [6]
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and [7]. Let G denote �1(F ), let H denote the in�nite cyclic subgroup of G
carried by L, and let FH denote the cover of F with fundamental group equal
to H . Then L lifts to FH and we denote its lift by L again. Let l denote the
pre-image of this lift in the universal cover eF of F . The full pre-image of L ineF consists of disjoint lines which we call L{lines, which are all translates of l
by the action of G. (Note that in this paper groups act on the left on covering
spaces.) Similarly, we de�ne K , FK , the line s and S{lines in eF . Now we
consider the images of the L{lines in FK . Each L{line has image in FK which
is a line or circle. Then we de�ne d(L;S) to be the number of images of L{lines
in FK which meet S . Similarly, we de�ne d(S;L) to be the number of images
of S{lines in FH which meet L. It is shown in [6], using the assumption that
L and S are shortest closed geodesics, that each L{line in FK crosses S at
most once, and similarly for S{lines in FH . It follows that d(L;S) and d(S;L)
are each equal to the number of points of L\ S , and so they are equal to each
other.

We need to take one further step in abstracting the idea of intersection number.
As the stabiliser of l is H , the L{lines naturally correspond to the cosets gH
of H in G. Hence the images of the L{lines in FK naturally correspond to
the double cosets KgH . Thus we can think of d(L;S) as the number of double
cosets KgH such that gl crosses s. This is the idea which we generalise to
de�ne intersection numbers in a purely algebraic setting.

First we need some terminology.

Two sets P and Q are almost equal if their symmetric di�erence P −Q[Q−P
is �nite. We write P a= Q:

If a group G acts on the right on a set Z , a subset P of Z is almost invariant
if Pg a= P for all g in G. An almost invariant subset P of Z is non-trivial if
P and its complement Z−P are both in�nite. The complement Z−P will be
denoted simply by P � , when Z is clear from the context

For �nitely generated groups, these ideas are closely connected with the theory
of ends of groups via the Cayley graph Γ of G with respect to some �nite
generating set of G. (Note that G acts on its Cayley graph on the left.) Using
Z2 as coe�cients, we can identify 0{cochains and 1{cochains on Γ with sets
of vertices or edges. A subset P of G represents a set of vertices of Γ which
we also denote by P , and it is a beautiful fact, due to Cohen [2], that P is
an almost invariant subset of G if and only if �P is �nite, where � is the
coboundary operator. Now Γ has more than one end if and only if there is an
in�nite subset P of G such that �P is �nite and P � is also in�nite. Thus Γ
has more than one end if and only if G contains a non-trivial almost invariant
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subset. If H is a subgroup of G, we let HnG denote the set of cosets Hg of H
in G, ie, the quotient of G by the left action of H . Of course, G will no longer
act on the left on this quotient, but it will still act on the right. Thus we also
have the idea of an almost invariant subset of HnG, and the graph HnΓ has
more than one end if and only if HnG contains a non-trivial almost invariant
subset. Now the number of ends e(G) of G is equal to the number of ends of
Γ, so it follows that e(G) > 1 if and only if G contains a non-trivial almost
invariant subset. Similarly, the number of ends e(G;H) of the pair (G;H)
equals the number of ends of HnΓ, so that e(G;H) > 1 if and only if HnG
contains a non-trivial almost invariant subset.

Now we return to the simple closed curves L and S on the surface F . Pick a
generating set for G which can be represented by a bouquet of circles embedded
in F . We will assume that the wedge point of the bouquet does not lie on L
or S . The pre-image of this bouquet in eF will be a copy of the Cayley graph
Γ of G with respect to the chosen generating set. The pre-image in FH of the
bouquet will be a copy of the graph HnΓ, the quotient of Γ by the action of
H on the left. Consider the closed curve L on FH . Let P denote the set of
all vertices of HnΓ which lie on one side of L. Then P has �nite coboundary,
as �P equals exactly the edges of HnΓ which cross L. Hence P is an almost
invariant subset of HnG. Let X denote the pre-image of P in Γ, so that X
equals the set of vertices of Γ which lie on one side of the line l . Now �nally
the connection between the earlier arguments and almost invariant sets can be
given. For we can decide whether the lines l and s cross by considering instead
the sets X and Y . The lines l and s together divide G into the four sets
X \Y , X�\Y , X \Y � and X�\Y � , where X � denotes G−X , and l crosses
s if and only if each of these four sets projects to an in�nite subset of KnG:
Now let G be a group with subgroups H and K , let P be a non-trivial almost
invariant subset of HnG and let Q be a non-trivial almost invariant subset of
KnG. We will de�ne the intersection number i(P;Q) of P and Q. First we
need to consider the analogues of the sets X and Y in the preceding paragraph,
and to say what it means for them to cross.

De�nition 1.1 If G is a group and H is a subgroup, then a subset X of
G is H -almost invariant if X is invariant under the left action of H , and
simultaneously HnX is an almost invariant subset of HnG. In addition, X is
a non-trivial H {almost invariant subset of G, if the quotient sets HnX and
HnX� are both in�nite.

Note that if H is trivial, then a H {almost invariant subset of G is the same
as an almost invariant subset of G.
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De�nition 1.2 Let X be a H {almost invariant subset of G and let Y be a
K{almost invariant subset of G. We will say that X crosses Y if each of the
four sets X \ Y , X� \ Y , X \ Y � and X� \ Y � projects to an in�nite subset
of KnG:

We will often write X(�) \ Y (�) instead of listing the four sets X \ Y , X� \ Y ,
X \ Y � and X� \ Y �:

If G is a group and H is a subgroup, then we will say that a subset W of G
is H {�nite if it is contained in the union of �nitely many left cosets Hg of H
in G, and we will say that two subsets V and W of G are H {almost equal if
their symmetric di�erence is H {�nite.

In this language, X crosses Y if each of the four sets X(�)\Y (�) is not K{�nite.

This de�nition of crossing is not symmetric, but it is shown in [14] that if G
is a �nitely generated group with subgroups H and K , and X is a non-trivial
H {almost invariant subset of G and Y is a non-trivial K{almost invariant
subset of G, then X crosses Y if and only if Y crosses X . If X and Y are
both trivial, then neither can cross the other, so the above symmetry result is
clear. However, this symmetry result fails if only one of X or Y is trivial. This
lack of symmetry will not concern us as we will only be interested in non-trivial
almost invariant sets.

Now we come to the de�nition of the intersection number of two almost invariant
sets.

De�nition 1.3 Let H and K be subgroups of a �nitely generated group G.
Let P denote a non-trivial almost invariant subset of HnG, let Q denote a
non-trivial almost invariant subset of KnG and let X and Y denote the pre-
images of P and Q respectively in G. Then the intersection number i(P;Q)
of P and Q equals the number of double cosets KgH such that gX crosses Y:

Remark 1.4 The following facts about the intersection number are proved in
[14].

(1) Intersection numbers are symmetric, ie i(P;Q) = i(Q;P ).

(2) i(P;Q) is �nite when G, H , and K are all �nitely generated.

(3) If P 0 is an almost invariant subset of HnG which is almost equal to P
or to P � and if Q0 is an almost invariant subset of KnG which is almost
equal to Q or to Q� , then i(P 0; Q0) = i(P;Q):
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We will often be interested in situations where X and Y do not cross each
other and neither do many of their translates. This means that one of the four
sets X(�) \ Y (�) is K{�nite, and similar statements hold for many translates
of X and Y . If U = uX and V = vY do not cross, then one of the four sets
U (�) \ V (�) is Kv{�nite, but probably not K{�nite. Thus one needs to keep
track of which translates of X and Y are being considered in order to have the
correct conjugate of K , when formulating the condition that U and V do not
cross. The following de�nition will be extremely convenient because it avoids
this problem, thus greatly simplifying the discussion at certain points.

De�nition 1.5 Let U be a H {almost invariant subset of G and let V be
a K{almost invariant subset of G. We will say that U \ V is small if it is
H {�nite.

Remark 1.6 As the terminology is not symmetric in U and V and makes no
reference to H or K , some justi�cation is required. If U is also H 0{almost
invariant for a subgroup H 0 of G, then H 0 must be commensurable with H .
Thus U \ V is H {�nite if and only if it is H 0{�nite. In addition, the fact that
crossing is symmetric tells us that U \V is H {�nite if and only if it is K{�nite.
This provides the needed justi�cation of our terminology.

Finally, the reader should be warned that this use of the word small has nothing
to do with the term small group which means a group with no subgroups which
are free of rank 2.

At this point we have the machinery needed to de�ne the intersection number
of two splittings. This de�nition depends on the fact, which we recall from
[14], that if a group G has a splitting over a subgroup H , there is a H {almost
invariant subset X of G associated to the splitting in a natural way. This is
entirely clear from the topological point of view as follows. If G = A �H B , let
N denote a space with fundamental group G constructed in the usual way as
the union of NA , NB and NH�I . If G = A�H , then N is constructed from NA

and NH � I only. Now let M denote the based cover of N with fundamental
group H , and denote the based lift of NH � I into M by NH � I . Then
X corresponds to choosing one side of NH � I in M . We now give a purely
algebraic description of this choice of X (see [15] for example). If G = A �H B ,
choose right transversals TA , TB of H in A, B , both of which contain the
identity element. (A right transversal for a subgroup H of a group G consists
of one representative element for each right coset gH of H in G:) Each element
of G can be expressed uniquely in the form a1b1a2:::anbnh with h 2 H , ai 2 TA ,
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bi 2 TB , where only h, a1 and bn are allowed to be trivial. Then X consists of
elements for which a1 is non-trivial. In the case of a HNN{extension A�H , let
�i , i = 1, 2, denote the two inclusions of H in A so that t−1�1(h)t = �2(h),
and choose right transversals Ti of �i(H) in A, both of which contain the
identity element. Each element of G can be expressed uniquely in the form
a1t

�1a2t
�2:::ant

�nan+1 where an+1 lies in A and, for 1 � i � n, �i = 1 or −1,
ai 2 T1 if �i = 1, ai 2 T2 if �i = −1 and moreover ai 6= 1 if �i−1 6= �i . In this
case, X consists of elements for which a1 is trivial and �1 = 1. In both cases,
the stabiliser of X under the left action of G is exactly H and, for every g 2 G,
at least one of the four sets X(�) \ gX(�) is empty. Note that this is equivalent
to asserting that one of the four inclusions X � gX , X � gX� , X� � gX ,
X� � gX� holds.

The following terminology will be useful.

De�nition 1.7 A collection E of subsets of G which are closed under comple-
mentation is called nested if for any pair U and V of sets in the collection, one
of the four sets U (�) \ V (�) is empty. If each element U of E is a HU {almost
invariant subset of G for some subgroup HU of G, we will say that E is almost
nested if for any pair U and V of sets in the collection, one of the four sets
U (�) \ V (�) is small.

The above discussion shows that the translates of X and X� under the left
action of G are nested.

Note that X is not uniquely determined by the splitting. In both cases, we made
choices of transversals, but it is easy to see that X is independent of the choice
of transversal. However, in the case when G = A�HB , we chose X to consist of
elements for which a1 is non-trivial whereas we could equally well have reversed
the roles of A and B . This would simply replace X by X�−H . Also either of
these sets could be replaced by its complement. We will use the term standard
almost invariant set for the images in HnG of any one of X , X [ H , X� ,
X� −H . In the case when G = A�H , reversing the roles of the two inclusion
maps of H into A also replaces X by X� −H . Again we have four standard
almost invariant sets which are the images in HnG of any one of X , X [H ,
X� , X� −H . There is a subtle point here. In the amalgamated free product
case, we use the obvious isomorphism between A �H B and B �H A. In the
HNN case, let us write A�H;i;j to denote the group < A; t : t−1i(h)t = j(h) >.
Then the correct isomorphism to use between A�H;i;j and A�H;j;i is not the
identity on A. Instead it sends t to t−1 and A to t−1At. In all cases, we have
four standard almost invariant subsets of HnG:
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De�nition 1.8 If a group G has splittings over subgroups H and K , and
if P and Q are standard almost invariant subsets of HnG and KnG respec-
tively associated to these splittings, then the intersection number of this pair
of splittings of G is the intersection number of P and Q:

Remark 1.9 As any two of the four standard almost invariant subsets of HnG
associated to a splitting of G over H are almost equal or almost complemen-
tary, Remark 1.4 tells us that this de�nition does not depend on the choice of
standard almost invariant subsets P and Q.

If X and Y denote the pre-images in G of P and Q respectively, and if we
conjugate the �rst splitting by a and the second by b, then X is replaced by
aXa−1 and Y is replaced by bY b−1 . Now Xg is H {almost equal to X and Y g
is K{almost equal to Y , because of the general fact that for any subset W of G
and any element g of G, the set Wg lies in a l{neighbourhood of W , where l
equals the length of g . This follows from the equations d(wg;w) = d(g; e) = l .
It follows that the intersection number of a pair of splittings is unchanged if we
replace them by conjugate splittings.

Now we can state two easy results about the case of zero intersection number.
Recall that if X is one of the standard H {almost invariant subsets of G de-
termined by a splitting of G over H , then the set of translates of X and X�

is nested. It follows at once that the self-intersection number of HnX is zero.
Also if two splittings of G over subgroups H and K are compatible, and if
X and Y denote corresponding standard H {almost and K{almost invariant
subsets of G, then the set of all translates of X , X� , Y , Y � is also nested, so
that the intersection number of the two splittings is zero. The next section is
devoted to proving converses to each of these statements.

Before going further, we need to say a little more about splittings. Recall from
the introduction that a group G is said to split over a subgroup H if G is
isomorphic to A�H or to A �H B , with A 6= H 6= B . We will need a precise
de�nition of a splitting. We will say that a splitting of G consists either of
proper subgroups A and B of G and a subgroup H of A \ B such that the
natural map A �H B ! G is an isomorphism, or it consists of a subgroup A of
G and subgroups H0 and H1 of A such that there is an element t of G which
conjugates H0 to H1 and the natural map A�H ! G is an isomorphism.

Recall also that a collection of n splittings of a group G is compatible if G can
be expressed as the fundamental group of a graph of groups with n edges, such
that, for each i, collapsing all edges but the i-th yields the i-th splitting of
G: We note that if a splitting of a group G over a subgroup H is compatible
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with a conjugate of itself by some element g of G, then g must lie in H . This
follows from a simple analysis of the possibilities. For example, if the splitting
G = A �H B is compatible with its conjugate by some g 2 G, then G is the
fundamental group of a graph of groups with two edges, which must be a tree,
such that collapsing one edge yields the �rst splitting and collapsing the other
yields its conjugate by g . This means that each of the two extreme vertex
groups of the tree must be one of A, Ag , B or Bg , and the same holds for the
subgroup of G generated by the two vertex groups of an edge. Now it is easy to
see that A � Ag and Bg � B , or the same inclusions hold with the roles of A
and B reversed. In either case it follows that g lies in H as claimed. The case
when G = A�H is slightly di�erent, but the conclusion is the same. This leads
us to the following idea of equivalence of two splittings. We will say that two
amalgamated free product splittings of G are equivalent, if they are obtained
from the same choice of subgroups A, B and H of G. This means that the
splittings A�HB and B �HA of G are equivalent. Similarly, a splitting A�H of
G is equivalent to the splitting obtained by interchanging the two subgroups H0

and H1 of A. Also we will say that any splitting of a group G over a subgroup
H is equivalent to any conjugate by some element of H . Then the equivalence
relation on all splittings of G which this generates is the idea of equivalence
which we will need. Stated in this language, we see that if two splittings are
compatible and conjugate, then they must be equivalent.

Note that two splittings of a group G are equivalent if and only if they are over
the same subgroup H , and they have exactly the same four standard almost
invariant sets.

Next we need to recall the connection between splittings of groups and actions
on trees. Bass{Serre theory, [19] or [20], tells us that if a group G splits over a
subgroup H , then G acts without inversions on a tree T , so that the quotient
is a graph with a single edge and the vertex stabilisers are conjugate to A or
B and the edge stabilisers are conjugate to H . In his important paper [3],
Dunwoody gave a method for constructing such a G{tree starting from the
subset X of G de�ned above. The crucial property of X which is needed for
the construction is the nestedness of the set of translates of X under the left
action of G. We recall Dunwoody’s result:

Theorem 1.10 Let E be a partially ordered set equipped with an involution
e! e, where e 6= e, such that the following conditions hold:

(1) If e, f 2 E and e � f , then f � e.

(2) If e, f 2 E , there are only �nitely many g 2 E such that e � g � f .
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(3) If e, f 2 E , at least one of the four relations e � f , e � f , e � f , e � f
holds.

(4) If e, f 2 E , one cannot have e � f and e � f:

Then there is an abstract tree T with edge set equal to E such that the order
relation which E induces on the edge set of T is equal to the order relation in
which e � f if and only if there is an oriented path in T which begins with e
and ends with f:

One applies this result to the set E = fgX; gX� : g 2 Gg with the partial
order given by inclusion and the involution by complementation. There is a
natural action of G on E and hence on the tree T . In most cases, G acts on
T without inversions and we can recover the original decomposition from this
action as follows. Let e denote the edge of T determined by X . Then X can
be described as the set fg : g 2 G; ge < e or ge < eg. If the action of G on T
has inversions, then the original splitting must have been an amalgamated free
product decomposition G = A �H B , with H of index 2 in A. In this case,
subdividing the edges of T yields a tree T1 on which G acts without inversions.
If e1 denotes the edge of T1 contained in e and containing the terminal vertex
of e, then X can be described as the set fg : g 2 G; ge1 < e1 or ge1 < e1g.

Now we will prove the following result. This implies part 2) of Remark 1.4. We
give the proof here because the proof in [14] is not complete, and we will need
to apply the methods of proof later in this paper.

Lemma 1.11 Let G be a �nitely generated group with �nitely generated sub-
groups H and K , a non-trivial H {almost invariant subset X and a non-trivial
K{almost invariant subset Y . Then fg 2 G : gX and Y are not nestedg
consists of a �nite number of double cosets KgH:

Proof Let Γ denote the Cayley graph of G with respect to some �nite gen-
erating set for G. Let P denote the almost invariant subset HnX of HnG
and let Q denote the almost invariant subset KnY of KnG. Recall from the
start of this section, that if we identify P with the 0{cochain on HnΓ whose
support is P , then P is an almost invariant subset of HnG if and only if �P
is �nite. Thus �P is a �nite collection of edges in HnΓ and similarly �Q is a
�nite collection of edges in KnΓ. Now let C denote a �nite connected subgraph
of HnΓ such that C contains �P and the natural map �1(C) ! H is onto,
and let E denote a �nite connected subgraph of KnΓ such that E contains
�Q and the natural map �1(E) ! K is onto. Thus the pre-image D of C in
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Γ is connected and contains �X , and the pre-image F of E in Γ is connected
and contains �Y: Let � denote a �nite subgraph of D which projects onto C ,
and let � denote a �nite subgraph of F which projects onto E . If gD meets
F , there must be elements h and k in H and K such that gh� meets k�.
Now fγ 2 G : γ� meets �g is �nite, as G acts freely on Γ. It follows that
fg 2 G : gD meets Fg consists of a �nite number of double cosets KgH:

The result would now be trivial if X and Y were each the vertex set of a
connected subgraph of Γ. As this need not be the case, we need to make a
careful argument as in the proof of Lemma 5.10 of [15]. Consider g in G such
that gD and F are disjoint. We will show that gX and Y are nested. As
D is connected, the vertex set of gD must lie entirely in Y or entirely in Y �:
Suppose that the vertex set of gD lies in Y . For a set S of vertices of Γ, let S
denote the maximal subgraph of Γ with vertex set equal to S . Each component
W of X and X� contains a vertex of D . Hence gW contains a vertex of gD
and so must meet Y . If gW also meets Y � , then it must meet F . But as F is
connected and disjoint from gD , it lies in a single component gW . It follows
that there is exactly one component gW of gX and gX� which meets Y � , so
that we must have gX � Y or gX� � Y . Similarly, if gD lies in Y � , we will
�nd that gX � Y � or gX� � Y � . It follows that in either case gX and Y are
nested as required.

In Theorem 2.2 of [13], Scott used Dunwoody’s theorem to prove a general
splitting result in the context of surfaces in 3{manifolds. We will use the ideas
in his proof a great deal. The following theorem is the natural generalisation
of his result to our more general context and will be needed in the proofs of
Theorems 2.5 and 2.8. The �rst part of the theorem directly corresponds to the
result proved in [13], and the second part is a simple generalisation which will
be needed later.

Theorem 1.12

(1) Let H be a �nitely generated subgroup of a �nitely generated group
G. Let X be a non-trivial H {almost invariant set in G such that E =
fgX; gX� : g 2 Gg is almost nested and if two of the four sets X(�) \
gX(�) are small, then at least one of them is empty. Then G splits
over the stabilizer H 0 of X and H 0 contains H as a subgroup of �nite
index. Further, one of the H 0{almost invariant sets Y determined by the
splitting is H {almost equal to X:

(2) Let H1; : : : ;Hk be �nitely generated subgroups of a �nitely generated
group G. Let Xi , 1 � i � k , be a non-trivial Hi{almost invariant set
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in G such that E = fgXi; gX
�
i : 1 � i � k; g 2 Gg is almost nested.

Suppose further that, for any pair of elements U and V of E , if two of
the four sets U (�) \ V (�) are small, then at least one of them is empty.
Then G can be expressed as the fundamental group of a graph of groups
whose i-th edge corresponds to a conjugate of a splitting of G over the
stabilizer H 0i of Xi , and H 0i contains Hi as a subgroup of �nite index.
Further, for each i, one of the H 0i{almost invariant sets determined by
the i-th splitting is Hi{almost equal to Xi .

Most of the arguments needed to prove this theorem are contained in the proof
of Theorem 2.2 of [13], but in the context of 3{manifolds. We will present
the proof of the �rst part of this theorem, and then briefly discuss the proof
of the second part. The idea in the �rst part is to de�ne a partial order on
E = fgX; gX� : g 2 Gg, which coincides with inclusion whenever possible. Let
U and V denote elements of E . If U \ V � is small, we want to de�ne U � V .
There is a di�culty, which is what to do if U and V are distinct but U\V � and
V \U� are both small. However, the assumption in the statement of Theorem
1.12 is that if two of the four sets U (�) \ V (�) are small, then one of them is
empty. Thus, as in [13], we de�ne U � V if and only if U \ V � is empty or the
only small set of the four. Note that if U � V then U � V . We will show that
this de�nition yields a partial order on E:

As usual, we let Γ denote the Cayley graph of G with respect to some �nite
generating set. The distance between two points of G is the usual one of
minimal edge path length. Our �rst step is the analogue of Lemma 2.3 of [13].

Lemma 1.13 U\V � is small if and only if it lies in a bounded neighbourhood
of each of U;U� , V , V �:

Proof As U and V are translates of X or X� , it su�ces to prove that gX\X�
is small if and only if it lies in a bounded neighbourhood of each of X , X� , gX ,
gX� . If gX \X� is small, it projects to a �nite subset of HnG which therefore
lies within a bounded neighbourhood of the image of �X . By lifting paths, we
see that each point of gX \ X� lies in a bounded neighbourhood of �X , and
hence lies in a bounded neighbourhood of X and X� . By reversing the roles
of gX and X� , we also see that gX \X� lies in a bounded neighbourhood of
each of gX and gX�:

For the converse, suppose that gX \ X� lies in a bounded neighbourhood of
each of X and X� . Then it must lie in a bounded neighbourhood of �X , so that
its image in HnG must lie in a bounded neighbourhood of the image of �X .
As this image is �nite, it follows that gX \X� must be small, as required.
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Now we can prove that our de�nition of � yields a partial order on E: Our
proof is essentially the same as in Lemma 2.4 of [13].

Lemma 1.14 If a relation � is de�ned on E by the condition that U � V if
and only if U \ V � is empty or the only small set of the four sets U (�) \ V (�) ,
then � is a partial order.

Proof We need to show that � is transitive and that if U � V and V � U
then U = V:

Suppose �rst that U � V and V � U . The �rst inequality implies that U \V �
is small and the second implies that V \ U� is small, so that two of the four
sets U (�) \ V (�) are small. The assumption of Theorem 1.12 implies that one
of these two sets must be empty. As U � V , our de�nition of � implies that
U \ V � is empty. Similarly, the fact that V � U tells us that V \U� is empty.
This implies that U = V as required.

To prove transitivity, let U , V and W be elements of E such that U � V �W .
We must show that U �W:
Our �rst step is to show that U \W � is small. As U \ V � and V \W � are
small, we let d1 be an upper bound for the distance of points of U \ V � from
V and let d2 be an upper bound for the distance of points of V \W � from
W . Let x be a point of U \W � . If x lies in V , then it lies in V \W � and
so has distance at most d2 from W . Otherwise, it must lie in U \ V � and so
have distance at most d1 from some point x0 of V . If x0 lies in W , then x
has distance at most d1 from W . Otherwise, x0 lies in V \W � and so has
distance at most d2 from W . In this case, x has distance at most d1 + d2 from
W . It follows that in all cases, x has distance at most d1 + d2 from W , so
that U \W � lies in a bounded neighbourhood of W as required. As U \W � is
contained in W � , it follows that it lies in bounded neighbourhoods of W and
W � , so that U \W � is small as required.

The de�nition of � now shows that U � W , except possibly when two of the
four sets U (�)\W (�) are small. The only possibility is that U�\W and U \W �
are both small. As one must be empty, either U �W or W � U . We conclude
that if U � V � W , then either U � W or W � U . Now we consider two
cases.

First suppose that U � V �W , so that either U �W or W � U . If W � U ,
then W � V , so that W � V . As V � W and W � V , it follows from the
�rst paragraph of the proof of this lemma that V = W . Hence, in either case,
U �W:
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Now consider the general situation when U � V �W . Again either U �W or
W � U . If W � U , then we have W � U � V . Now the preceding paragraph
implies that W � V . Hence we again have V � W and W � V so that
V = W . Hence U �W still holds. This completes the proof of the lemma.

Next we need to verify that the set E with the partial order which we have
de�ned satis�es all the hypotheses of Dunwoody’s Theorem 1.10.

Lemma 1.15 E together with � satis�es the following conditions.

(1) If U , V 2 E and U � V , then V � � U� .
(2) If U , V 2 E , there are only �nitely many Z 2 E such that U � Z � V .

(3) If U , V 2 E , at least one of the four relations U � V , U � V � , U� � V ,
U� � V � holds.

(4) If U , V 2 E , one cannot have U � V and U � V �:

Proof Conditions (1) and (3) are obvious from the de�nition of � and the
hypotheses of Theorem 1.12.

To prove (4), we observe that if U � V and U � V � , then U \ V � and U \ V
must both be small. This implies that U itself is small, so that X or X� must
be small. But this contradicts the hypothesis that X is a non-trivial H {almost
invariant subset of G:

Finally we prove condition (2). Let Z = gX be an element of E such that
Z � X . Recall that, as Z \X� projects to a �nite subset of HnG, we know
that Z \X� lies in a d{neighbourhood of X , for some d > 0. If Z � X but
Z is not contained in X , then Z and X are not nested. Now Lemma 1.11
tells us that if Z is such a set, then g belongs to one of only �nitely many
double cosets HkH . It follows that if we consider all elements Z of E such
that Z � X , we will �nd either Z � X , or Z \X� lies in a d{neighbourhood
of X , for �nitely many di�erent values of d: Hence there is d1 > 0 such that if
Z � X then Z lies in the d1 {neighbourhood of X . Similarly, there is d2 > 0
such that if Z � X� , then Z lies in the d2{neighbourhood of X�: Let d denote
the larger of d1 and d2 . Then for any elements U and V of E with U � V ,
the set U \ V � lies in the d{neighbourhood of each of U , U� , V and V �:

Now suppose we are given U � V and wish to prove condition (2). Choose a
point u in U whose distance from U� is greater than d, choose a point v in V �

whose distance from V is greater than d and choose a path L in Γ joining u
to v . If U � Z � V , then u must lie in Z and v must lie in Z� so that L must
meet �Z . As L is compact, the proof of Lemma 1.11 shows that the number
of such Z is �nite. This completes the proof of part 2) of the lemma.
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We are now in a position to prove Theorem 1.12.

Proof To prove the �rst part, we let E denote the set of all translates of X
and X� by elements of G, let U ! U� be the involution on E and let the
relation � be de�ned on E by the condition that U � V if U \V � is empty or
the only small set of the four sets U (�)\V (�) . Lemmas 1.14 and 1.15 show that
� is a partial order on E and satis�es all of Dunwoody’s conditions (1){(4).
Hence we can construct a tree T from E . As G acts on E , we have a natural
action of G on T: Clearly, G acts transitively on the edges of T . If G acts
without inversions, then GnT has a single edge and gives G the structure of an
amalgamated free product or HNN decomposition. The stabiliser of the edge
of T which corresponds to X is the stabiliser H 0 of X , so we obtain a splitting
of G over H 0 unless G �xes a vertex of T . Note that as Hn�X is �nite, and
H 0 preserves �X , it follows that H 0 contains H with �nite index as claimed in
the theorem. If G acts on T with inversions, we simply subdivide each edge
to obtain a new tree T 0 on which G acts without inversions. In this case, the
quotient GnT 0 again has one edge, but it has distinct vertices. The edge group
is H 0 and one of the vertex groups contains H 0 with index two. As H has
in�nite index in G, it follows that in this case also we obtain a splitting of G
unless G �xes a vertex of T:

Suppose that G �xes a vertex v of T . As G acts transitively on the edges of T ,
every edge of T must have one vertex at v , so that all edges of T are adjacent
to each other. We will show that this cannot occur. The key hypothesis here
is that X is non-trivial.

Let W denote fg : gX � X or gX� � Xg, and note that condition 3) of
Lemma 1.15 shows that W � = fg : gX � X� or gX� � X�g. Recall that
there is d1 > 0 such that if Z � X then Z lies in the d1 {neighbourhood
of X . If d denotes d1 + 1, and g 2 W , it follows that g�X lies in the d{
neighbourhood of X . Let c denote the distance of the identity of G from �X .
Then g must lie within the (c + d){neighbourhood of X , for all g 2 W , so
that W itself lies in the (c+ d){neighbourhood of X . Similarly, W � lies in the
(c+ d){neighbourhood of X� . Now both X and X� project to in�nite subsets
of HnG, so G cannot equal W or W �: It follows that there are elements U and
V of E such that U < X < V , so that U and V represent non-adjacent edges
of T . This completes the proof that G cannot �x a vertex of T:

To prove the last statement of the �rst part of Theorem 1.12, we will simplify
notation by supposing that the stabiliser H 0 of X is equal to H . One of the
standard H {almost invariant sets associated to the splitting we have obtained
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from the action of G on the tree T is the set W in the preceding paragraph.
We will show that W is H {almost equal to X . The preceding paragraph
shows that W lies in the (c+ d){neighbourhood of X , and that W � lies in the
(c+ d){neighbourhood of X� . It follows that W is H {almost contained in X
and W � is H {almost contained in X� , so that W and X are H {almost equal
as claimed. This completes the proof of the �rst part of Theorem 1.12.

For the second part, we will simply comment on the modi�cations needed to
the preceding proof. The statement of Lemma 1.13 remains true though the
proof needs a little modi�cation. The statement and proof of Lemma 1.14 apply
unchanged. The statement of Lemma 1.15 remains true, though the proof needs
some minor modi�cations. Finally the proof of the �rst part of Theorem 1.12
applies with minor modi�cations to show that G acts on a tree T with quotient
consisting of k edges in the required way. This completes the proof of Theorem
1.12.

2 Zero intersection numbers

In this section, we prove our two main results about the case of zero intersection
number. First we will need the following little result.

Lemma 2.1 Let G be a �nitely generated group which splits over a subgroup
H . If the normaliser N of H in G has �nite index in G, then H is normal in
G:

Proof The given splitting of G over H corresponds to an action of G on a
tree T such that GnT has a single edge, and some edge of T has stabiliser H .
Let T 0 denote the �xed set of H , ie, the set of all points �xed by H . Then
T 0 is a (non-empty) subtree of T . As N normalises H , it must preserve T 0 ,
ie NT 0 = T 0 . Suppose that N 6= G. As N has �nite index in G, we let
e; g1; : : : ; gn denote a set of coset representatives for N in G, where n � 1. As
G acts transitively on T , we have T = T 0 [ g1T

0 [ : : : [ gnT 0 . Edges of T 0 all
have stabiliser H , and so edges of giT 0 all have stabiliser giHg−1

i . As gi does
not lie in N , these stabilisers are distinct so the intersection T 0 \ giT 0 contains
no edges. The intersection of two subtrees of a tree must be empty or a tree,
so it follows that T 0 \ giT 0 is empty or a single vertex vi , for each i. Now N
preserves T 0 and permutes the translates giT 0 , so N preserves the collection
of all the vi ’s. As this collection is �nite, N has a subgroup N1 of �nite index
such that N1 �xes a vertex v of T 0 . As N1 has �nite index in G, it follows
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that G itself �xes some vertex of T , which contradicts our assumption that our
action of G on T corresponds to a splitting of G. This contradiction shows
that N must equal G, so that H is normal in G as claimed.

Recall that if X is a H {almost invariant subset of G associated to a splitting
of G, then the set of translates of X and X� is nested. Equivalently, for every
g 2 G, one of the four sets X(�)\gX(�) is empty. We need to consider carefully
how it is possible for two of the four sets to be small, and a similar question
arises when one considers two splittings of G:

Lemma 2.2 Let G be a �nitely generated group with two splittings over
�nitely generated subgroups H and K with associated H {almost invariant
subset X of G and associated K{almost invariant subset Y of G:

(1) If two of the four sets X(�) \ Y (�) are small, then H = K:

(2) If two of the four sets X(�) \ gX(�) are small, then g normalises H:

Proof Our �rst step will be to show that H and K must be commensurable.
Without loss of generality, we can suppose that X \ Y is small. The other
small set can only be X� \ Y � , as otherwise X or Y would be small which is
impossible. It follows that for each edge of �Y , either it is also an edge of �X
or it has (at least) one end in one of the two small sets. As the images in HnΓ
of �X and of each small set is �nite, and as the graph Γ is locally �nite, it
follows that the image of �Y in HnΓ must be �nite. This implies that H \K
has �nite index in the stabiliser K of �Y . By reversing the roles of H and
K , it follows that H \ K has �nite index in H , so that H and K must be
commensurable, as claimed.

Now let L denote H \K , so that L stabilises both X and Y , and consider the
images P and Q of X and Y in LnΓ. As L has �nite index in H and K , it
follows that �P and �Q are each �nite, so that P and Q are almost invariant
subsets of LnG. Further, two of the four sets X(�) \ Y (�) have �nite image in
LnΓ, so we can assume that P and Q are almost equal, by replacing one of
X or Y by its complement in G, if needed. Let L0 denote the intersection of
the conjugates of L in H , so that L0 is normal in H , though it need not be
normal in K . We do not have L0 = H \K , but because L has �nite index in
H , we know that L0 has �nite index in H and hence also in K , which is all
we need. Let P 0 and Q0 denote the images of X and Y respectively in L0nΓ,
and consider the action of an element h of H on L0nΓ: Trivially hP 0 = P 0 .
As P 0 and Q0 are almost equal, hQ0 must be almost equal to Q0 . Now we use
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the key fact that Y is associated to a splitting of G so that its translates by G
are nested. Thus for any element g of G, one of the following four inclusions
holds: gY � Y , gY � Y � , gY � � Y , gY � � Y � . As hQ0 is almost equal to
Q0 , we must have hY � Y or hY � � Y �: But h has a power which lies in L
and hence stabilises Y . It follows that hY = Y , so that h lies in K . Thus H
is a subgroup of K: Similarly, K must be a subgroup of H , so that H = K .
This completes the proof of part 1 of the lemma. Note that it follows that
L = H = K , that HnX = P and KnY = Q and that P and Q are almost
equal or almost complementary.

In order to prove part 2 of the lemma, we apply the preceding work to the case
when the second splitting is obtained from the �rst by conjugating by some
element g of G. Thus K = gHg−1 and Y = gXg−1 which is K{almost equal
to gX by Remark 1.9. Hence if two of the four sets X(�) \ gX(�) are small,
then so are two of the four sets X(�) \ Y (�) small. Now the above shows that
H = K = gHg−1 , so that g normalises H . This completes the proof of the
lemma.

Lemma 2.3 Let G be a �nitely generated group with two splittings over
�nitely generated subgroups H and K with associated H {almost invariant
subset X of G and associated K{almost invariant subset Y of G. If two of
the four sets X(�) \ Y (�) are small, then the two splittings of G are conjugate.
Further one of the following holds:

(1) the two splittings are equivalent, or

(2) the two splittings are of the form G = L �H C , where H has index 2 in
L, and the splittings are conjugate by an element of L, or

(3) H is normal in G and HnG is isomorphic to Z or to Z2 � Z2:

Proof The preceding lemma showed that the hypotheses imply that H equals
K and also that the images P and Q of X and Y in HnG are almost equal
or almost complementary. By replacing one of X or Y by its complement if
needed, we can arrange that P and Q are almost equal. We will show that in
most cases, the two given splittings over H and K must be equivalent, and that
the exceptional cases can be analysed separately to show that the splittings are
conjugate.

Recall that by applying Theorem 1.10, we can use information about X and its
translates to construct a G{tree TX and hence the original splitting of G over
H . Similarly, we can use information about Y and its translates to construct
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a G{tree TY and hence the original splitting of G over K . We will compare
these two constructions in order to prove our result.

As P and Q are almost equal subsets of HnG, it follows that there is � � 0
such that, in the Cayley graph Γ of G, we have X lies in a �{neighbourhood of
Y and Y lies in a �{neighbourhood of X . Now let UX denote one of X or X� ,
let VX denote one of gX or gX� and let UY and VY denote the corresponding
sets obtained by replacing X with Y . Recall that UX \VX is small if and only
if its image in HnG is �nite. Clearly this occurs if and only if VX lies in a
�{neighbourhood of U�X , for some � � 0. It follows that UX \ VX is small if
and only if UY \ VY is small.

As X and Y are associated to splittings, we know that for each g 2 G, at
least one of the four sets X(�) \ gX(�) is empty and at least one of the four
sets Y (�) \ gY (�) is empty. Further the information about which of the four
sets is empty completely determines the trees TX and TY . Thus we would like
to show that when we compare the four sets X(�) \ gX(�) with the four sets
Y (�) \ gY (�) , then corresponding sets are empty. Note that when g lies in H ,
we have gX = X , so that two of the four sets X(�) \ gX(�) are empty.

First we consider the case when, for each g 2 G − H , only one of the sets
X(�) \ gX(�) is small and hence empty. Then only the corresponding one of
the four sets Y (�) \ gY (�) is small and hence empty. Now the correspondence
gX ! gY gives a G{isomorphism of TX with TY and thus the splittings are
equivalent.

Next we consider the case when two of the sets X(�) \ gX(�) are small, for
some g 2 G −H . Part 2 of Lemma 2.2 implies that g normalises H . Further
if R = HngX , then P is almost equal to R or R� . Let N(H) denote the
normaliser of H in G, so that N(H) acts on the left on the graph HnΓ and we
have R = gP . Let L denote the subgroup of N(H) consisting of elements k
such that kP is almost equal to P or P � . Now we apply Theorem 5.8 from [15]
to the action of HnL on the left on the graph HnΓ: This result tells us that if
HnL is in�nite, then it has an in�nite cyclic subgroup of �nite index. Further
the proof of this result in [15] shows that the quotient of HnΓ by HnL must be
�nite. This implies that HnΓ has two ends and that L has �nite index in G.
To summarise, either HnL is �nite, or it has two ends and L has �nite index
in G. Let k be an element of L whose image in HnL has �nite order such that
kP

a= P . As X is associated to a splitting of G, we must have kX � X or
X � kX . As k has �nite order in HnL, we have knX = X , for some positive
integer n, which implies that kX = X so that k itself lies in H . It follows that
the group HnL must be trivial, Z2 , Z or Z2 � Z2 . In the �rst case, the two
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trees TX and TY will be G{isomorphic, showing that the given splittings are
equivalent. In the other three cases, L − H is non-empty and we know that,
for any g 2 L−H , two of the four sets X(�) \ gX(�) are small. Thus in these
cases, it seems possible that TX and TY will not be G{isomorphic, so we need
some special arguments.

We start with the case when HnL is Z2 . In this case, the given splitting must
be an amalgamated free product of the form L �H C , for some group C . If k
denotes an element of L − H , then kP

a= P � . Thus G acts on TX and TY
with inversions. Recall that either the two partial orders on the translates of X
and Y are the same under the bijection gX ! gY , or they di�er only in that
kX� � X but Y � kY � , for all k 2 L−H . If they di�er, we replace the second
splitting by its conjugate by some element k 2 L−H , so that Y is replaced by
Y 0 = kY and we replace X by X 0 = X�: As Y 0 is H {almost equal to X 0 , the
partial orders on the translates of X 0 and Y 0 respectively are the same under the
bijection gX 0 ! gY 0 except possibly when one compares X 0 , kX 0 and Y 0 , kY 0 ,
where k 2 L−H: In this case, the inclusion kX� � X tells us that kX 0 � (X 0)� ,
and the inclusion Y � kY � tells us that kY 0 = k2Y = Y � kY � = (Y 0)� . We
conclude that the partial orders on the translates of X 0 and Y 0 respectively
are exactly the same, so that TX and TY are G{isomorphic, and the two given
splittings are conjugate by an element of L.

Now we turn to the two cases where HnL is in�nite, so that L has �nite index
in G and HnΓ has two ends. As L normalises H , Lemma 2.1 shows that H is
normal in G. As HnΓ has two ends, it follows that L = G, so that HnG is Z or
Z2 �Z2 . It is easy to check that there is only one splitting of Z over the trivial
group and that all splittings of Z2 � Z2 over the trivial group are conjugate.
It follows that, in either case, all splittings of G over H are conjugate. This
completes the proof of Lemma 2.3.

Lemma 2.4 Let G be a �nitely generated group with two splittings over
�nitely generated subgroups H and K with associated H {almost invariant
subset X of G and associated K{almost invariant subset Y of G. Let E =
fgX; gX� ; gY; gY � : g 2 Gg, and let U and V denote two elements of E such
that two of the four sets U (�) \ V (�) are small. Then either one of the two sets
is empty, or the two given splittings of G are conjugate.

Proof Recall that X is associated to a splitting of G over H . It follows that
gX is associated to the conjugate of this splitting by g . Thus U and V are
associated to splittings of G which are each conjugate to one of the two given
splittings. If U and V are each translates of X or X� , the nestedness of the
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translates of X shows that one of the two small sets must be empty as claimed.
Similarly if both are translates of Y or Y � , then one of the two small sets
must be empty. If U is a translate of X or X� and V is a translate of Y
or Y � , we apply Lemma 2.3 to show that the splittings to which U and V
are associated are conjugate. It follows that the two original splittings were
conjugate as required.

Now we come to the proof of our �rst main result.

Theorem 2.5 Let G be a �nitely generated group with n splittings over
�nitely generated subgroups. This collection of splittings is compatible up to
conjugacy if and only if each pair of splittings has intersection number zero.
Further, in this situation, the graph of groups structure on G obtained from
these splittings has a unique underlying graph, and the edge and vertex groups
are unique up to conjugacy.

Proof Let the n splittings si of G be over subgroups H1; :::;Hn with associ-
ated Hi{almost invariant subsets Xi of G, and let E = fgXi; gX

�
i : g 2 G; 1 �

i � ng. We will start by supposing that no two of the si ’s are conjugate. We
will handle the general case at the end of this proof.

We will apply the second part of Theorem 1.12 to E: Recall that our assumption
that the si ’s have intersection number zero implies that no translate of Xi can
cross any translate of Xj , for 1 � i 6= j � n. As each Xi is associated to a
splitting, it is also true that no translate of Xi can cross any translate of Xi .
This means that the set E is almost nested. In order to apply Theorem 1.12,
we will also need to show that for any pair of elements U and V of E , if two
of the four sets U (�) \V (�) are small then one is empty. Now Lemma 2.4 shows
that if two of these four sets are small, then either one is empty or there are
distinct i and j such that si and sj are conjugate. As we are assuming that
no two of these splittings are conjugate, it follows that if two of the four sets
U (�) \ V (�) are small then one is empty, as required.

Theorem 1.12 now implies that G can be expressed as the fundamental group
of a graph Γ of groups whose i-th edge corresponds to a conjugate of a splitting
of G over the stabilizer H 0i of Xi . As Xi is associated to a splitting of G over
Hi , its stabiliser H 0i must equal Hi . Further, it is clear from the construction
that collapsing all but the i-th edge of Γ yields a conjugate of si , as the
corresponding G{tree has edges which correspond precisely to the translates of
Xi:
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Now suppose that we have a graph of groups structure Γ0 for G such that,
for each i, 1 � i � n, collapsing all edges but the i-th yields a conjugate of
the splitting si of G. This determines an action of G on a tree T 0 without
inversions. We want to show that T and T 0 are G{isomorphic. For this implies
that Γ and Γ0 have the same underlying graph, and that corresponding edge
and vertex groups are conjugate, as required. Let e denote an edge of T 0 ,
and let Y (e) denote fg 2 G : ge < e or ge < eg. There are edges ei of
T 0 , 1 � i � n, such that the set E0 of all translates of Y (ei) and Y (ei)� is
nested and Dunwoody’s construction applied to E0 yields the G{tree T 0 again.
We will denote Y (ei) by Yi . The hypotheses imply that there is k 2 G such
that the stabiliser Ki of ei equals k−1Hik , and that Yi is Ki{almost equal
to k−1Xik , where Xi is one of the standard Hi{almost invariant subsets of
G associated to the splitting si . Let Zi denote kYi so that Zi is Hi{almost
equal to Xik . Now Remark 1.9 shows that Xik is Hi{almost equal to Xi , so
that Zi is Hi{almost equal to Xi . Now consider the G{equivariant bijection
E ! E0 determined by sending Xi to Zi . The above argument shows that if
U is any element of E , and U 0 is the corresponding element of E0 , then U and
U 0 are stab(U){almost equal. We will show that in most cases, this bijection
automatically preserves the partial orders on E and E0 , implying that T and
T 0 are G{isomorphic, as required. We compare the partial orders on E and E0

rather as in the proof of Lemma 2.3.

For any elements U and V of E , let U 0 and V 0 denote the corresponding
elements of E0 . Thus U \ V is small if and only if U 0 \ V 0 is small. We would
like to show that when we compare the four sets U (�) \ V (�) with the four sets
U 0(�) \ V 0(�) , then corresponding sets are empty, so that the partial orders are
preserved by our bijection. Otherwise, there must be U and V in E such that
two of the sets U (�) \ V (�) are small. If U and V are translates of Xi and
Xj , then Lemma 2.3 tells us that the splittings si and sj are conjugate. As we
are assuming that distinct splittings are not conjugate, it follows that i = j .
Now the arguments in the proof of Lemma 2.3 show that either the splitting
si is an amalgamated free product of the form L �H C , with jL : Hj = 2, or
H is normal in G and HnG is Z or Z2 � Z2 . If the second case occurs, then
there can be only one splitting in the given family, so it is immediate that
Γ and Γ0 have the same underlying graph, and that corresponding edge and
vertex groups are conjugate. If the �rst case occurs and the partial orders on
translates of Xi and Zi do not match, we must have lX�i � Xi but Zi � lZ�i ,
for all l 2 L −H . We now pick l 2 L −H and alter our bijection from E to
E0 so that Xi maps to Wi = lZ�i and extend G{equivariantly to the translates
of Xi and X�i . This ensures that the partial orders on E and E0 match for
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translates of Xi . By repeating this for other values of i as necessary, we can
arrange that the partial orders match completely, and can then conclude that
T and T 0 are G{isomorphic as required.

We end by discussing the case when some of the given n splittings are con-
jugate. We divide the splittings into conjugacy classes and discard all except
one splitting from each conjugacy class, to obtain k splittings. Now we apply
the preceding argument to express G uniquely as the fundamental group of a
graph Γ of groups with k edges. If an edge of Γ corresponds to a splitting over
a subgroup H which is conjugate to r−1 other splittings, we simply subdivide
this edge into r sub-edges, and label all the sub-edges and the r−1 new vertices
by H . This shows the existence of the required graph of groups structure Γ0

corresponding to the original n splittings. The uniqueness of Γ0 follows from
the uniqueness of Γ, and the fact that the collection of all the edges of Γ0 which
correspond to a given splitting of G must form an interval in Γ0 in which all the
interior vertices have valence 2. This completes the proof of Theorem 2.5.

Now we turn to the proof of Theorem 2.8 that splittings exist. It will be
convenient to make the following de�nitions. We will use Hg to denote gHg−1:

De�nition 2.6 If X is a H {almost invariant subset of G and Y is a K{
almost invariant subset of G, and if X and Y are H {almost equal, then we
will say that X and Y are equivalent and write X � Y . (Note that H and K
must be commensurable.)

De�nition 2.7 If H is a subgroup of a group G, the commensuriser in G of
H consists of those elements g in G such that H and Hg are commensurable
subgroups of G. The commensuriser is clearly a subgroup of G and is denoted
by CommG(H) or just Comm(H), when the group G is clear from the context.

Now we come to the proof of our second main result.

Theorem 2.8 Let G be a �nitely generated group with a �nitely generated
subgroup H , such that e(G;H) � 2. If there is a non-trivial H {almost invari-
ant subset X of G such that i(HnX;HnX) = 0, then G has a splitting over
some subgroup H 0 commensurable with H . Further, one of the H 0{almost
invariant sets Y determined by the splitting is equivalent to X:

Remark 2.9 This is the best possible result of this type, as it is clear that
one cannot expect to obtain a splitting over H itself. For example, suppose
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that H is carried by a proper power of a two-sided simple closed curve on
a closed surface whose fundamental group is G; so that e(G;H) = 2: There
are essentially only two non-trivial almost invariant subsets of HnG; each with
vanishing self-intersection number, but there is no splitting of G over H:

Proof The idea of the proof is much as before. We let P denote the almost
invariant subset HnX of HnG, and let E denote fgX; gX� : g 2 Gg. We
want to apply the �rst part of Theorem 1.12. As before, the assumption that
i(P;P ) = 0 implies that E is almost nested. However, in order to apply
Theorem 1.12, we also need to know that for any pair of elements U and V of
E , if two of the four sets U (�) \ V (�) are small then one is empty. In the proof
of Theorem 2.5, we simply applied Lemma 2.4. However, here the situation is
somewhat more complicated. Lemma 2.10 below shows that if X \ gX� and
gX\X� are both small, then g must lie in a certain subgroup K of CommG(H).
Thus it would su�ce to arrange that E is nested with respect to K , ie, that gX
and X are nested so long as g lies in K . Now Proposition 2.14 below tells us
that there is a subgroup H 0 commensurable with H and a H 0{almost invariant
set Y equivalent to X such that E0 = fgY; gY � : g 2 Gg is nested with respect
to K . It follows that if U and V are any elements of E0 and if U \ V � and
V \ U� are both small, then one of them is empty. We also claim that, like
E , the set E0 is almost nested. This means that if we let P 0 denote H 0nY ,
we are claiming that i(P 0; P 0) = 0. Let H 00 denote H \H 0 . The fact that Y
is equivalent to X means that the pre-images in H 00nG of P and of P 0 are
almost equal almost invariant sets which we denote by Q and Q0 . If d denotes
the index of H 0 in H , then i(Q;Q) = d2i(P;P ) = 0 and similarly i(Q0; Q0)
is an integral multiple of i(P 0; P 0). As Q and Q0 are almost equal, it follows
that i(Q0; Q0) = i(Q;Q), and hence that i(P 0; P 0) = 0 as claimed. This now
allows us to apply Theorem 1.12 to the set E0 . We conclude that G splits over
the stabiliser H 00 of Y , that H 00 contains H 0 with �nite index and that one
of the H 00{almost invariant sets associated to the splitting is equivalent to X 0 .
It follows that H 00 is commensurable with H and that one of the H 00{almost
invariant sets determined by the splitting is equivalent to X: This completes
the proof of Theorem 2.8 apart from the proofs of Lemma 2.10 and Proposition
2.14.

It remains to prove the two results we just used. The proofs do not use the
hypothesis that the set of all translates of X and X� are almost nested. Thus
for the rest of this section, we will consider the following general situation.

Let G be a �nitely generated group with a �nitely generated subgroup H such
that e(G;H) � 2, and let X denote a non-trivial H {almost invariant subset

Splittings of groups and intersection numbers

Geometry and Topology, Volume 4 (2000)

205



of G:

Recall that our problem in the proof of Theorem 2.8 is the possibility that two
of the four sets X(�) \ gX(�) are small. As this would imply that gX � X or
X� , it is clear that the subgroup K of G de�ned by K = fg 2 G : gX � X or
X�g is very relevant to our problem. We will consider this subgroup carefully.
Here is the �rst result we quoted in the proof of Theorem 2.8.

Lemma 2.10 If K = fg 2 G : gX � X or X�g, then H � K � CommG(H):

Proof The �rst inclusion is clear. The second is proved in essentially the same
way as the proof of the �rst part of Lemma 2.3. Let g be an element of K , and
consider the case when gX � X ( the other case is similar). Recall that this
means that the sets X \ gX� and X� \ gX are both small. Now for each edge
of �gX , either it is also an edge of �X or it has (at least) one end in one of
the two small sets. As the images in HnΓ of �X and of each small set is �nite,
and as the graph Γ is locally �nite, it follows that the image of �gX in HnΓ
must be �nite. This implies that H \Hg has �nite index in the stabiliser Hg

of �gX . By reversing the roles of X and gX , it follows that H \Hg has �nite
index in H , so that H and Hg must be commensurable, as claimed. It follows
that K � CommG(H), as required.

Another way of describing our di�culty in applying Theorem 1.12 is to say that
it is caused by the fact that the translates of X and X� may not be nested.
However, Lemma 1.11 assures us that \most" of the translates are nested. The
following result gives us a much stronger �niteness result.

Lemma 2.11 Let G, H , X , K be as above. Then fg 2 K : gX and X are
not nestedg consists of a �nite number of right cosets gH of H in G:

Proof Lemma 1.11 tells us that the given set is contained in the union of
a �nite number of double cosets HgH . If k 2 K , we claim that the double
coset HkH is itself the union of only �nitely many cosets gH , which proves
the required result. To prove our claim, recall that k−1Hk is commensurable
with H . Thus k−1Hk can be expressed as the union of cosets gi(k−1Hk \H),
for 1 � i � n: Hence

HkH = k(k−1Hk)H = k
(
[ni=1gi(k

−1Hk \H)
�
H = k ([ni=1giH) = [ni=1kgiH;

so that HkH is the union of �nitely many cosets gH as claimed.
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Now we come to the key result.

Lemma 2.12 Let G, H , X , K be as above. Then there are a �nite number of
�nite index subgroups H1; :::;Hm of H , such that K is contained in the union
of the groups N(Hi), 1 � i � m, where N(Hi) denotes the normaliser of Hi

in G:

Proof Consider an element g in K . Lemma 2.10 tells us that H and Hg are
commensurable subgroups of G. Let L denote their intersection and let L0

denote the intersection of the conjugates of L in H . Thus L0 is of �nite index
in H and Hg and is normal in H . Now consider the quotient L0nG. Let P
and Q denote the images of X and gX respectively in L0nG. As before, P
and Q are almost invariant subsets of L0nG which are almost equal or almost
complementary. Now consider the action of L0nH on the left on L0nG. If h
is in H , then hP = P , so that hQ a= Q: If h(gX) and gX are nested, there
are four possible inclusions, but the fact that hQ a= Q excludes two of them.
Thus we must have hQ � Q or Q � hQ. This implies that hQ = Q as some
power of h lies in L0 and so acts trivially on L0nG: We conclude that if h is
an element of H − L0 such that h(gX) and gX are nested, then h stabilises
gX and so lies in Hg . Hence h lies in L. It follows that for each element h of
H − L, the sets h(gX) and gX are not nested. Recall from Lemma 2.11 that
fg 2 K : gX and X are not nestedg consists of a �nite number of cosets gH
of H in G. It will be convenient to denote this number by d − 1. Thus, for
g 2 K , the set fh 2 K : h(gX) and gX are not nestedg consists of d− 1 cosets
hHg of Hg in G. It follows that H − L lies in the union of d− 1 cosets hHg

of Hg in G. As L = H \Hg , it follows that H − L lies in the union of d− 1
cosets hL of L in G and hence that L has index at most d in H:

A similar argument shows also that L has index at most d in Hg . Of course,
the same bound applies to the index of H \ Hgi in H , for each i. Now we
de�ne H 0 = \i2ZHgi : Clearly H 0 is a subgroup of H which is normalised
by g . Now each intersection H \ Hgi has index at most d in H , and so
H 0 = \i2Z

�
H \Hgi

�
is an intersection of subgroups of H of index at most d.

If H has n subgroups of index at most d, it follows that H 0 has index at most
dn in H . Hence each element of K normalises a subgroup of H of index at most
dn in H . As H has only �nitely many such subgroups, we have proved that
there are a �nite number of �nite index subgroups H1; :::;Hm of H , such that
K is contained in the union of the groups N(Hi), 1 � i � m, as required.

Using this result, we can prove the following.
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Lemma 2.13 Let G, H , X , K be as above. Then there is a subgroup H 0 of
�nite index in H , such that K normalises H 0:

Proof We will consider how K can intersect the normaliser of a subgroup of
�nite index in H . Let H1 denote a subgroup of H of �nite index. We denote
the image of X in H1nG by P . Then P is an almost invariant subset of H1nG.
We consider the group K \N(H1), which we will denote by K1 . Then H1nK1

acts on the left on H1nG, and we have kP
a= P or P � , for every element

k of H1nK1 , because every element of K satis�es kX � X or X� . Now we
apply Theorem 5.8 from [15] to the action of H1nK1 on the left on the graph
H1nΓ. This result tells us that if H1nK1 is in�nite, then it has an in�nite cyclic
subgroup of �nite index. Further the proof of this result in [15] shows that the
quotient of H1nΓ by H1nK1 must be �nite. This implies that H1nΓ has two
ends and that K1 has �nite index in G. Hence either H1nK1 is �nite, or it has
two ends and K1 has �nite index in G:

Recall that there are a �nite number of �nite index subgroups H1; :::;Hm of
H , such that K is contained in the union of the groups N(Hi), 1 � i � m.
The above discussion shows that, for each i, if Ki denotes K \ N(Hi), either
HinKi is �nite, or it has two ends and Ki has �nite index in G. We consider
two cases depending on whether or not every HinKi is �nite.

Suppose �rst that each HinKi is �nite. We claim that K contains H with
�nite index. To see this, let H 00 = \Hi , so that H 00 is a subgroup of H of �nite
index, and note that K is the union of a �nite collection of groups Ki each of
which contains H 00 with �nite index, so that K is the union of �nitely many
cosets of H 00 . It follows that K also contains H 00 with �nite index and hence
contains H with �nite index as claimed. If we let H 0 denote the intersection
of the conjugates of H in K , then H 0 is the required subgroup of H which is
normalised by K:

Now we turn to the case when H1nK1 is in�nite and so H1nK1 has two ends
and K1 has �nite index in G: De�ne H 0 to be \k2K (H1)k . As K contains
K1 with �nite index, H 0 is the intersection of only �nitely many conjugates
of H1 . As K is contained in Comm(H), each of these conjugates of H1 is
commensurable with H1 . It follows that H 0 is a subgroup of H of �nite index
in H which is normalised by K . This completes the proof of the lemma.

The key point here is that K normalises H 0 rather than just commensurises it.
Now we can prove the second result which we quoted in the proof of Theorem
2.8.
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Proposition 2.14 Suppose that (G;H) is a pair of �nitely generated groups
and that X is a non-trivial H {almost invariant subset of G. Then, there is
a subgroup H 0 of G which is commensurable with H , and a non-trivial H 0{
almost invariant set Y equivalent to X such that fgY; gY � : g 2 Gg is nested
with respect to the subgroup K = fg 2 G : gX � X or X�g of G.

Proof The previous lemma tells us that there is a subgroup H 0 of �nite index
in H such that K normalises H 0 . Let P denote the almost invariant subset
HnX of HnG, and let P 0 denote the almost invariant subset H 0nX of H 0nG:

Suppose that the index of H 0 in K is in�nite. Recall from the proof of the
preceding lemma that H 0nK has two ends and that K has �nite index in G.
We construct a new non-trivial H 00{almost invariant set Y as follows. Since
the quotient group H 0nK has two ends, K splits over a subgroup H 00 which
contains H 0 with �nite index. Thus there is a H

00
{almost invariant set X 00 in

K which is nested with respect to K . Further, H 00 is normal in K and the
quotient group must be isomorphic to Z or Z2 � Z2 . Let fg1 = e; g2; :::; gng be
coset representatives of K in G so that G = [iKgi . We take Y = [iX 00gi . It
is easy to check that Y is H 00{almost invariant and that fgY; gY � : g 2 Gg is
nested with respect to K:

Now suppose that the index of H 0 in K is �nite. We will de�ne the subgroup
K0 = fg 2 G : gX � Xg of K . The index of K0 in K is at most two.

First we consider the case when K = K0 . We de�ne P 00 to be the intersection
of the translates of P 0 under the action of H 0nK . Thus P 00 is invariant under
the action of H 0nK . As all the translates of P 0 by elements of H 0nK are almost
equal to P 0 , it follows that P 00 a= P 0 so that P 00 is also an almost invariant
subset of H 0nG. Let Y denote the inverse image of P 00 in G, so that Y is
invariant under the action of K . In particular, fgY; gY � : g 2 Gg is nested
with respect to K , as required.

Now we consider the general case when K 6= K0 . We can apply the above
arguments using K0 in place of K to obtain a subgroup H 00 of G and a H 00{
almost invariant subset Y of G which is equivalent to X , and whose translates
are nested with respect to K0 . We also know that Y is K0{invariant. Let
Q denote the image of Y in K0nG, let k denote an element of K − K0 and
consider the involution of K0nG induced by k . Then Q is a non-trivial almost
invariant subset of K0nG and kQ

a= Q� . De�ne R = Q− kQ, so that R a= Q
and let Z denote the pre-image of R in G. We claim that the translates
of Z and Z� are nested with respect to K . First we show that they are
nested with respect to K0 , by showing that Z = Y − kY is K0{invariant.
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For k0 2 K0 , we have k−1k0k 2 K0 as K0 must be normal in K . It follows
that k0kY = kY . As k0Y = Y , we see that Z is K0{invariant as required.
In order to show that the translates of Z and Z� are nested with respect to
K , we will also show that Z \ kZ is empty. This follows from the fact that
R\kR = (Q− kQ)\k (Q− kQ) = (Q− kQ)\(kQ−Q) which is clearly empty.

This completes the proof of Proposition 2.14.

3 Strong intersection numbers

Let G be a �nitely generated group and let H and K be subgroups of G. Let X
be a non-trivial H {almost invariant subset of G and let Y be a non-trivial K{
almost invariant subset of G: In section 1, we discussed what it means for X to
cross Y and the fact that this is symmetric. As mentioned in the introduction,
there is an alternative way to de�ne crossing of almost invariant sets. Recall
that, in section 1, we introduced our de�nition of crossing by discussing curves
on surfaces. Thus it seems natural to discuss the crossing of X and Y in terms
of their boundaries. We call this strong crossing. However, this leads to an
asymmetric intersection number. In this section, we de�ne strong crossing and
discuss its properties and some applications.

We consider the Cayley graph Γ of G with respect to a �nite system of genera-
tors. We will usually assume that H and K are �nitely generated though this
does not seem necessary for most of the de�nitions below. We will also think
of �X as a set of edges in Γ or as a set of points in G, where the set of points
will simply be the collection of endpoints of all the edges of �X:

De�nition 3.1 We say that Y crosses X strongly if both �Y \X and �Y \X�
project to in�nite sets in HnG.

Remark 3.2 This de�nition is independent of the choice of generators for G
which is used to de�ne Γ. Clearly, if Y crosses X strongly, then Y crosses X .

Strong crossing is not symmetric. For an example, one need only consider
an essential two-sided simple closed curve S on a compact surface F which
intersects a simple arc L transversely in a single point. Let G denote �1(F ),
and let H and K respectively denote the subgroups of G carried by S and
L, so that H is in�nite cyclic and K is trivial. Then S and L each de�ne a
splitting of G over H and K respectively. Let X and Y denote associated
standard H {almost invariant and K{almost invariant subsets of G. These

Peter Scott and Gadde A Swarup

Geometry and Topology, Volume 4 (2000)

210



correspond to submanifolds of the universal cover of F bounded respectively
by a line eS lying above S and by a compact interval eL lying above L, such
that eS meets eL transversely in a single point. Clearly, X crosses Y strongly
but Y does not cross X strongly.

However, a strong intersection number can be de�ned as before. It is usually
asymmetric, but we will be particularly interested in the case of self-intersection
numbers when this asymmetry will not arise.

De�nition 3.3 The strong intersection number si(HnX;KnY ) is de�ned to
be the number of double cosets KgH such that gX crosses Y strongly. In
particular, si(HnX;HnX) = 0 if and only if at least one of �gX \ X and
�gX \X� is H {�nite, for each g 2 G.

Remark 3.4 If s and t are splittings of a group G over subgroups H and K ,
with associated almost invariant subsets X and Y of G, it is natural to say
that s crosses t strongly if si(HnX;KnY ) 6= 0. It is easy to show that this is
equivalent to the idea introduced by Sela [18] that s is hyperbolic with respect
to t.

Remark 3.2 shows that si(HnX;HnX) � i(HnX;HnX). Recall that Theorem
2.8 shows that if i(HnX;HnX) = 0, then G splits over a subgroup H 0 com-
mensurable with H . Thus the vanishing of the strong self-intersection number
may be considered as a �rst obstruction to splitting G over some subgroup
related to H . We will show in Corollary 3.11 that the vanishing of the strong
self-intersection number has a nice algebraic formulation. This is that when
si(HnX;HnX) vanishes, we can �nd a subgroup K of G, commensurable with
H , and a K{almost invariant subset Y of G which is nested with respect to
CommG(H) = CommG(K). However, Y may be very di�erent from X . This
leads to some splitting results when we place further restrictions on H .

Proposition 3.5 Let G be a �nitely generated group with �nitely generated
subgroup H , and let X be a non-trivial H {almost invariant subset of G. Then
si(HnX;HnX) = 0 if and only if there is a subset Y of G which is H {almost
equal to X (and hence H {almost invariant) such that HYH = Y .

Proof Suppose that there exists a subset Y of G which is H {almost equal to
X , such that HYH = Y . We have

si(HnX;HnX) = si(HnY;HnY );
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as X and Y are H {almost equal. So, it is enough to show that for every g 2 G,
either g�Y \Y or g�Y \Y � is H {�nite. Suppose that g 2 Y . Consider �Y \Y
which is a union of a �nite number of right cosets Hgi , 1 � i � n. Since g 2 Y ,
gH � Y . For any h 2 H , d(gh; ghgi) = d(1; gi). Thus g�Y is at a bounded
distance from Y and hence g�Y \ Y � has �nite image in HnG. Similarly, if
g 2 Y � , g�Y \ Y projects to a �nite set in HnG.

For the converse, suppose that si(HnX;HnX) = 0 and let � denote the projec-
tion from G to HnG. By hypothesis, �(g�X)\ (HnX) or �(g�X)\ (HnX�) is
�nite. The proof of Lemma 1.15 tells us that there is a positive number d such
that, for every g 2 G, the set g�X is contained in a d{neighbourhood of X or
X� . Let V = N(X; d), the d{neighbourhood of X and let Y = fgjg(�X) � V g.
If g 2 Y and h 2 H , then hg�X � hV = V and thus HY = Y . If g 2 Y
and h 2 H , then gh(�X) = g(�X) � V and thus Y H = Y . It only remains
to show that Y is H {almost equal to X: This is essentially shown in the third
and fourth paragraphs of the proof of Theorem 1.12.

De�nition 3.6 We will say that a pair of �nitely generated groups (G;H) is
of surface type if e(G;H 0) = 2 for every subgroup H 0 of �nite index in H and
e(G;H 0) = 1 for every subgroup H 0 of in�nite index in H .

This terminology is suggested by the dichotomy in [16]. Note that for such
pairs any two non-trivial H {almost invariant sets in G are H {almost equal or
H {almost complementary. We will see that for pairs of surface type, strong
and ordinary intersection numbers are equal.

Proposition 3.7 Let (G;H) be a pair of surface type, let X be a non-trivial
H {almost invariant subset of G and let Y be a non-trivial K{almost invariant
subset of G for some subgroup K of G. Then Y crosses X if and only if Y
crosses X strongly.

Proof Let Γ be the Cayley graph of G with respect to a �nite system of
generators and let P = HnX . As in the proof of Lemma 1.11, for a set S
of vertices in a graph, we let S denote the maximal subgraph with vertex set
equal to S . We will show that exactly one component of X has in�nite image
in HnΓ. Note that P has exactly one in�nite component as HnΓ has only
two ends. Let Q denote the set of vertices of the in�nite component of P and
let W denote the inverse image of Q in G. If W has components with vertex
set Li , then we have [�(Li) = �W � �X . Let L denote the vertex set of a
component of W , and let HL be the stabilizer in H of L. Since �Q is �nite,
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we see that HLn�L is �nite. Hence HLnΓ has more than one end. Now our
hypothesis that (G;H) is of surface type implies that HL has �nite index in
H and thus HLn�W is �nite. If HL 6= H , we see that HLn�W divides HLnΓ
into at least three in�nite components. Thus HL = H and so W is connected.
The other components of X have �nite image in HnΓ. Similarly, exactly one
component of X� has in�nite image in HnΓ. The same argument shows that
for any �nite subset D of HnΓ containing �P , the two in�nite components of
((HnΓ) −D) \ P and((HnΓ)−D) \ P � have connected inverse images in Γ.

Recall that if Y crosses X strongly, then Y crosses X . We will next show
that if Y does not cross X strongly, then Y does not cross X . Suppose that
�Y \X projects to a �nite set in HnΓ. Take a compact set D in HnΓ large
enough to contain �Y \X and �P . By the argument above, if R is the in�nite
component of ((HnΓ) −D) \ P , then its inverse image Z is connected and is
contained in X . Any two points in Z can be connected by a path in Z and
thus the path does not intersect �Y . Thus Z is contained in Y or Y � . Hence
Z \ Y or Z \ Y � is empty. Suppose that Z \ Y is empty. Then Z� � Y .
Since Z� \ X projects to a �nite set, we see that Y \ X projects to a �nite
set. Similarly, if Z \Y � is empty, then Y � \X projects to a �nite set in HnG.
Thus, we have shown that if �Y \X projects to a �nite set, then either Y \X
or Y � \X projects to �nite set. Thus Y does not cross X .

From the above proposition and the fact that ordinary crossing is symmetric,
we deduce:

Corollary 3.8 If (G;H) and (G;K) are both of surface type and X is a non-
trivial H {almost invariant set in G, and Y is a non-trivial K{almost invariant
set in G then si(HnX;KnY ) = i(HnX;KnY ). In particular i(HnX;HnX) = 0
if and only if si(HnX;HnX) = 0.

Let K be a Poincar�e duality group of dimension (n−1) which is a subgroup of
a Poincar�e duality group G of dimension n. Thus the pair (G;K) is of surface
type. In [8], Kropholler and Roller de�ned an obstruction sing(K) to splitting
G over a subgroup commensurable with K . Their main result was that sing(K)
vanishes if and only if G splits over a subgroup commensurable with K . At
an early stage in their proof, they showed that sing(K) vanishes if and only if
there is a K{almost invariant subset Y of G such that KYK = Y . Starting
from this point, Proposition 3.5, the above Corollary and then Theorem 2.8
give an alternative proof of their splitting result. Thus Theorem 2.8 may be
considered as a generalization of their splitting theorem. We next reformulate
in our language a conjecture of Kropholler and Roller [9]:
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Conjecture 3.9 If G is a �nitely generated group with a �nitely generated
subgroup H , and if X is a non-trivial H {almost invariant subset of G such
that si(HnX;HnX) = 0, then G splits over a subgroup commensurable with
a subgroup of H .

Note that Theorem 2.8 has a stronger hypothesis than this conjecture, namely
the vanishing of the self-intersection number i(HnX;HnX), rather than the
vanishing of the strong self-intersection number, and it has a correspondingly
stronger conclusion, namely that G splits over a subgroup commensurable with
H itself. A key di�erence between the two statements is that, in the above con-
jecture, one does not expect the almost invariant set associated to the splitting
of G to be at all closely related to X . Dunwoody and Roller proved this
conjecture when H is virtually polycyclic [4], and Sageev [12] proved it for qua-
siconvex subgroups of hyperbolic groups. The paper of Dunwoody and Roller
[4] contains information useful in the general case. The second step in their
proof, which uses a theorem of Bergman [1], proves the following result, stated
in our language. (There is an exposition of Bergman’s argument and parts of
[4] in the later versions of [5].)

Theorem 3.10 Let (G;H) be a pair of �nitely generated groups, and let X
be a H {almost invariant subset of G. If si(HnX;HnX) = 0, then there is a
subgroup H 0 commensurable with H , and a non-trivial H 0{almost invariant
set Y with si(H 0nY;H 0nY ) = 0 such that the set fgY; gY � : g 2 Gg is almost
nested with respect to CommG(H) = CommG(H 0).

This combined with Proposition 2.14 gives:

Corollary 3.11 With the hypotheses of the above theorem we can choose H 0

and a non-trivial H 0{almost invariant set Y with si(H 0nY;H 0nY ) = 0 such that
fgY; gY � : g 2 Gg is almost nested with respect to CommG(H) and is nested
with respect to the subgroup K = fg 2 G : gX � X or X�g of CommG(H).

Now Theorem 1.12 yields the following generalization of Stallings’ Theorem [21]
already noted by Dunwoody and Roller [4]:

Theorem 3.12 If G, H are �nitely generated groups with e(G;H) > 1 and
if G commensurises H , then G splits over a subgroup commensurable with H .

Corollary 3.11 leads to the following partial solution of the above conjecture of
Kropholler and Roller:
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Theorem 3.13 If G, H are �nitely generated groups with e(G;H) > 1, if
e(G;K) = 1 for every subgroup K commensurable with a subgroup of in�-
nite index in H , and if X is a H {almost invariant subset of G such that
si(HnX;HnX) = 0, then G splits over a subgroup commensurable with H .

Proof Observe that Corollary 3.11 shows that, by changing H up to com-
mensurability, and changing X , we may assume that the translates of X
are almost nested with respect to CommG(H) and nested with respect to
K = fg 2 G : gX � X or X�g. If we do not have almost nesting for all trans-
lates of X , then there is g outside CommG(H) such that none of X(�) \ gX(�)

is H {�nite. In particular, none of these sets is (H \Hg){�nite. But these four
sets are each invariant under H \ Hg and the fact that the strong intersec-
tion number vanishes shows that at least one of them has boundary which is
(H \Hg){�nite. Since g is not in CommG(H), we have a contradiction to our
hypothesis that e(G;K) = 1 with K = H \Hg . This completes the proof.

We note another application of groups of surface type which provides an ap-
proach to the Algebraic Torus Theorem [5] similar to ours in [16]. We will omit
a complete discussion of this approach, but will prove the following proposition
to illustrate the ideas.

Proposition 3.14 If (G;H) is of surface type and if H has in�nite index
in CommG(H), then there is a subgroup H 0 of �nite index in H such that
the normalizer N(H 0) of H 0 is of �nite index in G and H 0nN(H 0) is virtually
in�nite cyclic. In particular, if H is virtually polycyclic, then G is virtually
polycyclic.

Proof Let X be a non-trivial H {almost invariant subset of G, let g be an
element of CommG(H) and let Y = gX , so that Y has stabiliser Hg . Let
H 0 denote the intersection H \ Hg which has �nite index in both H and in
Hg because g lies in CommG(H). Thus H 0nX and H 0nY are both almost
invariant subsets of H 0nG. As (G;H) is of surface type, the pair (G;H 0) has
two ends so that H 0nX and H 0nY are almost equal or almost complementary.
It follows that X is H {almost equal to Y or Y � , ie, gX � X or gX � X� .
Recall from Lemma 2.10, that if K denotes fg 2 G : gX � X or gX �
X�g, then K � CommG(H). It follows that in our present situation K must
equal CommG(H). By Lemma 2.12, we see that there are a �nite number of
subgroups H1; :::;Hm of �nite index in H such that K is contained in the union
of the normalizers N(Hi). As H has in�nite index in K = CommG(H), one
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of the Hi , say H1 , has in�nite index in its normalizer N(H1). As (G;H) is of
surface type, the pair (G;H1) has two ends, so we can apply Theorem 5.8 from
[15] to the action of H1nN(H1) on the left on the graph H1nΓ. This result tells
us that H1nN(H1) is virtually in�nite cyclic. Further the proof of this result
in [15] shows that the quotient of H1nΓ by H1nN(H1) must be �nite so that
N(H1) has �nite index in G.

The arguments of [16] can be extended to show:

Theorem 3.15 Let (G;H) be a pair of �nitely generated groups with H
virtually polycyclic and suppose that G does not split over a subgroup com-
mensurable with a subgroup of in�nite index in H . If for some subgroup K of
H , e(G;K) � 3, then G splits over a subgroup commensurable with H .

We end this section with an interpretation of intersection numbers in the case
when the strong and ordinary intersection numbers are equal. This corrects a
mistake in [14]. Suppose that a group G splits over subgroups H and K and let
the corresponding H {almost and K{almost invariant subsets of G be X and
Y . Let T denote the Bass{Serre tree corresponding to the splitting of G over
K and consider the action of H on T . Let T 0 denote the minimal H {invariant
subtree of T , and let Ψ denote the quotient graph HnT 0: Similarly, we get a
graph � by considering the action of K on the Bass{Serre tree corresponding
to the splitting of G over H . We have:

Theorem 3.16 With the above notation, suppose that
i(HnX;KnY ) = si(HnX;KnY ). Then the number of edges in Ψ is the same
as the number of edges in � and both are equal to si(HnX;KnY ).

Proof The proof of Theorem 3.1 of [14] goes through because of our assump-
tion that i(HnX;KnY ) = si(HnX;KnY ). The mistake in [14] occurs in the
proof of Lemma 3.6 of [14] where it is implicitly assumed that if X crosses Y ,
then it crosses Y strongly. Since we have assumed that the two intersection
numbers are equal, the argument is now valid.
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