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580 lvan Smith

1 Statements of results

The following section shall set the investigations of this paper into a wider
context, but we record the main results here for the convenience of the reader.
Recall from [24] that a symplectic four-manifold gives rise to a sequence of
spheres S§(;k 1 Wg(k) indexed by an integer k. The covering sequence of X is
the sequence of rational intersection numbers (Sﬁ Dy)k22z. Here D& Mok_1
is a rational multiple of the divisor of curves which are k{fold covers of P!, lifted
to Dy Vzk_l;h(k) and translated by a term . The precise de nition is
given in (3.3). Suppose that X is a symplectic manifold whose minimal model
is not rational or ruled.

(1.1) Theorem If the covering sequence of X is bounded above then 2c;(X)
= 0. It vanishes identically i 2c1(X) =0 = cy(X).

This is a disguised version of results of Taubes and others on the sign of Kx !
for most symplectic manifolds. The bulk of the proof involves showing that the
relevant Lefschetz pencils contain no reducible bres, which is a vanishing result
for certain intersection numbers of the sphere in moduli space.

(1.2) Corollory For any symplectic manifold X which is not rational ruled,
and pencils of high degree k on X, the sphere S§(;k meets all known e ective
divisors algebraically positively.

In this sense the spheres are \homologically rational”. The results for small
rather than asymptotically large degree k are more satisfactory.

(1.3) Theorem There is a symplectic genus three Lefschetz pencil which is
not holomorphic.

In fact the positive relation (4.9) lifts to the once marked mapping class group
and de nes such a pencil. This is the rst existence proof for symplectic non-
holomorphic pencils independent of Donaldson’s theorem. All previous (ex-
plicit) examples of symplectic non-Kahler Lefschetz brations arose from bre
sum operations and admitted no sections of square (—1). We do not establish
whether the total space is in fact Kahler; it is homeomorphic to a complex
surface of general type. Moreover we have:

(1.4) Theorem Only nitely many pairs (c2;c;) are realised by the total
spaces of genus two Lefschetz pencils.
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This is false for Lefschetz brations of genus two. It would be a non-trivial con-
sequence of the symplectic isotopy conjecture of Siebert and Tian, for which it
therefore adduces additional evidence. It remains a very interesting question to
investigate corresponding niteness statements for the geography of manifolds
with pencils of higher genus.

Acknowledgements Thanks to Denis Auroux for comments on an earlier
draft of this paper and to Terry Fuller for permission to reproduce one of
his examples. This material formed the basis of a talk at the 2000 Gokova
Conference on Geometry and Topology { | am grateful to the organisers and
participants for a very enjoyable conference. Special thanks to Justin Sawon
for help taming tortoises.

2 Introduction

A fundamental problem in four-dimensional topology is to establish the relation-
ship between arbitrary smooth four-manifolds and symplectic four-manifolds on
the one hand, and between symplectic four-manifolds and Kahler surfaces on
the other. To this end, the following questions are natural:

(2.1) Question (1) Given an almost complex four-manifold X and 2
H2(X;R) of positive square, does  contain symplectic forms inducing the
given almost complex structure?

(2) If the symplectic manifold X is homeomorphic to a Kahler surface, is the
symplectic form isotopic to a Kahler form?

(3) If X isKdhlerand C X is a symplectic submanifold realising a homology
class with smooth complex representatives, is C itself isotopic to a complex
curve?

Negative examples for each of these questions are known, largely following work
in gauge theory. However, until recently no other techniques had yielded com-
parable progress. (The appeal of insight from other arenas is clear, given the
continuing mystery of the analogous questions in higher dimensions.) In the
papers [5] and [22], Simon Donaldson and the author apply the machinery of
Lefschetz pencils on symplectic manifolds to construct symplectic submanifolds,
reproving some results of Taubes. In particular this leads again to negative ex-
amples for the rst question. This paper describes one unsuccessful attempt
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to use Lefschetz pencils to answer the second and third questions. Despite the
lack of success, we believe the methods are of interest.

The paper is essentially a sequel to [24] but to be self-contained we begin with
a few background notions.

(2.2) De nition A Lefschetz pencil f: X --» S? on a four-manifold X com-
prises a map f from the complement of nitely many points p; in X to the
two-sphere, with nitely many critical points g;, all in distinct bres, such that

(1) f islocally quadratic near all its critical points g;j : there are local complex
co-ordinates with respect to which the map takes the form (z1;z2) A z125;

(2) f is locally Hopf near all its base-points pj: there are local complex co-
ordinates with respect to which the map takes the form (z1;z;) B z1=25.

Moreover all the local complex co-ordinates must agree with xed global orien-
tations.

It follows that the four-manifold is symplectic (we will say more about the co-
homology class of the symplectic form below, cf 2.9). In projective geometry
the appearance of Lefschetz pencils is classical; a generic pencil of divisors on a
complex surface gives rise to such a structure, and blowing up the base-points
yields a \Lefschetz bration”. More recently the inspirational work of Don-
aldson [6] has extended the techniques and the descriptions to the symplectic
category:

(2.3) Theorem (Donaldson) Let (X;!) be an integral symplectic manifold
and let L denote the line bundle with rst Chern class [!].

(1) For k 0 there exist pairs (s1;s2) of approximately holomorphic sections
of L{&5uch that the map Xnfs; =s, =0g ¥ P! may be perturbed to
de ne a Lefschetz pencil.

(2) The bres of the pencil are symplectic submanifolds (away from the nite
set of critical points) representing the Poincare dual of K[1] in Ho(X; Z).

(3) Once k issu ciently large, the pencils obtained in this way are canonical
up to isotopy.

If we blow up the base-points p; of a pencil, the map f extends to the total
space and we obtain a Lefschetz bration. The generic bre of the bration is
a smooth two-manifold 4 of some xed genus g; in this paper g 2 unless
stated otherwise.
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(2.4) Remark On notation We will use the term \ bre" to refer to the gen-
eric hypersurface in a pencil, as well as the preimage of a point in a bration.
Note that we reserve the term \pencil” to refer to the four-manifold before
blowing up, and so the bres in a pencil have strictly positive square.

The topology of the four-manifold X is encoded in a positive relation; this
is aword h = j = 1i in positive Dehn twists in the mapping class group Iy
which determines the monodromy representation and the di eomorphism type
of the bration. Here ;j is the positive Dehn twist about some xed (isotopy
class of) embedded curve C; g, occasionally we shall use  for the curve
as well as the twist di eomorphism. Such curves are called vanishing cycles
and generate a subgroup V. < 1( ¢), which we always assume is non-empty.
The fundamental group of the four-manifold X is given by 1( ¢)=V. All of
our vanishing cycles C will be homotopically essential and hence the bres will
contain no spherical components. Given this, if we choose a metric on X the
smooth bres become Riemann surfaces and the critical bres stable Riemann
surfaces, and we induce a map ¢: S? ¥ My with image the Deligne{Mumford
moduli space of stable curves. Recall this moduli space is given by adjoining
certain divisors of stable curves ; (0 i [g=2]) to the moduli space of
smooth curves My. The ; form the irreducible components of a connected
divisor = [ j and the generic curve in ; has one component of genus i
and one of genus g — i if i > 0, and is irreducible if i = 0. The bration
being symplectic means that the sphere S§( has locally positive intersections
with the various divisors ; the restriction to nodal singularities means the
intersections are transverse. In this paper we shall refer to a bration f on X
giving rise to a sphere S§( and will suppress the choice of metric; changing the
metric changes the sphere by an isotopy which always preserves the geometric
intersection number with the ; (an \admissible isotopy'). All results depend
only on the admissible isotopy class of the sphere.

(2.5) Remark In [5] and [22], symplectic submanifolds are constructed by
studying the Gromov invariants of brations of symmetric products associ-
ated to a Lefschetz pencil. In [20] Gromov invariants for associated families of
moduli spaces of stable bundles are related to instantons on the four-manifold.
However, the spheres S2 ¥ My in this paper are not necessarily symplectic or
pseudoholomorphic. It remains an interesting question to study the quantum
cohomology of moduli spaces of curves.

The geometric classes j de ne elements of HZ(VQ; Z); there is an important
algebraic class which is not dual to any distinguished divisor. This is the Hodge
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class , which is the rst Chern class of the relative dualising sheaf of the
universal curve Cg ¥ My. Although the universal curve does not exist, the
Chern class makes sense. There are additional natural classes when we look
at moduli spaces of curves with (ordered) marked points. Let ; be the rst

record the following, which is due to Harer [10] and Arbarello{Cornalba [1]:

(2.6) Theorem (Harer, Arbarello{Cornalba) The classes ; with 0 i
[0=2] and rationally generate the second cohomology HZ(WQ;Q). For the
pointed moduli space, Hz(mg;h; Q) is rationally generated by the pullbacks of
these classes under the forgetful map and the classes ¥ ;j1 i1 hg.

The two descriptions of a four-manifold given by a positive relation and a sphere
in moduli space seem rather far from one another. Nonetheless, they may be
related, and we shall exploit the dual descriptions in investigating the conse-
quences of the following trivial result:

(2.7) Proposition If f: X ¥ S? gives rise to a sphere S> My and for some
e ective divisor D My not containing S? we have [S?] [D] < 0 then f is
not isotopic to a holomorphic bration.

This suggests a natural obstruction to the existence of Kahler forms isotopic to
given symplectic forms:

(2.8) Corollory Let (X; 1) be a symplectic manifold and suppose the Lef-
schetz pencils obtained from asymptotically holomorphic sections of L <give
spheres Sﬁ Wg(k). If for some sequence of divisors Dy Vg(k) we have that
Sz 6 Dk and [Sg] Dk < 0 then ! is not deformation equivalent to a Kahler

form on X.

Proof According to Donaldson [6] the pencils de ned by his construction from
approximately holomorphic sections are isotopic to the pencils provided by al-
gebraic geometry for kK 0. These pencils give rise to rational curves in moduli
space, which must meet positively all e ective divisors in which they are not
contained. Thus the assumptions indicate that the spheres de ned by the given
manifold X are not isotopic to rational curves. By the asymptotic uniqueness
in Donaldson’s theorem, this shows that the symplectic structure on X is not
in fact Kahler. O
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It is important to note that these obstructions might well be computable. Given
one explicit positive relation (with base-points) de ning a pencil, there is a sta-
bilisation process which obtains pencils of higher degree [3]. If the initial pencil
is obtained from approximately holomorphic sections, so are the later ones.
Moreover, there are familiar techniques for computing cohomology classes of
divisors in moduli space and hence the intersection numbers above, whilst the
condition that the sphere lies inside a particular divisor may have topological
consequences which can be checked independently. We shall use such an argu-
ment in the proof of (1.3) later in the paper. Nonetheless, our main observation
{ contained in the theorems (1.1) and (1.2) { amounts to the triviality of these
obstructions. In principle it remains possible that the obstructions could de-
tect symplectic manifolds with 2c; = 0 which were not Kahler, but this seems
implausible.

In the face of these results, we shall turn from studying the asymptotic intersec-
tion behaviours to concentrating on rather particular divisors at small genus;
in this framework we shall deduce the results (1.3) and (1.4). The rst instance
involves the hyperelliptic divisor inside the moduli space of genus three curves.
In particular, we show that in certain circumstances one can detect from a pos-
itive relation the non-holomorphicity of a bration, even when the total space
is homotopy Kahler. The niteness result will rely on working with pairs com-
prising a Lefschetz bration and a distinguished section, and with a certain
Weierstrass divisor in the moduli space of pointed genus two curves. We leave
the details until the relevant discussion in the paper. We do draw attention to
one general fact however. The rst constructions of symplectic structures on
manifolds with Lefschetz pencils involved blowing up to the Lefschetz bration,
and blowing down exceptional symplectic sections again. This led to an un-
fortunate asymmetry: Donaldson’s theorem (2.3) gives Lefschetz pencils whose

bres are dual to a given integral symplectic form, but given a Lefschetz pencil
there may be no symplectic form in the integral cohomology class which is dual
toa bre.

(2.9) Lemma There are smooth four-manifolds X with the topological struc-
ture of Lefschetz pencils for which the class P D[Fibre] 2 H2(X;Z) admits no
symplectic representative symplectic on the bres.

Proof Let X be a manifold with a pencil of curves with one base-point, and
for which some member of the pencil is a reducible curve. Such can be obtained
by blowing up all but one of the base-points on any pencil containing reducible
elements, for instance the pencil obtained by Matsumoto [14]. Suppose for con-
tradiction that there is a symplectic form in the class P D[Fibre] for which the
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smooth locus of each bre is a symplectic submanifold. Then each component
of a reducible bre has positive symplectic area, and hence since the symplec-
tic form is integral [1] [Fibre] 2. But we have assumed there is a unique
base-point. O

This is the only source of such pathologies: according to a recent theorem of
Gompf [9], if there are base-points on every component of every bre then there
is a symplectic form in the distinguished integral class. It follows that the non-
Kahler pencil that we construct will indeed determine a canonical isotopy class
and not deformation equivalence class of symplectic form on the four-manifold.

We note in closing that there is an analogue of the foundational (2.7) which
applies to branched coverings:

Suppose Ng ¥ My is a branched covering. Then a sphere S> My lifts
to the covering space Ny if and only if it meets the branch locus everywhere
tangentially.

There is an obvious topological constraint which must be satis ed if such tan-
gential intersections can arise: the intersection number between the sphere and
the branch divisor must be even. This leads to a circle of ideas somewhat similar
to that developed in this paper.

3 Asymptotic intersections

In this section we shall prove the result (1.1) and explain the shape of the
statement (1.2). There is a well-known conjecture on the geometry of the
moduli spaces Vg. Recall Harer’s theorem from above; the following is taken
from [11].

(3.1) Conjecture \Slope Conjecture"”, Harris{Morrison Let a — b o be
represented by an e ective divisor in My. The ratio a=b is minimised by
Brill{Noether divisors.

This special property of Brill{Noether divisors' motivates the de nition of a
particular symplectic invariant. By the adjunction formula, the pencils of even
degree 2k on any symplectic manifold give rise to families of curves of odd
genus. In these moduli spaces we have divisors D(lg+1):2 Vg comprising the

That is, divisors of curves which have a linear system they shouldn’t have.
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codimension one components of the closure in My of the locus of curves in Mg
which admit a g(lg+1):2. (Recall that a gf is a linear system of dimension r
and degree d.) Since a linear system of dimension one and degree d is just a
d{fold covering over P!, the hyperelliptic divisor is precisely DI  M3. For
even g there are analogous \Petri" divisors, but we will avoid the notational
complication they introduce.

(3.2) Theorem (Harris{fMumford) Let g be odd and k = (g + 1)=2. The
cohomology class of D& is given by

=2l
D = a(@+3) — 221 o= i@—D) 1)
i=0

Here cx = 3(2k — 4)!=(k!(k — 2)!) is positive and rational.

It shall be important for us to normalise the Brill{Noether divisors by dividing
by these rational constants cx. A Lefschetz pencil with h base-points gives rise
to a sphere in a moduli space Mg, of curves with h ordered marked points.
We need to keep track of the marked points in order to utilise all the geometry
of the system; we do this by translating the divisor Di when we lift to M.

(3.3) De nition Let (X;!) be an integral symplectic manifold. The cover-
ing sequence of (X; 1) is the sequence of intersection numbers ([Sﬁ] Dy)koon
between the spheres de ned by pencils of curves dual to k! on X and the
divisors
— 1 1 6(2 .
Dk = aDk — i
i=1

We set the intersection number to be zero by convention if there is no pencil of
curves in the relevant homology class, or if g = g(k) is not odd.

If two integral symplectic manifolds (X; ¥x) and (Y; !y) are symplectomor-
phic then it follows from the theorem of Donaldson (2.3) that their covering
sequences co-incide for su ciently large k. The values of the covering sequence
compare the numbers of exceptional (for instance hyperelliptic) bres in the
Lefschetz bration, normalised by the universal constants cy, with the number
of exceptional sections of the bration. This is quite a natural comparison: at
su ciently large k we know the pencils of approximately holomorphic sections
can be extended to nets (two dimensional linear systems) of sections [2]. A
net gives a branched cover of X over CP?, or equivalently a branched cover of

Geometry & Topology, Volume 5 (2001)



588 lvan Smith

the total space of a Lefschetz bration over the rst Hirzebruch surface F; in
which all the exceptional sections of the Lefschetz bration map to the unique
holomorphic section of square (—1) in F;. Hence for nets to exist, we know
that the bres of the Lefschetz pencil must admit branched coverings over P! of
the explicit degree given by the number of base-points. Thus we are comparing
this degree valid for all the bres to the minimal degree realised by some of
them.

To establish a link between four-manifolds and intersection numbers, we shall
need to understand the values of the generators of H? on a sphere [S?]. For the

i it is straightforward { we count the numbers of singular bres of di erent
kinds. The main result of [24] solves the problem for the Hodge class, which is
related to the signature of the associated Lefschetz bration:

>
(3:4) (X) =4h ;[Skli— h i;[Sli:

We have an easy lemma:

(3.5) Lemma Let X ¥ S? be a Lefschetz bration with a distinguished sec-
tion s. Then the value h ;[S%.Ji of 2 H?(Mg;;Z) on the associated sphere
is given by the self-intersection s s.

Lastly recall the adjunction formula; for a pencil of curves on X dual to k[!]
we have

(3:6) 290 —2 = Kx K[1]1+K?[1]%

From these pieces of information, and the result (3.2), we can now derive all
the values of the intersections S2 Dy from a combinatorial description of a
Lefschetz bration. However, the topological type of the manifold does not
su ce, largely because it is not clear how to determine the individual values

i rather than their sum. In fact, if i > 0 we can expect the value to be zero.
The motivation comes from complex geometry:

(3.7) Proposition Suppose the Kahler surface X has a Lefschetz pencil of
curves in a homology class [C]. If the pencil contains a reducible curve, then
either [C] is indivisible in H2(X;Z) or [C] = 2[D] with [D] indivisible and
[DJ? =1.

Proof Recall that the Hodge Index theorem asserts that the intersection form
on HY! has a unique positive eigenvalue for any Kzhler surface. In particular,
given any divisor D for which D? > 0 and a divisor D’ such that D D" =0
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we can deduce that either D’ =0 or D’ D’ < 0. We apply this in the following
way. First note, scaling k if necessary, we have in the notation of (3.9) that
(D1)? + (D,)? = k?[C] — 2 > 2, and we may assume without loss of generality
that (D1)? > 0. Now

D: (D1 —(D1)’D2) =0 D D; = (D1)’D, or (D;— (D1)’D,)? < 0:

The rst case gives an easy contradiction. If D; = (D1)?D, then D; D, =
(D1)?(D2)? = 1 which forces (D1)? = (D2)?> = 1 by integrality; but this is
impossible, since (D1)? + (D2)? > 2. So assume instead that the second case
holds, and expanding we nd that (D1)?[(D1)?(D2)> — 1] < 0 which gives
(D1)?(D,)? < 1, and hence (D,)*> 0 since the rst of the two terms is
assumed positive. Now since

kj(D2 [k!]) = Dp(D;1+Dy) = 1+ (Dy)?

we know that we cannot have (D)% = 0 as soon as k is not equal to 1. But
now we have a contradiction again: by assumption, each of the D; appeared as
complex curves in a pencil and hence has positive symplectic area. From which

k1] D2>0 ) 1+(Dy)*>0

which is absurd if also (D2)> —1. Thus as soon as k is large enough that
k?[C]? = 4 and k > 1, no Lefschetz pencil of curves in the class [C] on a K&hler
surface can contain reducible elements. O

There are analogues of this result for general symplectic pencils. With the
stabilisation procedure for pencils in mind, we shall concentrate on pencils
of even degree. Then there is a trivial argument for certain classes of four-
manifold, even without the Kahler assumption:

(3.8) Proposition Suppose the symplectic manifold X has even intersection
form, or that Kx is two-divisible in cohomology. Then a Lefschetz pencil dual
to 2k[C], for any k 2 Z+ and [C] 2 H,(X; Z), contains no reducible bres.

Proof To obtain a reducible curve in a pencil of curves dual to k[C] precisely
involves writing

(3:9) K[C]=D;1+ Dy 2H?(X;Z) where D; D=1

But this is impossible under the additional assumptions on X;k; for if D1 =
r[C]l+ and D, =(k—r)[C]— then

D1 D, = r(k—n)[CP+((k-2r[C] - 2%
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But if k is even and the intersection form is even, all three terms are divisible
by two and hence the LHS cannot equal 1. Using another trick, we see that
if Kx is even (ie, can be written as 2 for some cohomology class ) then by
adjunction (D1)? must be even:

Zng -2 = Kx Dl =+ (D1)2
but on the other hand, for even k, we have
D: (KIC]) = Dy (D1+Dp) = (Dy)?+1

forcing (D1)? to be odd, a contradiction. |

Nonetheless, to obtain the general case requires more work. The following can
be regarded as a symplectic shadow of the Hodge Index theorem. Note that it is
in fact a vanishing result; it implies that the intersection numbers [Sﬁ] i=
whenever k is large and even, and i > 0. A detailed algebraic treatment of
stabilisation is now available in [3].

(3.10) Theorem Every symplectic four-manifold admits Lefschetz pencils
composed of only irreducible curves. Indeed the pencils arising from the stabil-
isation k A 2k procedure always have this form.

Proof The central observation we need is due to Donaldson; it is easier to
pass from Lefschetz pencils representing k! to ones representing 2k! than to
ones representing (k + 1)I. Suppose then we have a symplectic four-manifold
X and a pencil of sections of a line bundle L with ci(L) = k! (normalised
appropriately). Let the pencil of sections fs; + s,g op1 be generated by two
smooth elements s1;s,. We consider the pencil of reducible nodal sections
fs{ + S1S20 opt. Thus we \add in" the zero-set of s; to each of the curves
in the original pencil. In complex geometry this would correspond to taking a
sphere P PHO(L) with image entirely contained in the discriminant locus of
singular curves. Such a sphere could be perturbed to have isolated transverse
intersections with the discriminant, corresponding to a deformation to the Lef-
schetz situation; the above remarks would then apply. We mimic this by (the

rst rather easy steps of) an analysis of the relevant deformation. Note that the
singular sections still satisfy the approximate holomorphicity and C{bounded
constraints of [6] for suitable constants, and it is transversality that we must
achieve.

Away from ( = 0) in the {plane, we have a family of nodal curves parametr-
ised by a disc. There is a small C2{deformation of this family, analogous to
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smoothing a single nodal curve into the self-connect sum of its normalisation.
Thus a perturbation of the form

f(st+ )+ (s1S2+ )Gjj jj+j

smooths each of the curves sf; s1S2 and for generic smoothing sections ;  will
give at least away from = 0 a Lefschetz family by the arguments of [6].
But by continuity we can see the critical members of this family: they arise
(again for large j j) in one-to-one correspondence with the critical bres of the
monodromy of the original pencil fs; + s,g on X.

It follows that the new monodromy near in nity in the {plane gives a copy
of the old monodromy in a model where we identify each original bre (s, =
constant) minus small discs with its image in a smoothed bre. The product
of the original Dehn twist monodromies is no longer the identity but equal to
a word in the (commuting) Dehn twists about the necks that link a copy of s,
with a copy of s1 once the nitely many nodal intersections are smoothed. Thus
we must determine an integer n; for each of these nodes, a@d the monodromy
about a large circle around 0 in the {plane is given by M where i runs
over the base-points of the original pencil. By symmetry each of the n; will be
equal, since this is a local question: we are taking a section of a line bundle
over P! with bre the tensor product of the tangent directions at the node.
(This can be identi ed with the normal bundle to the divisor of stable nodal
curves in the moduli space Wg .) Since the tangent direction at the xed curve
is constant, the line bundle is the normal bundle to the section de ned by
the base-point. Since the exceptional sections have normal bundle O(—1) we
deduce that nj = —1 8i.

The situation is now as depicted in Figure 1. The remaining critical bres in
the 2k{pencil come from deforming the multiple bre s = 0 to a smooth lo-
cus. This is again a local consideration and we can proceed in various ways. If
b.-(X) > 1 we can choose an integrable complex structure in any su ciently
small neighbourhood of the multiple bre. This involves identifying to di eo-
morphism the model with a neighbourhood of a multiple bre in a pencil of
singular curves on a Kahler surface { note that the local di eomorphism type
depends only on the genus of the curve and the number of base-points of the
original pencil. On the other hand, for the Kahler situation reducible curves of
Lefschetz type cannot occur for topological reasons, as described above. Thus
we need to know that there is always a Kahler model available. If the four-
manifold has by > 1 this follows from work of Taubes [27]: we know that the
number of base-points is bounded above by 2g — 2 (by the positivity of K I,
cf 5.4). But then take a genus g pencil on a holomorphic K3 surface; this
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THE -PLANE
Critical values of initial
monodromy (black dots)

Circle shows
Ji=ii+ii

Deform s% =0

Monodromy round
to be Lefschetz . —1
circle: [T i

Figure 1: Stabilisation viewed in the {plane

has 29 — 2 base-points, so blowing these up successively gives pencils of curves
with any strictly positive intermediate number of base-points. Moreover the
singular holomorphic pencils do have Lefschetz smoothings, by Riemann{Roch;
in any high dimensional linear system of curves with some smooth members,
the generic pencil is Lefschetz by Bertini’s theorem and complex Morse theory.
For large k we can assume that our divisors are very ample and smooth curves
do exist.

To avoid the Seiberg{Witten theory, or when b, = 1, we can study the local
degeneration directly. For instance, x a family of smooth curves with an
arbitrary number N of sections over a disc. Gluing on a copy of the central

bre along the sections gives a disc in a moduli space M g.n Which is contained
entirely in the stable locus. By projectivity of this stable divisor, there is some
complex curve in the stable locus which contains an isotopic copy of some
su ciently small sub-disc; then a holomorphic perturbation of this complex
curve will be transverse to the stable locus and will also give a model for the
relevant local degeneration. In another direction, we could model the k @ 2k
stabilisation by a perturbation

fs1+ sp0 opr ) f(siSs+ )+ (s2S3+ )g opi:

Here we obtain the section sz from Auroux’s construction of nets [2]. By
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uniqueness at large enough k, this pencil must be isotopic to that given by the
previous stabilisation, and the distinct local models imply that the smoothing
of the double bre yields no reducible vanishing cycles.

The proof is completed with a familiar trick. For the reducible bres in the orig-
inal pencil, both components are smooth symplectic submanifolds themselves.
It follows that for each component D; we have (1) D; > 0 which means that
there are base-points of the original pencil on both components. Once we add
in a copy of s; and smooth the nodes, this precisely means that the separating
vanishing cycles no longer separate the new generic bre. Thus the separating
vanishing cycles from the old monodromy become non-separating, and the sta-
bilisation is elsewhere modelled on a complex situation in which there are no
reducible curves. The theorem follows. O

It may be of independent interest to observe that there is a stabilisation proce-

dure in which the vanishing cycles at level k form a subset of a natural set of

vanishing cycles at level 2k. Note that we could not make sense of this without

considering the base-points of the pencil as well as the vanishing cycles of the
bration. We can now prove the rst theorem (1.1).

(3.11) Theorem Suppose that X is not rational or ruled. The covering se-
quence of X is bounded above only if 2¢;(3X) = 0, and vanishes identically i
2c1(X) = 0;¢c2(X) =0.

Proof We compute the intersection number [Sﬁ] Dy using the formulae (3.2,
3.4, 3.6) as well as the de nition (3.3) and the vanishing theorem (3.10). The
classes  evaluate, by the lemma (3.5), on any sphere arising from a pencil
to give —1, and hence we can compute the intersection with Di=cx and then
adjust by subtracting the number of base-points of the pencil. Of course this is
just k?12. The calculation gives

(7 D = OFDOT D v 883600 - ea0)) — 2ea(X):
Here I refers to the given integral symplectic form on X and not some multiple,
and we have substituted g = 2k — 1. This expression will grow positively as
0(g?) unless Kx ! 0. But we know from Seiberg{Witten theory [12], [15]
that Kx ! < 0 only if X is a rational or ruled surface, which we exclude by
assumption, and that Kx ! =0 only if 2Kx = 0. If by > 1 then we deduce

that Kx = 0 itself.

If Kx is a torsion class, then the intersection number is given by a negative
multiple of c,(>X) and hence the covering sequence is identically zero i this
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also vanishes. The last thing we need to know is that when Ky is torsion,
c2(X) 0 so that the sequence is necessarily bounded above in this case. But
if 2c2(X) = 0 and ¢, (X) & 0 then we know that b, (X) = 1, and then the
result follows since 0 = ¢ = 2c, + 3(1 —b-). (It is likely, but not proven in
general, that whenever c1(X) =0 then c,(X) 0; this would give \i " in the

rst statement of the Theorem.) O

The intersection formula above was twisted by subtracting the large number of
exceptional sections from the naive intersection [Sﬁ] [(1=ck)D&]). Given the
slope conjecture, we see that for Kx ! > 0 the intersection numbers of spheres
in moduli space with any e ective divisor grow unbounded to in nity. Indeed
this growth is quadratic with the degree k. This justi es the corollary (1.2),
and explains the failure of the obstructions (2.8) to distinguish symplectic and
Kahler structures in four dimensions.

(3.12) Remark If we have a Kahler surface with Kx ! < 0 then we have
shown that the spheres de ned by pencils of large enough degree will necessarily
be contained in all of the Brill{Noether divisors. This however is not so surpris-
ing. Recall that for g > 23 the moduli space Wg is known to be of general type
and not unirational (as the rst few moduli spaces are, when g  11). It follows
that through the general point of My there is no rational curve, and all the
spheres de ned by holomorphic brations lie inside distinguished subvarieties
of special curves (with no condition on K I of the underlying surface).

In [24] we proved that the symplectic area of the spheres S2 is positive for
any symplectic manifold X and pencils of any degree k. This follows from
the statement that the evaluation h ;[S?]i is strictly positive. In the light of
the above, it makes sense to ask if the principle (2.7) can ever be applied;
can any sphere meet any e ective divisor negatively? Certainly local negative
intersections must arise, for spheres which are not isotopic to rational curves,
but it is not clear that these can ever contribute su ciently to give a negative
algebraic intersection. In the next section we shall provide an explicit example
to show that (2.7) is not entirely vacuous.

4 Symplectic non-Kadhler Lefschetz pencils

Every Kahler surface admits a holomorphic Lefschetz pencil. Is every Lefschetz
pencil on a smooth four-manifold in fact holomorphic for some Kahler structure?
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The answer is clearly no, for Donaldson’s theorem (2.3) provides pencils on
manifolds not homotopy equivalent to complex surfaces. In this section we
provide a more down to earth answer. Exotic Lefschetz brations have been
constructed by bre summing known holomorphic brations by di eomorphisms
which twist the monodromy; examples appear in the author’s thesis [23]. These

brations are on manifolds which are not complex surfaces. Examples of non-
holomorphic brations on manifolds homeomorphic to complex surfaces were
given by Fintushel and Stern, who distinguished the total spaces from Ké&hler
surfaces using computations of Seiberg{Witten invariants [8]. Their examples
were again bre sums. We recall a theorem of Stipsicz [26]; a simpler proof is
given by the author in [21]:

(4.1) Theorem If a Lefschetz bration admits a section of square (—1) then
it cannot decompose as any non-trivial bre sum.

To build exotic Lefschetz pencils, we will use a variant of a bre s&n construc-
tion; instead of inserting a mapping class group word of tthorm Qi= 1 into
a monodromy word, we shall insert a more balanced word i= j for pos-
itive twists j; j. Thus the example has the satisfying side-e ect of marrying
the combinatorial and holomorphic descriptions of Lefschetz pencils.

(4.2) Example The mapping class group of a genus g surface can be gener-
ated by positive Dehn twists subject to relations supported in twice-holed tori
and four-punctured spheres [13]. In this presentation, only one \basic relation"
equates two non-trivial products of positive twists. Let 3o be a torus with
two boundary circles. Write 1; » for the positive twists about curves parallel
to the two boundary components (@ )j; there is a relation

(uvw)4: 12,

where  denotes the twist about the curve labelled U in Figure 2, etc.

Figure 2: Supporting curves for a basic relation in 1.2
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Write T for the operation on positive relations which replaces a string ( 1 2) by
the string ( y v w)*. An easy computation using Novikov additivity shows that
T has the following e ect on the topological invariants of the four-manifold:

A —6 eMe+10, 2 A c2+2

These formulae must be modi ed if either of the boundary curves in the inserted
copy of 1., bounds in the higher genus surface; for instance, the signature is
changed by eight and the Euler characteristic by twelve when bre summing
elliptic brations. Assuming we are in the generic situation, however, and for
pencils with no reducible elements, that is discounting the ; 1, we deduce

(4:3) [S?] (@ —b ) =¥ [S?] (@ —b )—(10b—a):

It follows that applying the operation T to a Lefschetz bration provides a
clean way of decreasing the intersection numbers with divisors. For if a > 11b
then in fact the divisor is ample and { in the vein of the remarks (3.12) { we are
unlikely to nd any topological consequence of an inclusion S> D. Thus we
are most likely to deal with divisors for which a  11b; when also a < 10b then
the mapping class group insertion T will not increase the algebraic intersection
with D. Moreover we have the following key lemma:

(4.4) Lemma Let thi = 1i be a positive relation describing a Lefschetz

bration which contains an exceptional section. Assume the generic bre genus
is at least two. Then a bration obtained by applying either T or T~ to the
relation also admits an exceptional section.

Proof It is enough to see that the relation h( v w)* ;' % = 1i describes
a (non-symplectic) bration with a section of square zero. For then we can
view the operations T ! as given by bre summing two brations, one with a
section of square —1 and one with a section of square 0, and then excising a
piece of the blation ﬁith trivial monodromy. This trivial piece is determined
by a relation h( = f;)( = f;)~! = 1i and such relations always admit square zero
sections. One can then perform the bre sums and excisions relative to a base-
point (noting for instance that every di eomorphism of a surface is isotopic to
a once-pointed di eomorphism) to obtain the result.

The existence of the section of square zero for the basic relation (4.2) follows
from the methods of [21]. Since the genus of the generic bre g 2 we know
that the supporting curves for the T {relation do not Il the surface. Hence we
can lift all of the individual twists to the hyperbolic disc, the universal cover of
a single smooth bre, so as to preserve some union of geodesics. Look at the
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monodromy at the circle at in nity which is the boundary of the disc; after we
have lifted each (positive or negative) Dehn twist, we have lifted the identity
and have a hyperbolic automorphism of the disc. But this automorphism can
be taken to x a geodesic, so must be the identity. Since the individual twists

xed points on S} the total rotation number of the circle at in nity under
the sequence of lifts is zero. But according to the results of [21] this precisely
constructs a section of square zero. O

We now return to divisors in moduli space. The rst of the Brill{Noether
divisors already introduced is the hyperelliptic divisor Hs inside Ms3. The

cohomology class of this divisor in terms of the standard generators ; ; for
Hz(mg), up to a positive rational multiple, is given by
(4:5) [Hi] =9 — 0—-3 1

Technically in the above form we have given the relationship in the Picard
group of the moduli functor and not the cohomology (Chow) ring of the moduli
space: the discrepancy arises because of the presence of an orbifold structure
on the entire component of the stable divisor comprising curves with elliptic
tails and on the locus of hyperelliptic curves itself. Thus translating instead to
the Chow group (and abusing notation by using the same symbols to denote
the respective generators) we have

9 — o—3 ;1 @ 18 —2 (—3 g;
in our examples 1 will vanish, and the re-scaling will be inconsequential. The
particular advantage of working with the hyperelliptic divisor is the well-known

restriction on Lefschetz pencils giving rise to spheres with image contained
inside it [7]:

(4.6) Lemma (Endo) Let X ¥ S? be the total space of a genus three hy-
perelliptic Lefschetz bration. Then
4. 1

where i;r denote the numbers of irreducible and reducible singular bres re-
spectively?.

There are various proofs of this result. For topologists, hyperelliptic brations
are globally double branched covers of sphere bundles over spheres and this

2Denoting the total number of singular bres by s we arrive at the taxing formula
i+r=s.
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yields an explicit signature formula. For geometers, the (nearly ample) Hodge
class  restricts to the moduli space Hs as a certain union of boundary di-
visors since the open locus of hyperelliptic curves is a ne, and the signature
formula results from comparing to (3.4). Endo’s original proof is an algebraic
formulation of the last statement, analysing the signature cocycle in the sec-
ond cohomology of the symplectic group under restriction to the hyperelliptic
mapping class group. In any case, we have a new obstruction to holomorphic
structures on genus three brations:

(4.7) Proposition Let X ¥ S? be a genus three Lefschetz bration with
irreducible bres. Suppose that

(1) e(X) +1 is not divisible by 7;
(2) 9 (X)+5e(X)+40<0.
Then the Lefschetz bration is not isotopic to a holomorphic bration.

Proof If e +1 is not divisible by seven then the integrality of the signature
and Endo’s formula show that the bration is not hyperelliptic. On the other
hand, the condition that 9 (X) + 5e(X) + 40 < 0 is exactly equivalent to the
statement that [S%] Hs <0 and so the bration cannot yield a sphere isotopic
to a rational curve. O

We now hit a catch. There are rather few known genus three brations which
admit exceptional sections, and the numerology conspires against us: for none
of these does applying the relation T yield a negative algebraic intersection
with the hyperelliptic divisor. Indeed for most we cannot apply T at all, since
no sum of two vanishing cycles is homologically trivial, as must be the case for
the curves U;W in Figure 2. On the other hand, if we apply T ! then we
increase the intersection with the hyperelliptic divisor. Since the only explicitly
known relations correspond to holomorphic brations, this would appear to be
a losing strategy. Fortunately, there is a loophole. We can start with a hyper-
elliptic holomorphic bration, for which the rational curve lies inside Hz and
has su ciently negative intersection with the divisor that applying T~ does
not destroy that property; but by an easy count, it will necessarily destroy the
hyperellipticity. It is fairly easy to classify holomorphic hyperelliptic brations
with no reducible bres; to satisfy the constraints of (4.7) we are reduced to
essentially a single possible example! In fact the T ~1{substitution, on precisely
this positive relation, had already been derived by Terry Fuller. His motivation
was rather di erent; he wanted an unusual mapping class group word to which
he could apply Kirby calculus to study covering spaces. He kindly donates the
following manipulations.
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(4.8) Example Terry Fuller Let the curves Aj; Bj; D,;Ez on a genus three
curve be as drawn in Figure 3 and write a; etc. for the positive Dehn twist
about A;. Fuller obtains the following positive relation:

(429) (dzezbzazblalagbzazb1b3a3b232(alb1a2b2a3b3)lo) =1

We begin with well-known braid relations (which do not signify any change to

Figure 3: Supporting curves for a genus three positive relation

the four-manifold but only to its presentation as a positive relation):
ajbja; = bjaibi; ai+1bidi+1 = bjaj+1bj:

Using these freely, along with the fact that Dehn twists about disjoint curves
commute, Fuller shows:

(4:10) (aibiashrashz)® = (aibiaz)?brarazhybszas:
Using (4.10), and writing
(arbrazhpashs)? = ((arbrazbrashs)?)?

a further sequence of braid manipulations brings you to
(4:11) (arbrazhpazbs)* = (arhiaz)*brasbiazazhrashibsazhyas:
Now employ the T ~! substitution to the relation given below:

(aibra)* = doey; (arb1azbpaghs) =1
and combine together (4.10) and (4.11):

(a1b1azhpashs)'* =  (agbiaghrashs)?(aibiazhoaghs)®
= (aibiap)*brazba;asbrazhbzaghyan(aghsazbrazhs)tf
= dpezhpashiasashaashbsazhyas(ashsazhaazhs)io:

This gives us the relation we require.
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The relation h(ay :::b3)** = 1i de nes the monodromy of a hyperelliptic surface
obtained by taking the double branched cover of F, over a curve in the class
7jsoj q jsaj, where sg;sq denote the sections of square 2 respectively. Since
the section of square two lies inside the branch locus, it lifts to an exceptional
section of the genus three bration; if we blow this down we obtain a simply
connected complex surface of general type. To prove that this does indeed give
the genus three bration we require, consider the curve in j7sgj given locally
by z{ +z3* = 0. Deform the singularity to a union of 14 simple tangencies
between distinct sheets of the curve. At each of these points the new equa-
tion is equivalent to u? + v’ = 0 in suitable holomorphic co-ordinates, which
gives the monodromy of the (2; 7){torus knot (which is bred of genus three).
Then compute that the monodromy of this knot is indeed given by the product
(arhiazhpaszhs).

Write W for the total space of the Lefschetz bration de ned by (4.8). The
pencil of curves, both before and after the modi cation by T ~1, has only ir-
reducible bres and hence does de ne a canonical symplectic structure by the
theorem of Gompf mentioned in the Introduction. The number of singular

bres in the modi ed pencil is 74 and hence e(W) = 66. Moreover the sig-
nature of the Horikawa surface is —48 (by Endo’s formula, say) and so the
modi ed manifold has (W) = —42. (This checks with the result obtained, via
a computer-implemented algorithm based on Wall’s non-additivity, by Ozbagci
in [17]. In particular the signature is computable from the mapping class group
word, even if the derivation of that word is not available!) It is now a triv-
iality to apply (4.7) and deduce that we have indeed obtained a symplectic
non-Kahler pencil. This completes the proof of (1.3).

(4.12) Remark W is homeomorphic to a simply connected complex surface.
To the author’s knowledge, the only way to prove that it might not be Kahler is
to compute instanton or Seiberg{Witten invariants. Such computations seem
intractable for manifolds presented via positive relations; note that we have
deduced that the Lefschetz structure is not holomorphic without needing to
determine whether W is di eomorphic to a Kadhler surface.

We remark for completeness that we also nd large classes of non-holomorphic
genus three Lefschetz brations on manifolds homeomorphic to complex sur-
faces. These examples are elementary in the sense that they do not rely on
theorems from gauge theory or Donaldson’s construction.

(4.13) Example A hyperelliptic genus three Lefschetz bration Z with  sin-
gular bres, all irreducible, has = 7r for some integer r and topological in-
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variants e = 7r —8; = —4r. Now under a bre summation the signature and
Euler characteristic transform as

= 1+ 2 e = e;+ey—2e(F):

It follows immediately that Z] ,W will satisfy (4.7) and also the Noether
inequality:

(9 +5e+40)(Z]eW) = (9 +5e+40)(W)—r
(5¢2 — ¢, +36)(Z]rW) = (5¢2 —cy + 36)(W) + 3r:

One can also check that for any Z there is a minimal complex surface of general
type homeomorphic to Z]JgW using the geographic criterion of ([4], VII (9.1)).
Indeed for these manifolds it is known that there is a simply connected such
complex surface [18]. By similar manipulations the reader can check the relevant
numbers in the case of bre summing W with itself. Note that many simply-
connected hyperelliptic genus three brations are Kahler, but the holomorphic
structure of the brations is lost on summing with W .

By a result of Stipsicz [25] we know that many of these manifolds are mini-
mal. Auroux (private conversation) has noted that one can improve the rst
condition in (4.7) to demanding only that e(’X) + 1 be not divisible by 14, by
studying the braid factorisation for a hyperelliptic bration instead of just the
mapping class group factorisation.

(4.14) Remark Suppose we have a Lefschetz pencil which is not holomorphic,
for instance by arguments as above. If the canonical symplectic form is isotopic
to a Kdhler form, then we can use the Riemann{Roch theorem to estimate the
number of sections of the line bundle Lc with rst Chern class dual to the

bre C of the pencil. If any section of this line bundle had smooth zero set,
then a generic pencil of sections would de ne a Lefschetz pencil by Bertini’s
theorem and general position arguments. The existence of such a pencil may
well be ruled out by the topological constraints on the homology class of the
sphere, which is determined by the global topology of the manifold. However,
in general the line bundle Lc is ample and not necessarily very ample, and it
seems impossible (even in examples) to prove directly that if there is a Kahler
structure on the manifold then there would be some smooth complex curve in
the linear system jCj. This prevents us from answering our original Question
(2) in (2.2).

The situation for Question (3) is even worse: we expect the homology classes re-
alised by our pencils to contain no smooth complex curve at all. In any complex
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surface with a homology class with an immersed but not embedded holomorphic
representative, we can smooth nodes to build symplectic submanifolds which
are uninterestingly distinct from complex curves.

The results of this section can be generalised to other divisors, for instance
the divisor of trigonal curves in Ms, but the author is not aware of further
applications or phenomena.

5 Weierstrass divisors and sections

We give a nal application of (2.7) with a result on sections of brations that
one can prove in a similar vein. This adds to the now substantial body of
knowledge on genus two brations [24]. Recall the symplectic isotopy conjecture
due to Siebert and Tian [19] states that every connected symplectic submanifold
of a relatively minimal sphere bundle over a sphere is isotopic to a complex
submanifold?.

(5.1) Proposition Let f: X ¥ S? be a genus two Lefschetz bration and
s: S? ¥ X adistinguished section of f. Suppose the bration has ¢ irreducible
singular bres, 1 reducible ones and ¢+ 2 ; =10m for m 2 Z. Suppose also
that the symplectic isotopy conjecture is valid. Then

(1) 3)s s m+ ;or
(2) 4js sj=m+ 1.

Proof Inside M; the moduli space of stable curves with a single marked point
{ equivalently the universal curve C, over M { there is a divisor W comprising
the closure of pairs (C;p) where p is one of the Weierstrass points of C. In the
notation of [11], the cohomology of W; is generated by elements 'rp; ; o; 1,
where Trp is the relative dualising sheaf and  the pullback of the Hodge
bundle under V% I M,. The adjunction formula allows us to identify the
value of the class rp on our family with the negative of the self-intersection
of the distinguished section:

(5:2) h1gp;[B]i = —s s:

3In lectures in June 2001, Siebert and Tian have announced a partial resolution of
this conjecture which is probably strong enough to show that genus two Lefschetz bra-
tions without reducible bres are holomorphic. This would su ce for this Proposition.
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With respect to this basis, we have an identity in the Picard group of the
moduli functor

(5:3) [W] = 3!RD_ - 1.

Let f: X ¥ P! be a genus two Lefschetz bration with a distinguished section
s: P! ¥ X. Recall from [24] that we can write X as a double cover of a rational
ruled manifold Ratx over a locus which is smooth away from nitely many in-

nitely close triple points (their number given by the number of reducible bres
in the Lefschetz bration). Moreover, on any bre the branch covering map
can be identi ed with the hyperelliptic involution on the bre after choosing
metrics: that is, the rami cation locus is precisely the closure of the union of
the Weierstrass points in each bre.

Via the xed section s we induce a map S? ¥ Vé If the map has image inside
the divisor W then the section lies inside the locus of Weierstrass points and
gives rise to a branch locus which is disconnected. Siebert and Tian [19] analyse
the branch locus for any hyperelliptic bration branched over a rational ruled
manifold and show that it has at most two components, and if it is not connected
then one of the components is a sphere section for the natural bration of the
ruled surface over S2. In this case the self-intersection of the sphere is given by
—k where the base can be identi ed with P(O O(k)). (Warning: Note here
that k is even and —k is the self-intersection of the sphere as a submanifold
of the base; the natural lift of the sphere to the rami cation locus has square
—k=2.)

On any Lefschetz bration, there is an operation which removes a reducible bre
and replaces it by a sequence of (4h + 2)2h irreducible bres, where h is the
genus of one component of the reducible bre. Thus for a genus two bration
we can remove a reducible bre and replace it by twelve irreducible ones. This
operation can be localised downstairs in the branched covers and corresponds
to resolving or deforming an in nitely close triple point singularity. It follows
from this description that if there is a section disjoint from the singularity, one
can trade the two local models without changing the section or its square. Thus
we have an operation on genus two brations which has the numeric e ect

18 1—=1, o og+12, mA m+1;js sjA js sj

If we trade all the reducible bres for irreducible ones, we arrive at a bration
which is (modulo the symplectic isotopy conjecture for surfaces of appropriate
bidegree) necessarily Kahler.

In this case, the rational curve it de nes in W; Is either contained in W or has
locally positive intersections with it. Since 3js sj—m— 1 is unchanged by the
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removal of the reducible bres, we obtain the two cases of the proposition. For

suppose this value is negative. Then the rational curve lies inside W and de nes

a hyperelliptic bration with disconnected branch locus. Then by Siebert{Tian

the self-intersection of the section component of the bration is precisely —k=2

where the base of the hyperelliptic double cover is P(O O(k)). Moreover by

a result of [24], we can relate this value k to the number of critical bres of the
bration: precisely, jkj = m where there are 10m critical bres.

Since we assume the symplectic isotopy conjecture, a genus two Lefschetz bra-
tion with only irreducible bres is holomorphic, and such objects were classi ed
by Chakiris and independently by the author [24]. The only irreducible bra-
tions are listed in the following proposition (5.5). Using the classi cation, and
the explicit constructions of [24], one can check that if the rami cation locus
contains a section component, then its square is related to the number of critical

bres 10m by the formula js sj = m=4. Since after trading away the reducible

bres this number m is given by m + ; for the original bration, we nd in
the end that 4js sj=m+ ; as claimed. O

One consequence of this result is a strong restriction on which genus two Lef-
schetz brations can admit sections of square (—1). This corollary can be
obtained by other methods, which may be of interest in themselves. In Figure
3 we depict a genus three curve: if we cut this along the cycles D, and E»
and glue the boundary curves of the left component, we obtain a genus two
curve with distinguished cycles A;;B1;Az; B, and D, = E; = Az. Again we
will use lower case letters to denote the associated Dehn twist di eomorphisms,
now of the genus two curve. The idea of this second proof is that it is easier
to restrict the topology of Lefschetz pencils than Lefschetz brations. Recall
that we showed in (2.9) that the Poincare dual of the bre [C] 2 H>(X;Z)
of a pencil was not always represented by a symplectic form adapted to the

bration. If there were such a form, and if the four-manifold satis ed the con-
straint b, > 1, then by Taubes’ results on the canonical class we would deduce
that Kx [C] 0 with equality if and only if Kx = 0. This helpful property
persists:

(5.4) Proposition Let X be a smooth four-manifold with a Lefschetz pencil
of curves each representing a homology class [C]. Suppose that b, (X) > 1.
Then the canonical deformation equivalence class of symplectic forms on X
de ned by the pencil gives an almost complex structure such that Kx satis es

Kx [C] O Kx [C]=0 D) Kx =0:
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Proof e canonical class for the associated Lefschetz bration represents

Kx+ E;j in homology, where the E; are the exceptional curvesand : X' ¥
X the blow-down map. By adjunction, we know that Kyo [ C] =deg(Kc) =
29 — 2. Moreover we know that for any almost complex structure J, there is
an immersed holomorphic representative for Kx and that pseudoholomorphic
curves have locally positive intersections. Choosing J so that the exceptional
spheres are indeed I;;_),seudoholomorphic, it follows that [C] [C] 2g — 2 with
equality i Kxo = E;. But this implies the proposition. O

Armed with this we can establish some control on the homotopy types of man-
ifolds with genus two pencils®.

(5.5) Theorem Let a symplectic four-manifold X admit a Lefschetz pencil
of genus two curves. Then there are only nitely many possibilities for the
numbers n;s of irreducible and reducible critical bres, or equivalently for the
pair (c2(X);c2(X)). In particular e(X) < 40. If s = 0 then the bration
determined by the pencil on X is homeomorphic to one of the simply connected
complex surfaces associated to the three monodromy words:

(1) (aibiazhrazazhrazhias)? =1;
(2) (a1b1a2b2a3)6 =1;
(3) (azbazhy)'® =1.

Proof Be given X and write [C] for the homology class de ned by a bre
of the pencil. Assume b4 (X) > 1; then our proposition (5.4) tells us that
20 —2 = 2 = Kx [C]+ [C]? with both of the terms in the last expression
non-negative, and the rst zero only if Kx = 0. This gives a small humber of
possibilities: either Kx =0 and 12=2,0r Kx ! =1 and 1% =1. Suppose

rst that Kx = 0; then ¢2 = 2e +3 = 0. The Euler characteristic e and
signature  are determined by the numbers of critical bres. Let there be n
non-separating critical bres and s separating ones. Then

3 1
e=n+s—6 =-Nn—=-s+2
5 5
where we have used the formulae for the associated bration of curves from [24]
and the fact that the pencil has two base-points. It follows from these formulae
that

n+7s=30

4A stronger version of this result follows from combining the isotopy conjecture and
the rst result of the section.
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whilst (for any genus two bration, since (IM2)ap = Z1p) also n + 2s is divisible
by 10. This gives two possibilities: n = 30;s =0 and n = 16;s = 2. In the

rst case, we know the bration is simply-connected [19] and (since Kx = 0)
it is minimal. An easy computation then shows that it is homeomorphic to
the K3 surface blown up twice, which is described by the second word listed
in the statement of the proposition. In fact a symplectic four-manifold with

1 = 0;¢1 = 0 is necessarily homeomorphic to the K3 surface by a result of
Morgan and Szabo [16].

Suppose instead that 12 = 1. Let X' = X]JCP" be the total space of the
Lefschetz bration. By Taubes, we have an immersed holomorphic curve rep-
resenting Kxo and containing the exceptional section. If the symplectic rep-
resentative for Kyo is smooth, then it meets each genus two bre two times;
since it contains the exceptional section, it must comprise two disjoint sections.
But by adjunction this gives a smooth (symplectic) genus zero representative
for Kx, which is therefore an exceptional sphere. Thus X is the blow-up of a
simply connected manifold with Kx = 0, and by the result of Morgan{Szabo
referred to above we see that the given pencil of curves is just the blow-up of
the usual genus two pencil on K3 at one of its two base-points. In particular,
the associated bration is the one obtained above.

The only other possibility is that the symplectic subvariety provided by Taubes
is in fact composed of several components. This subvariety meets every genus
two bre with which it shares no component locally positively and with algebraic
intersection number two. Hence the curve must comprise the exceptional section
counted to multiplicity two, and a number r of bres of the bration. Suppose
we write Kxo = 2E+rF; then K&, = 4r—4 and so K& = 4r—3, blowing down
again. However, this is also given by g — 1 where g is the genus of the smooth
symplectic representative for Kx obtained by Taubes for a generic complex
structure. (Here we de ne genus via a sum over components if necessary). By
construction, one symplectic representative for Kx is given by a number r of
the genus two curves of the pencil smoothed at the base-point. The result is
that

2r =4r —2

and hence r = 1. But then this determines cZ(X") = 0 and this is enough to x
the number of critical bres of the bration, using the usual formulae for e;

This gives the niteness we require. If we also know s = 0 and the bration is
simply connected, and since the intersection form must be odd as (Kx)? =1,
we have determined X to homeomorphism. It must be a surface of general
type, with Kx = [!] represented by a genus two curve of square one. Such is
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described by the third word in the list of monodromies given in the statement
of the theorem.

The last remaining case is where Taubes does not apply, that is b, (X) = 1. In
this case 3 L
= 1-b_ = Zn—Zs+1?
5 5
and
e = n+s—4—12 = 3-2b; +b_:

Moreover we still know that Kx ! + 12 = 2 and b; = 0 or by = 2, since
b1; b+ have opposite parity on any almost complex four-manifold and for any
Lefschetz bration by of the total space is strictly smaller than b; of the bre.
For a bration with s = 0 we know we have simply connected total space, so
by = 0 and some easy manipulations give +e = 4 and then n = 20. To
homeomorphism this gives the manifold given by the rst monodromy word on
the list above. The other cases, with s & 0 and either b; are also easily listed:
in all cases n 20 and hence only nitely many pairs (n;s) arise. m|

This establishes the last of the theorems given in the opening section of the
paper. Although determining a symplectic manifold only to homeomorphism
is a very weak statement, the limited geography of manifolds with genus two
pencils is striking in its own right. It would be very interesting to understand
if there is any analogue of this at higher genera.
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