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semidirect product of �1(S) by a free group G is therefore word hyperbolic if
and only if G is a Schottky subgroup of MCG. The special case when G = Z
follows from Thurston’s hyperbolization theorem. Schottky subgroups exist in
abundance: su�ciently high powers of any independent set of pseudo-Anosov
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92 Benson Farb and Lee Mosher

1 Introduction

1.1 Convex cocompact groups

A convex cocompact subgroup of Isom(Hn), the isometry group of hyperbolic
n{space, is a discrete subgroup G < Isom(Hn), with limit set �G � @Hn , such
that G acts cocompactly on the convex hull HullG � Hn of its limit set �G .
It follows that G is a word hyperbolic group with model geometry HullG and
Gromov boundary �G . Given any �nitely generated, discrete subgroup G <
Isom(Hn), G is convex cocompact if and only if any orbit of G is a quasiconvex
subset of Hn . Convex cocompact subgroups satisfy several useful properties:
every in�nite order element of G is loxodromic; �G is the smallest nontrivial
G{invariant closed subset of H

n = Hn [ @Hn ; the action of G on @Hn n �G
is properly discontinuous; assuming �G 6= @Hn , the stabilizer subgroup of �G
is a �nite index supergroup of G, and it is the relative commensurator of G in
Isom(Hn).

A Schottky group is a convex cocompact subgroup of Isom(Hn) which is free.
Schottky subgroups of Isom(Hn ) exist in abundance and can be constructed
using the classical ping-pong argument, attributed to Klein: if �1; : : : ; �n are
loxodromic elements whose axes have pairwise disjoint endpoints at in�nity,
then su�ciently high powers of �1; : : : ; �n freely generate a Schottky group.1

We shall investigate the notions of convex cocompact groups and Schottky
groups in the context of Teichmüller space. Given a closed, oriented surface S
of genus � 2, the mapping class group MCG acts as the full isometry group of
the Teichmüller space T [45].2 This action extends to the Thurston compacti-
�cation T = T [PMF [16]. Teichmüller space is not Gromov hyperbolic [34],
no matter what �nite covolume, equivariant metric one picks [10], and yet it
exhibits many aspects of a hyperbolic metric space [38] [32]. A general theory
of limit sets of �nitely generated subgroups of MCG is developed in [36].

In this paper we develop a theory of convex cocompact subgroups and Schottky
subgroups of MCG acting on T , and we show that Schottky subgroups exist
in abundance. We apply this theory to relate convex cocompactness of sub-
groups of MCG with the large scale geometry of extensions of surface groups
by subgroups of MCG.

1The term \Schottky group" sometimes refers explicitly to a subgroup of Isom(Hn)
produced by the ping-pong argument, but the broader reference to free, convex cocom-
pact subgroups has become common.

2In this paper, MCG includes orientation reversing mapping classes, and so repre-
sents what is sometimes called the \extended" mapping class group.
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Convex cocompact subgroups of mapping class groups 93

Our �rst result establishes the concept of convex cocompactness for subgroups
of MCG, by proving the equivalence of several properties:

Theorem 1.1 (Characterizing convex cocompactness) Given a �nitely gen-
erated subgroup G < MCG, the following statements are equivalent:

� Some orbit of G is quasiconvex in T .

� Every orbit of G is quasiconvex in T .

� G is word hyperbolic, and there is a G{equivariant embedding @f : @G!
PMF with image �G such that the following properties hold:

{ Any two distinct points �; � 2 �G are the ideal endpoints of a unique

geodesic
 −!
(�; �) in T .

{ Let WHG be the \weak hull" of G, namely the union of the geodesics −!
(�; �) , � 6= � 2 �G . Then the action of G on WHG is cocompact,
and if f : G ! WHG is any G{equivariant map then f is a quasi-
isometry and the following map is continuous:

�f = f [ @f : G [ @G! T = T [PMF

Any such subgroup G is said to be convex cocompact. This theorem is proved
in Section 3.3.

A convex cocompact subgroup G < MCG shares many properties with convex
cocompact subgroups of Isom(Hn). Every in�nite order element of G is pseudo-
Anosov (Proposition 3.1). The limit set �G is the smallest nontrivial closed
subset of T invariant under the action of G, and the action of G on PMF−�G
is properly discontinuous (Proposition 3.2); this depends on work of McCarthy
and Papadoupolos [36]. The stabilizer of �G is a �nite index supergroup of G
in MCG, and it is the relative commensurator of G in MCG (Corollary 3.3).

A Schottky subgroup of MCG = Isom(T ) is de�ned to be a convex cocompact
subgroup which is free of �nite rank. In Theorem 1.4 we prove that if �1; : : : ; �n
are pseudo-Anosov elements of MCG whose axes have pairwise disjoint end-
points in PMF , then for all su�ciently large positive integers a1; : : : ; an the
mapping classes �a1

1 ; : : : ; �
an
n freely generate a Schottky subgroup of MCG.

Warning Our formulation of convex cocompactness in T is not as strong
as in Hn . Although there is a general theory of limit sets of �nitely generated
subgroups of MCG [36], we have no general theory of their convex hulls. Such a
theory would be tricky, and unnecessary for our purposes. In particular, when
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94 Benson Farb and Lee Mosher

G is convex cocompact, we do not know whether there is a closed, convex,
G{equivariant subset of T on which G acts cocompactly. One could attempt
to construct such a subset by adding to WHG any geodesics with endpoints
in WHG , then adding geodesics with endpoints in that set, etc, continuing
trans�nitely by adding geodesics and taking closures until the result stabilizes;
however, there is no guarantee that G acts cocompactly on the result.

1.2 Surface group extensions

There is a natural isomorphism of short exact sequences

1 // �1(S; p) �
// MCG(S; p)

q
//

��
�O

�O
�O

�O
�O
�O

MCG(S) //

��
�O
�O

�O

�O
�O
�O

1

1 // �1(S; p) // Aut(�1(S; p)) // Out(�1(S; p)) // 1

where MCG(S; p) is the mapping class group of S punctured at the base point
p. In the bottom sequence, the inclusion �1(S; p) is obtained by identifying
�1(S; p) with its group of inner automorphisms, an injection since �1(S; p) is
centerless. For each based loop ‘ in S , �(‘) is the punctured mapping class
which \pushes" the base point p around the loop ‘ (see Section 2.2 for the exact
de�nition). The homomorphism q is the map which \forgets" the puncture p.
Exactness of the top sequence is proved in [7]. The isomorphism MCG(S) �
Out(�1(S; p)) follows from work of Dehn{Nielsen [43], Baer [3], and Epstein
[13]. As a consequence, either of the above sequences is natural for extensions
of �1(S), in the following sense. For any group homomorphism G!MCG(S),
by applying the �ber product construction to the homomorphisms

MCG(S; p)

''OO
OO

OO
OO

OO
O

G

{{vv
vv
vv
vv
vv

MCG(S)

we obtain a group ΓG and a commutative diagram of short exact sequences

1 // �1(S) //

��

ΓG //

��

G //

��

1

1 // �1(S) // MCG(S; p) // MCG(S) // 1

Note that we are suppressing the homomorphism G!MCG(S) in the notation
ΓG . If G is free then the top sequence splits and we can write ΓG = �1(S) o
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G, where again our notation suppresses a lift G ! Aut(�1(S)) of the given
homomorphism G!MCG(S) � Out(�1(S)).

Every group extension 1 ! �1(S) ! E ! G ! 1 arises from the above
construction, because the given extension determines a homomorphism G !
Out(�1(S)) � MCG(S) which in turn determines an extension 1 ! �1(S) !
ΓG ! G! 1 isomorphic to the given extension.

When P is a cyclic subgroup of MCG, Thurston’s hyperbolization theorem for
mapping tori (see, eg, [44]) shows that �1(S) o P is the fundamental group of
a closed, hyperbolic 3{manifold if and only if P is a pseudo-Anosov subgroup.
In particular, �1(S)oP is a word hyperbolic group if and only if P is a convex
cocompact subgroup of MCG. Our results about the extension groups ΓG are
aimed towards generalizing this statement as much as possible. The theme of
these results is that the geometry of ΓG is encoded in the geometry of the action
of G on T .

From [39] it follows that if ΓG is word hyperbolic then G is word hyperbolic.
Our next result gives much more precise information:

Theorem 1.2 (Hyperbolic extension has convex cocompact quotient) If ΓG
is word hyperbolic then the homomorphism G ! MCG has �nite kernel and
convex cocompact image.

This theorem is proved in Section 5. Finiteness of the kernel K of G!MCG
is easy to prove, using the fact that �1(S) �K is a subgroup of ΓG . If K is
in�nite, then either it is a torsion group, or it has an in�nite order element and
so ΓG has a Z � Z subgroup; in either case, ΓG cannot be word hyperbolic.
Because one can mod out by a �nite kernel without a�ecting word hyperbolicity
of the extension group, this brings into focus the extensions de�ned by inclusion
of subgroups of MCG.

We are particularly interested in free subgroups of MCG. A �nite rank, free,
convex cocompact subgroup is called a Schottky subgroup. For Schottky sub-
groups we have a converse to Theorem 1.2, giving a complete characterization
of word hyperbolic groups ΓF when F < MCG is free:

Theorem 1.3 (Surface-by-Schottky group has hyperbolic extension) If F is
a �nite rank, free subgroup of MCG then the extension group ΓF = �1(S)oF
is word hyperbolic if and only if F is a Schottky group.

This is proved in Section 6. Some special cases of this theorem are immediate.
It is not hard to see that �1(S)o F has a Z� Z subgroup if and only if there
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exists a nontrivial element f 2 F which is not pseudo-Anosov. Such an element
f , being in�nite order, must be reducible. Assuming f 2 F is nontrivial and
reducible, the group �1(S) o F contains the subgroup �1(S) o hfi which is
the fundamental group of a closed 3-manifold that contains an incompressible
torus. Conversely, when �1(S)o F has a Z� Z subgroup then that subgroup
must map onto an in�nite cyclic subgroup hfi � F whose action on �1(S)
preserves a nontrivial conjugacy class, and so f is not pseudo-Anosov. Theorem
1.3 is therefore mainly about free, pseudo-Anosov subgroups of MCG (see
Question 1.5 below).

The abundance of word hyperbolic extensions of the form �1(S)oF was proved
in [40]. It was shown by McCarthy [35] and Ivanov [23] that if �1; : : : ; �n are
pseudo-Anosov elements of MCG which are pairwise independent, meaning
that their axes have distinct endpoints in the Thurston boundary PMF , then
su�ciently high powers of these elements freely generate a pseudo-Anosov sub-
group F . The main result of [40] shows in addition that, after possibly making
the powers higher, the group �1(S) o F is word hyperbolic. The nature of
the free subgroups F < MCG produced in [40] was somewhat mysterious, but
Theorems 1.2 and 1.3 clear up this mystery by characterizing the subgroups F
using an intrinsic property, namely convex cocompactness.

By combining [40] and Theorem 1.3, we immediately have the following result:

Theorem 1.4 (Abundance of Schottky subgroups) If �1; : : : ; �n 2 MCG
are pairwise independent pseudo-Anosov elements, then for all su�ciently large
positive integers a1; : : : ; an the mapping classes �a1

1 ; : : : ; �
an
n freely generate a

Schottky subgroup F of MCG.

Finally, we shall show in Section 7 that all of the above results generalize to
the setting of closed hyperbolic 2-orbifolds. These generalized results �nd ap-
plication in the results of [15], as we now recall.

1.3 An application

In the paper [15] we apply our theory of Schottky subgroups of MCG to inves-
tigate the large-scale geometry of word hyperbolic surface-by-free groups:

Theorem [15] Let F �MCG(S) be Schottky. Then the group ΓF = �1(S)o
F is quasi-isometrically rigid in the strongest sense:

� ΓF embeds with �nite index in its quasi-isometry group QI(ΓF ).
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It follows that:

� Let H be any �nitely generated group. If H is quasi-isometric to ΓF ,
then there exists a �nite normal subgroup N C H such that H=N and
ΓF are abstractly commensurable.

� The abstract commensurator group Comm(ΓF ) is isomorphic to QI(ΓF ),
and can be computed explicitly.

The computation of Comm(ΓF ) � QI(ΓF ) goes as follows. Among all orb-
ifold subcovers S ! O there exists a unique minimal such subcover such that
the subgroup F < MCG(S) descends isomorphically to a subgroup F 0 <
MCG(O). The whole theory of Schottky groups extends to general closed
hyperbolic orbifolds, as we show in Section 7 of this paper. In particular, F 0 is
a Schottky subgroup of MCG(O). By Corollary 3.3 it follows that F 0 has �nite
index in its relative commensurator N < MCG(O), which can be regarded as
a virtual Schottky group. The inclusion N < MCG(O) determines a canonical
extension 1! �1(O)! ΓN ! N ! 1, and we show in [15] that the extension
group ΓN is isomorphic to QI(ΓF ).

1.4 Some questions

Our results on convex cocompact and Schottky subgroups of MCG motivate
several questions.

Proposition 3.1 implies that if F is a Schottky subgroup of MCG then every
nontrivial element of F is pseudo-Anosov.

Question 1.5 Suppose F < MCG is a �nite rank, free subgroup all of whose
nontrivial elements are pseudo-Anosov. Is F convex cocompact? In other
words, is F a Schottky group?

A non-Schottky example F would be very interesting for the following reasons.
There exist examples of in�nite, �nitely presented groups which are not word
hyperbolic and whose solvable subgroups are all virtually cyclic, but all known
examples fail to be of �nite type; see for example [9]. If there were a non-
Schottky subgroup F < MCG as in Question 1.5, then the group �1(S) o F
would be of �nite type (being the fundamental group of a compact aspherical
3-complex), it would not be word hyperbolic (since F is not Schottky), and
every nontrivial solvable subgroup H < �1(S) o F would be in�nite cyclic.
To see why the latter holds, since �1(S) o F is a torsion free subgroup of
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MCG(S; p) it follows by [8] that the subgroup H is �nite rank free abelian.
Under the homomorphism H ! F , the groups image(H ! F ) < F and
kernel(H ! F ) < �1(S) each are free abelian of rank at most 1, and so it
su�ces to rule out the case where the image and kernel both have rank 1. But
in that case we would have a pseudo-Anosov element of MCG(S) which �xes
the conjugacy class of some in�nite order element of �1S , a contradiction.

Note that Question 1.5 has an analogue in the theory of Kleinian groups: if G
is a discrete, cocompact subgroup of Isom(H3), is every free subgroup of G a
Schottky subgroup? More generally, if G is a discrete, co�nite volume subgroup
of Isom(H3), is every free loxodromic subgroup of G a Schottky group? The
�rst question, at least, would follow from Simon’s tame ends conjecture [11].

For a source of free, pseudo-Anosov subgroups on which to test question 1.5,
consider Whittlesey’s group [47], an in�nite rank, free, normal, pseudo-Anosov
subgroup of the mapping class group of a closed, oriented surface of genus 2.

Question 1.6 Is every �nitely generated subgroup of Whittlesey’s group a
Schottky group?

Concerning non-free subgroups of MCG, note �rst that Question 1.5 can also
be formulated for any �nitely generated subgroup of MCG, though we have no
examples of non-free pseudo-Anosov subgroups. This invites comparison with
the situation in Isom(Hn) where it is known for any n � 2 that there exist
convex cocompact subgroups which are not Schottky, indeed are not virtually
Schottky.

Question 1.7 Does there exist a convex cocompact subgroup G < MCG
which is not Schottky, nor is virtually Schottky?

The converse to Theorem 1.2, while proved for free subgroups in Theorem 1.3,
remains open in general. This issue becomes particularly interesting if Ques-
tion 1.7 is answered a�rmatively:

Question 1.8 If G < MCG is convex cocompact, is the extension group ΓG
word hyperbolic?

Surface subgroups of mapping class groups are interesting. Gonzalez-D��ez and
Harvey showed that MCG can contain the fundamental group of a closed,
oriented surface of genus � 2 [19], but their construction always produces
subgroups containing mapping classes that are not pseudo-Anosov.

If questions 1.7 and 1.8 were true, it would raise the stakes on the fascinating
question of whether there exist surface-by-surface word hyperbolic groups:
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Question 1.9 Does there exist a convex cocompact subgroup G < MCG
isomorphic to the fundamental group of a closed, oriented surface Sg of genus
g � 2? If so, is the surface-by-surface extension group ΓG word hyperbolic?

Misha Kapovich shows in [25] that when G is a surface group, the extension
group ΓG cannot be a lattice in Isom(CH2).

1.5 Sketches of proofs

Although Teichmüller space T is not hyperbolic in any reasonable sense [34],
[10], nevertheless it possesses interesting and useful hyperbolicity properties. To
formulate these, recall that the action of MCG by isometries on T is smooth
and properly discontinuous, with quotient orbifold M = T =MCG called the
moduli space of S . The action is not cocompact, and we de�ne a subset A � T
to be cobounded if its image under the universal covering map T ! M has
compact closure in M, equivalently there is a compact subset of T whose
translates under Isom(T ) cover A.

In [38], Minsky proves (see Theorem 3.6 below) that if ‘ is a cobounded geodesic
in T then any projection T ! ‘ that takes each point of T to a closest point on
‘ satis�es properties similar to a closest point projection from a �{hyperbolic
metric space onto a bi-in�nite geodesic. This projection property is a key step
in the proof of the Masur{Minsky theorem [32] that Harvey’s curve complex
is a �{hyperbolic metric space. These results say intuitively that T exhibits
hyperbolicity as long as one focusses only on cobounded aspects. Keeping this
in mind, the tools of [38] and [32] can be used to prove Theorem 1.1 along the
classical lines of the proof for subgroups of Isom(Hn).

The proof of Theorem 1.3, that �1(S)oF is word hyperbolic if F is Schottky,
uses the Bestvina{Feighn combination theorem [6]. Consider a tree t on which
F acts freely and cocompactly, and choose an F {equivariant mapping � : t !
T . Let H ! T be the canonical hyperbolic plane bundle over Teichmüller
space. Pulling back via � we obtain a hyperbolic plane bundle � : Ht ! t, and
�1(S) o F acts properly discontinuously and cocompactly on Ht . This shows
that Ht is a model geometry for the group �1(S)o F , and in particular Ht is
a �{hyperbolic metric space if and only if �1(S)o F is word hyperbolic.

By the Bestvina{Feighn combination theorem [6] and its converse due to Ger-
sten [18], hyperbolicity of Ht is equivalent to �{hyperbolicity of each \hyper-
plane" H‘ = �−1(‘), where ‘ ranges over all the bi-in�nite lines in t and � is
independent of ‘.
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Recall that for each Teichmüller geodesic g , the canonical marked Riemann
surface bundle Sg over g carries a natural singular solv metric; the bundle Sg
equipped with this metric is denoted Ssolv

g . Lifting the metric to the universal
cover Hg we obtain a singular solv space denoted Hsolv

g .

When F is a Schottky group, convex cocompactness tells us that for each bi-
in�nite geodesic ‘ in t, the map ‘

�−! T is a quasigeodesic and there is a unique
Teichmüller geodesic g within �nite Hausdor� distance from �(‘). This feeds
into Proposition 4.2, a basic construction principle for quasi-isometries which
will be used several times in the paper. The conclusion is:

Fact 1.10 The hyperplane H‘ is uniformly quasi-isometric to the singular
solv{space Hsolv

g , by a quasi-isometry which is a lift of a closest point map
‘! g .

Uniform hyperbolicity of singular solv{spaces Hsolv

g , where g is a uniformly
cobounded geodesic in T , is then easily checked by another application of the
Bestvina{Feighn combination theorem, and Theorem 1.3 follows.

For Theorem 1.2, we �rst outline the proof in the special case of a free subgroup
of MCG. As noted above, using Gersten’s converse to the Bestvina{Feighn
combination theorem, word hyperbolicity of �1(S)o F implies uniform hyper-
bolicity of the hyperplanes H‘ . Now we use a result of Mosher [41], which shows
that from uniform hyperbolicity of the hyperplanes H‘ it follows that the lines
‘ are uniform quasigeodesics in T , and each ‘ has uniformly �nite Hausdor�
distance from some Teichmüller geodesic g . Piecing together the geodesics g
in T , one for each geodesic ‘ in t, we obtain the data we need to prove that F
is Schottky.

The general proof of Theorem 1.2 follows the same outline, except that we
cannot apply Gersten’s converse to the Bestvina{Feighn combination theorem.
That result applies only to the setting of groups acting on trees, not to the
setting of Theorem 1.2 where ΓG acts on the Cayley graph of G. To handle
this problem we need a new idea: a generalization of Gersten’s converse to the
Bestvina{Feighn combination theorem, which holds in a much broader setting.
This generalization is contained in Lemma 5.2. The basis of this result is an
analogy between the \flaring property" of Bestvina{Feighn and the divergence
of geodesics in a word hyperbolic group [12].
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2 Background

2.1 Coarse language

Quasi-isometries and uniformly proper maps Given a metric space X
and two subsets A;B � X , the Hausdor� distance dHaus(A;B) is the in�mum
of all real numbers r such that each point of A is within distance r of a point
of B , and vice versa.

A quasi-isometric embedding between two metric spaces X;Y is a map f : X !
Y such that for some K � 1, C � 0, we have

1
K
d(x; y) − C � d(fx; fy) � Kd(x; y) +C

for each x; y 2 X . To refer to the constants we say that f is a K;C{quasi-
isometric embedding.

For example, a quasigeodesic embedding R! X is called a quasigeodesic line
in X . We also speak of quasigeodesic rays or segments with the domain is
a half-line or a �nite segment, respectively. Since every map of a segment is
a quasi-isometry, it usually behooves one to include the constants and speak
about a (K;C){quasi-isometric segment.

A quasi-isometry between two metric spaces X;Y is a map f : X ! Y which,
for some K � 1, C � 0 is a K;C quasi-isometry and has the property that
image(f) has Hausdor� distance � C from Y . Every quasi-isometry f : X ! Y
has a coarse inverse, which is a quasi-isometry �f : Y ! X such that �f �f : X !
X is a bounded distance in the sup norm from IdX , and similarly for f � �f : Y !
Y ; the sup norm bounds and the quasi-isometry constants of �f depend only on
the quasi-isometry constants of f .

More general than a quasi-isometric embedding is a uniformly proper embedding
f : X ! Y , which means that there exists K � 1, C � 0, and a function
r : [0;1)! [0;1) satisfying r(t)!1 as t!1, such that

r(d(x; y)) � d(fx; fy) � Kd(x; y) +C

for each x; y 2 X .

Geodesic and quasigeodesic metric spaces A metric space is proper if
closed balls are compact. A metric d on a space X is called a path metric if
for any x; y 2 X the distance d(x; y) is the in�mum of the path lengths of
recti�able paths between x and y , and d is called a geodesic metric if d(x; y)
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equals the length of some recti�able path between x and y . The following fact
is an immediate consequence of the Ascoli{Arzela theorem:

Fact 2.1 A compact path metric space is a geodesic metric space. More gen-
erally, a proper path metric is a geodesic metric.

The Ascoli{Arzela theorem also shows that for any proper geodesic metric space
X , every path homotopy class contains a shortest path. This implies that the
metric on X lifts to a geodesic metric on any covering space of X .

A metric space X is called a quasigeodesic metric space if there exists constants
�; � such that for any x; y 2 X there exists an interval [a; b] � R and a �; �
quasigeodesic embedding � : [a; b]! X such that �(a) = x and �(b) = y . For
example, if Y is a geodesic metric space and X is a subset of Y such that
dHaus(X;Y ) <1 then X is a quasigeodesic metric space.

The fundamental theorem of geometric group theory, �rst known to Efremovich,
to Schwarzc, and to Milnor, can be given a general formulation as follows. Let
X be a proper, quasigeodesic metric space, and let the group G act on X
properly discontinuously and cocompactly, by an action denoted (g; x) 7! g � x.
Then G is �nitely generated, and for any base point x0 2 X the map G! X
de�ned by g 7! g � x0 is a quasi-isometry between the word metric on G and
the metric space X .

Uniform families of quasi-isometries The next lemma says a family of
geodesic metrics which is \compact" in a suitable sense has the property that
any two metrics in the family are uniformly quasi-isometric, with respect to the
identity map.

Given a compact space X , let M(X) denote the space of metrics generating
the topology of X , regarded as a subspace of [0;1)X�X with the topology of
uniform convergence.

Lemma 2.2 Let X be a compact, path connected space with universal covereX . Let D � M(X) be a compact family of geodesic metrics. Let eD be the
set of lifted metrics on eX . Then there exist K � 1, C � 0 such that for anyed; ed0 2 eD the identity map on eX is a K;C quasi-isometry between ( eX; ed) and
( eX; ed0).

Proof By compactness of D , the metric spaces Xd have a uniform injectivity
radius|that is, there exists � > 0 such that for each d 2 D every homotopically
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nontrivial closed curve in Xd has length > 4�, and it follows that every closed
� ball in Xd lifts isometrically to eXd . Let P � eX � eX be the set of pairs
(x; y) 2 eX� eX such that for some d 2 eD we have d(x; y) � �. Evidently �1(X)
acts cocompactly on P , and so we have a �nite supremum

A = supfed(x; y)
�� ed 2 eD and (x; y) 2 Pg

Given ed 2 eD and x; y 2 eX , choose a ed{geodesic γ from x to y and let
x = x0; x1; : : : ; xn−1; xn = y be a monotonic sequence along γ such that
d(xi−1; xi) = � for i = 1; : : : ; n − 1 and d(xn−1; xn) � �. For any ed0 2 eD
it follows that:

ed0(x; y) � An = A

& ed(x; y)
�

’
� A

�
ed(x; y) +A

Setting K = A
� and C = A the lemma follows.

Hyperbolic metric spaces A geodesic metric space X is hyperbolic if there
exists � � 0 such that for any x; y; z 2 X and any geodesics xy , yz , zx, any
point on xy has distance � � from some point on yz[ zx. A �nitely generated
group is word hyperbolic if the Cayley graph of some (any) �nite generating set,
equipped with the geodesic metric making each edge of length 1, is a hyperbolic
metric space.

If X is �{hyperbolic, then for any � � 1, � � 0 there exists A, depending only
on �; �; �, such that the following hold: for any x; y 2 X , any �; � quasigeodesic
segment between x and y has Hausdor� distance � A from any geodesic seg-
ment between x and y ; for any x 2 X , any �; � quasigeodesic ray starting at x
has Hausdor� distance � A from some geodesic ray starting at x; and any �; �
quasigeodesic line in X has Hausdor� distance � A from some geodesic line in
X .

The boundary of X , denoted @X , is the set of coarse equivalence classes of
geodesic rays in X , where two rays are coarsely equivalent if they have �nite
Hausdor� distance. For any � 2 @X and x0 2 X , there is a ray based at x0

representing � ; we denote such a ray
−−−!
[x0; �). For any � 6= � 2 @X there is

a geodesic line ‘ in X such that any point on ‘ divides it into two rays, one
representing � and the other representing � .

Assuming X is proper, there is a compact topology on X [ @X in which X is
dense, which is characterized by the following property: a sequence �i 2 X[@X
converges to � 2 @X if and only if, for any base point p 2 X , if

−−−!
[p; �i) denotes
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either a segment from p to �i 2 X , or a ray from p with ideal endpoint �i 2 @X ,
then any subsequential limit of the sequence

−−−!
[p; �i) is a ray with ideal endpoint

� . It follows that any quasi-isometric embedding between �{hyperbolic geodesic
metric spaces extends to a continuous embedding of boundaries. In particular,
if X is hyperbolic then the action of Isom(X) on X extends continuously to
an action on X [ @X .

The following fundamental fact is easily proved by considering what happens
to geodesics in a �{hyperbolic metric space under a quasi-isometry.

Lemma 2.3 For all � � 0, K � 1, C � 0 there exists A � 0 such that the
following holds. If X;Y are two �{hyperbolic metric spaces and if f; g : X ! Y
are two K;C quasi-isometries such that @f = @g : @X ! @Y , then:

dsup(f; g) = sup
x2X

d(f(x); g(x)) � A

2.2 Teichmüller space and the Thurston boundary

Fix once and for all a closed, oriented surface S of genus g � 2. Let C be the
set of isotopy classes of nontrivial simple closed curves on S .

The fundamental notation for the paper is as follows. Let T be the Teichmüller
space of S . Let MF be the space of measured foliations on S , and let PMF
be the space of projective measured foliations on S , with projectivization map
P : MF ! PMF . The Thurston compacti�cation of Teichmüller space is T =
T [PMF . Let MCG be the mapping class group of S , and let M = T =MCG
be the moduli space of S . De�nitions of these objects are all recalled below.

The Teichmüller space T is the set of hyperbolic structures on S modulo iso-
topy, with the structure of a smooth manifold di�eomorphic to R6g−6 given
by Fenchel{Nielsen coordinates. The Riemann mapping theorem associates to
each conformal structure on S a unique hyperbolic structure in that confor-
mal class, and hence we may naturally identify T with the set of conformal
structures on S modulo isotopy. Given a conformal structure or a hyperbolic
structure � , we will often confuse � with its isotopy class by writing � 2 T .

There is a length pairing T � C ! R+ which associates to each � 2 T , C 2 C
the length of the unique simple closed geodesic on the hyperbolic surface � in
the isotopy class C . We obtain a map T ! [0;1)C which is an embedding with
image homeomorphic to an open ball of dimension 6g − 6. Moreover, under
projectivization [0;1)C ! P[0;1)C , T embeds in P[0;1)C with precompact
image.

Geometry & Topology, Volume 6 (2002)



Convex cocompact subgroups of mapping class groups 105

Thurston’s boundary A measured foliation F on S is a foliation with
�nitely many singularities equipped with a positive transverse Borel measure,
with the property that for each singularity s there exists n � 3 such that in
a neighborhood of s the foliation F is modelled on the horizontal measured
foliation of the quadratic di�erential zn−2dz2 in the complex plane. A saddle
connection of F is a leaf segment connecting two distinct singularities; col-
lapsing a saddle connection to a point yields another measured foliation on S .
The set of measured foliations on S modulo the equivalence relation generated
by isotopy and saddle collapse is denoted MF . Given a measured foliation
F , its equivalence class is denoted [F ] 2 MF ; elements of MF will often be
represented by the letters X;Y;Z .

For each measured foliation F , there is a function ‘F : C ! [0;1) de�ned
as follows. Given a simple closed curve c, we may pull back the transverse
measure on F to obtain a measure on c, and then integrate over c to obtain
a number

R
cF . De�ne ‘F (c) = i(F ; c) to be the in�mum of

R
c0 F as c0 ranges

over the isotopy class of c. The function ‘F is well-de�ned up to equivalence,
thereby de�ning an embedding MF ! [0;1)C whose image is homeomorphic
to R6g−6 − f0g.
Given a measured foliation F , multiplying the transverse measure by a positive
scalar r de�nes a measured foliation denoted r � F , yielding a positive scalar
multiplication operation R �MF ! MF . With respect to the equivalence
relation F � r � F , r > 0, the set of equivalence classes is denoted PMF
and the projection is denoted P : MF ! PMF . We obtain an embedding
PMF ! P[0;1)C whose image is homeomorphic to a sphere of dimension
6g − 7. We often use the letters �; �; � to represent points of PMF .

Thurston’s compacti�cation theorem [16] says, by embedding into P[0;1)C ,
that there is a homeomorphism of triples:

(T ;T ;PMF) � (B6g−6; int(B6g−6); S6g−7)

We will also need the standard embedding C !MF , de�ned on [c] as follows.
Take an embedded annulus A � S foliated by circles in the isotopy class [c],
and assign total transverse measure 1 to the annulus. Choose a deformation
retraction of each component of the closure of S − A onto a �nite 1{complex,
and extend to a map f : S ! S homotopic to the identity and which is an
embedding on int(A). The measured foliation on A pushes forward under f
to the desired measured foliation on S , giving a well-de�ned point in MF
depending only on [c].

The intersection number MF �C i(�;�)−−! [0;1) extends continuously to MF �
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MF i(�;�)−−! [0;1). This intersection number is most e�caciously de�ned in
terms of measured geodesic laminations.

Marked surfaces Having �xed once and for all the surface S , a marked
surface is a pair (F; �) where F is a surface and � : S ! F is a homeomorphism.
Thus we may speak about a marked hyperbolic surface, a marked Riemann
surface, a marked measured foliation on a surface, etc.

Given a marked hyperbolic surface � : S ! F , pulling back via � determines
a hyperbolic structure on S and a point of t. Two marked hyperbolic surfaces
� : S ! F and �0 : S ! F 0 give the same element of T if and only if they
are equivalent in the following sense: there exists an isometry h : F ! F 0 such
that �0−1 � h � � : S ! S is isotopic to the identity. In this manner, we can
identify the collection of marked hyperbolic surfaces up to equivalence with the
Teichmüller space T of S . This allows us the freedom of representing a point of
T by a hyperbolic structure on some other surface F , assuming implicitly that
we have a marking � : S ! F . The same discussion holds for marked Riemann
surfaces, marked measured foliations on surfaces, etc.

Given two marked surfaces � : S ! F , �0 : S ! F 0 , a marked map is a homeo-
morphism  : F ! F 0 such that  � � is isotopic to �0 .

Mapping class groups and moduli space Let Homeo(S) be the group
of homeomorphisms of S , let Homeo0(S) be the normal subgroup consisting
of homeomorphisms isotopic to the identity, and let MCG = MCG(S) =
Homeo(S)=Homeo0(S) be the mapping class group of S . Pushing a hyperbolic
structure on S forward via an element of Homeo(S) gives a well-de�ned action
of MCG on T . This action is smooth and properly discontinuous but not
cocompact. It follows that the moduli space M = T =MCG is a smooth,
noncompact orbifold with fundamental group MCG and universal covering
space T .

Let Homeo(S; p) be the group of homeomorphisms of S preserving a base
point p, let Homeo0(S; p) be the normal subgroup consisting of those home-
omorphisms which are isotopic to the identity leaving p stationary, and let
MCG(S; p) = Homeo(S; p)=Homeo0(S; p). Recall the short exact sequence:

1! �1(S; p) �−!MCG(S; p)
q−!MCG(S)! 1

The map q is the map which \forgets" the puncture p. To de�ne the map �, for
each closed loop ‘ : [0; 1]! S based at p, choose numbers 0 = x0 < x1 < : : : <
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xn = 1 and embedded open balls B1; : : : ; Bn � S so that ‘[xi−1; xi] � Bi for
i = 1; : : : ; n, and let �i : S ! S be a homeomorphism which is the identity on
S−Bi and such that �i(‘(xi−1)) = ‘(xi). Then �(‘) is de�ned to be the isotopy
class rel p of the homeomorphism �n � �n−1 � � � � � �1 : (S; p) ! (S; p), which
we say is obtained by \pushing" the point p around the loop ‘. The mapping
class �(‘) is well-de�ned independent of the choices made, and independent of
the choice of ‘ in its path homotopy class. When ‘ is simple, �(‘) may also
be described as the composition of opposite Dehn twists on the two boundary
components of a regular neighborhood of ‘. For details see [7].

As noted in the introduction, by the Dehn{Nielsen{Baer{Epstein theorem, the
above sequence is naturally isomorphic to the sequence

1! �1(S; p)! Aut(�1(S; p))! Out(�1(S; p))! 1

Canonical bundles Over the Teichmüller space T of S there is a canonical
marked hyperbolic surface bundle S ! T , de�ned as follows. Topologically
S = S � T , with the obvious marking S

�−! S � � = S� for each � 2 T .
As � varies over T , one can assign a hyperbolic structure on S in the class
of � , varying continuously in the C1 topology on Riemannian metrics; this
follows from the description of Fenchel{Nielsen coordinates. It follows that on
each �ber S� of S there is a hyperbolic structure which varies continuously in
� . Note that by the Riemann mapping theorem we can also think of S as the
canonical marked Riemann surface bundle over T .

The action of MCG on T lifts uniquely to an action on S , such that for each
�ber S� and each [h] 2MCG the map

S�
[h]−! S[h](�)

is an isometry, and the map

S
�−! S�

[h]−! S[h](�)
�−! S

is in the mapping class [h].

The universal cover of S is called the canonical H2{bundle over T , denoted
H ! T . There is a �bration preserving, isometric action of the once-punctured
mapping class group MCG(S; p) on the total space H such that the quotient
action of MCG(S; p) on S has kernel �1(S; p), and corresponds to the given
action of MCG(S) = MCG(S; p)=�1(S; p) on S . Also, the action of �1(S; p)
on any �ber of H is conjugate to the action on the universal cover eS by deck
transformations. Bers proved in [4] that H is a Teichmüller space in its own
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right: there is an MCG(S; p) equivariant homeomorphism between H and the
Teichmüller space of the once-punctured surface S − p.

The tangent bundle TS has a smooth 2-dimensional vertical sub-bundle TvS
consisting of the tangent planes to �bers of the �bration S ! T . A connection
on the bundle S ! T is a smooth codimension{2 sub-bundle of TS complemen-
tary to TvS . The existence of an MCG{equivariant connection on S can be
derived following standard methods, as follows. Choose a locally �nite, equiv-
ariant open cover of T , and an equivariant partition of unity dominated by this
cover. For each MCG{orbit of this cover, choose a representative U � T of
this orbit, and choose a linear retraction TSU ! TvSU . Pushing these retrac-
tions around by the action of MCG and taking a linear combination using the
partition of unity, we obtain an equivariant linear retraction TS ! TvS , whose
kernel is the desired connection.

By lifting to H we obtain a connection on the bundle H ! T , equivariant with
respect to the action of the group MCG(S; p).

Notation Given any subset A � T , or more generally any continuous map
A ! T , by pulling back the bundle S ! T we obtain a bundle SA ! A, as
shown in the following diagram:

SA

��

// S

��
A // T

Similarly, the pullback of the bundle H ! T is denoted HA ! A.

Quadratic di�erentials Given a conformal structure � on S , a quadratic
di�erential q on S� assigns to each conformal coordinate z an expression of
the form q(z)dz2 where q(z) is a complex valued function on the domain of the
coordinate system, and

q(z)
�
dz

dw

�2

= q(w); for overlapping coordinates z;w .

We shall always assume that the functions q(z) are holomorphic, in other words,
our quadratic di�erentials will always be \holomorphic" quadratic di�erentials.
A quadratic di�erential q is trivial if q(z) is always the zero function.

Given a nontrivial quadratic di�erential q on S� , a point p 2 S� is a zero of q
in one coordinate if and only if it is a zero in any coordinate; also, the order of
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the zero is well-de�ned. If p is not a zero then there is a coordinate z near p,
unique up to multiplication by �1, such that p corresponds to the origin and
such that q(z) � 1; this is called a regular canonical coordinate. If p is a zero
of order n � 1 then up to multiplication by the (n + 2)nd roots of unity there
exists a unique coordinate z in which p corresponds to the origin and such that
q(z) = zn ; this is called a singular canonical coordinate. There is a well-de�ned
singular Euclidean metric jq(z)j jdzj2 on S , which in any regular canonical
coordinate z = x + iy takes the form dx2 + dy2 . In any singular canonical
coordinate this metric has �nite area, and so the total area of S in this singular
Euclidean metric is �nite, denoted kqk. We say that q is normalized if kqk = 1.

By the Riemann{Roch theorem, the quadratic di�erentials on S� form a com-
plex vector space QD� of complex dimension 3g − 3, and these vector spaces
�t together, one for each � 2 T , to form a complex vector bundle over T de-
noted QD ! T . Teichmüller space has a complex structure whose cotangent
bundle is canonically isomorphic to the bundle QD. The Teichmüller metric
on T induces a Finsler metric on the (real) tangent bundle of T , and the norm
kqk is dual to this metric. The normalized quadratic di�erentials form a sphere
bundle QD1 ! T of real dimension 6g − 7 embedded in QD.

Corresponding to each quadratic di�erential q on S� there is a pair of measured
foliations, the horizontal foliation Fx(q) and the vertical foliation Fy(q). In a
regular canonical coordinate z = x+ iy , the leaves of Fx(q) are parallel to the
x{axis and have transverse measure jdyj, and the leaves of Fy(q) are parallel
to the y{axis and have transverse measure jdxj. The foliations Fx(q), Fy(q)
have the zero set of q as their common singularity set, and at each zero of order
n both have an (n+ 2){pronged singularity, locally modelled on the singularity
at the origin of the horizontal and vertical measured foliations of zndz2 .

Conversely, consider a transverse pair of measured foliations (Fx;Fy) on S
which means that Fx;Fy have the same singular set, are transverse at all regular
points, and at each singularity s there is a number n � 3 such that Fx and
Fy are locally modelled on the horizontal and vertical measured foliations of
zn−2dz2 . Associated to the pair Fx;Fy there are a conformal structure and
a quadratic di�erential de�ned as follows. Near each regular point, there is
an oriented coordinate z = x+ iy in which Fx is the horizontal foliation with
transverse measure jdyj, and Fy is the vertical foliation with transverse measure
jdxj. These regular coordinates have conformal overlap. Near any singularity
s, at which Fx , Fy are locally modelled on the the horizontal and vertical
foliations of zndz2 , the coordinate z has conformal overlap with any regular
coordinate. We therefore obtain a conformal structure �(Fx;Fy) on S , on
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which we have a quadratic di�erential q(Fx;Fy) de�ned in regular coordinates
by dz2 .

A pair of measured foliations (X;Y ) 2MF(F )�MF(F ) is said to jointly �ll
the surface F if, for every Z 2 MF(F ), either i(X;Z) 6= 0 or i(Y;Z) 6= 0.
This condition is invariant under positive scalar multiplication on MF(F ), and
so joint �lling is well-de�ned for a pair of points in PMF(F ). A basic fact is
that a pair X;Y 2MF(F ) jointly �lls F if and only if there exist a transverse
pair of measured foliations Fx;Fy representing X;Y ; moreover, such a pair
Fx;Fy is unique up to joint isotopy, meaning that for any other transverse pair
F 0x;F 0y representing X;Y respectively, there exists h 2 Homeo0(S) such that
F 0x = h(Fx), F 0y = h(Fy). These facts may be proved by passing back and
forth between measured geodesic laminations and measured foliations.

By uniqueness up to joint isotopy as just described, it follows that for each
jointly �lling pair (X;Y ) 2 MF(F ) �MF(F ) there is a conformal structure
�(Fx;Fy) and quadratic di�erential q(Fx;Fy) on �(X;Y ), well-de�ned up to
isotopy independent of the choice of a transverse pair Fx;Fy representing X;Y .
We thus have a well-de�ned point �(X;Y ) 2 T (F ) and a well-de�ned element
q(X;Y ) 2 QD�(X;Y ) T (F ).

Geodesics and a metric on T We shall describe geodesic lines in T follow-
ing [17] and [21]; of course everything depends on Teichmüller’s theorem (see
eg, [1] or [22]).

Let FP � MF �MF denote the set of jointly �lling pairs, and let PFP be
the image of FP under the product of projection maps P�P : MF �MF !
PMF �PMF .

Associated to each jointly �lling pair (�; �) 2 PFP we associate a Teichmüller
line

 −!
(�; �), following [17]. Choosing a transverse pair of measured foliations

Fx;Fy representing �; � respectively, we obtain a parameterized Teichmüller
geodesic given by the map t 7! �(e−tFx; etFy); it follows from Teichmüller’s
theorem that this map is an embedding R ! T . Uniqueness of Fx;Fy up
to joint isotopy and positive scalar multiplication imply that the map t 7!
�(e−tFx; etFy) is well-de�ned up to translation of the t{parameter, as is easily
checked. Thus, the image of this map is well de�ned and is denoted

 −!
(�; �); in ad-

dition, parameter di�erence between points on the line is well-de�ned, and there
is a well-de�ned orientation. The positive direction of the geodesic is de�ned to
be the point � = PFy 2 PMF , the projective class of the vertical measured
foliation; the negative direction is the point � = PFx 2 PMF . Note that as
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t! +1 the vertical measured foliation becomes \exponentially thicker" and so
dominates over the horizontal foliation which becomes \exponentially thinner",
a useful mnemonic for remembering which direction is which.

Teichmüller’s theorem says that any two distinct points of T lie on a unique
Teichmüller line: for any � 6= � 2 T there exists a unique pair (�; �) 2 PFP
such that �; � 2

 −!
(�; �). Moreover, if d(�; �) is the parameter di�erence between

� and � along this geodesic, then d is a metric on T , called the Teichmüller
metric. In particular, each line

 −!
(�; �) is, indeed, a geodesic for the Teichmüller

metric. It is also true that the segment [�; � ] �
 −!
(�; �) is the unique geodesic seg-

ment connecting � to � , and hence geodesic segments are uniquely extensible.
Thus we obtain a 1{1 correspondence between oriented geodesic segments and
the set T �T . Also, every bi-in�nite geodesic line in T is uniquely expressible
in the form

 −!
(�; �), and so we obtain a 1{1 correspondence between oriented

geodesic lines and the set PFP � PMF �PMF .

There is a also 1{1 correspondence between geodesic rays in T and the set
T � PMF : for any � 2 T and � 2 PMF there is a unique geodesic ray,
denoted

−−!
[�; �), whose endpoint is � and whose direction is � 2 PMF , and every

geodesic ray has this form. This is an immediate consequence of the Hubbard{
Masur theorem [21], which says that for each � 2 T the map QD� ! MF
taking q 6= 0 2 QD� to [Fy(q)] is a homeomorphism.

Throughout the paper, the term \geodesic" will refer to any geodesic segment,
ray, or line in T . Geodesics in T are uniquely extendable: any geodesic segment
or ray is contained in a unique geodesic line. Since T is a complete metric
space, an argument using the Ascoli{Arzela theorem shows that any sequence
of geodesics, each element of which intersects a given bounded subset of T , has
a subsequence converging pointwise to a geodesic.

By unique extendability of geodesics it follows that T is a proper, geodesic
metric space. From the de�nitions it follows that the action of MCG on T
is isometric, and so the metric on T descends to a proper, geodesic metric on
M = T =MCG.

The reader is cautioned that a geodesic ray
−−!
[�; �) is not known to converge in

T to its direction � 2 PMF . However, consider the case where � is uniquely
ergodic, which means that for any measured foliation F representing � , every
transverse measure on the underlying singular foliation of F is a scalar multiple
of the given measure on F . In this case the ray

−−!
[�; �) does converge to � , as is

proved by Masur [30], and so in this situation the direction � is also called the
end or endpoint of the ray.
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Cobounded geodesics in T A subset A � T is cobounded if the image of
A under the projection T !M is a bounded subset of M; equivalently, there
is a bounded subset of T whose translates by the action of MCG cover A.
If the bounded set B � M contains the projected image of A then we also
say that A is B{cobounded. Since M is a proper metric space it follows that
A is cobounded in T if and only if A is \co-precompact", meaning that the
projection of A to M has compact closure.

One common gauge for coboundedness, as noted by Mumford [42], is the injec-
tivity radius of a hyperbolic structure, or to put it another way, the length ‘(�)
of the shortest closed geodesic in a hyperbolic structure � .3 For each � > 0 the
\�{thick subset" of T , namely the set T� = f� 2 T

�� ‘(�) � �g, is an MCG
equivariant subset of T projecting to a compact subset of M, and as � ! 0
this gives an exhaustion of M by compact sets. A subset of T is therefore
cobounded if and only if it is contained in the �{thick subset of T for some
� > 0.

Extremal length, rather than hyperbolic length, is used to obtain another com-
mon gauge of coboundedness, and is comparable to the length of the shortest
geodesic by Maskit’s work [27].

We rarely use any particular gauge for coboundedness. Instead, the primary way
in which we use coboundedness is in carrying out compactness arguments over
closed, bounded subsets. For this reason we rarely refer to any gauge, instead
sticking with coboundedness as the more primitive mathematical concept.

One important fact we need is that if � =
−−!
[�; �) is a cobounded geodesic ray

in Teichmüller space then � converges to � in Thurston’s compacti�cation
T = T [ PMF . This follows from two theorems of Masur. First, since � is
cobounded, the direction � 2 PMF is uniquely ergodic; this result, proved in
[29], was later sharpened in [31] to show that if � is not uniquely ergodic then the
projection of

−−!
[�; �) to moduli space leaves every compact subset. Second, when

� is uniquely ergodic, any ray with direction � converges to � in Thurston’s
compacti�cation. This is a small part of a Masur’s Two Boundaries Theorem
[30], concerning relations between the Teichmüller boundary and the Thurston
boundary of T (we will use the full power of this theorem in the proof of
Theorem 1.1).

The following result is essentially a consequence of [38]:

3Also called the \systole" in the di�erential geometry literature.
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Lemma 2.4 (End Uniqueness) If
−−!
[�; �),

−−!
[�; �) are two cobounded rays in T

which have �nite Hausdor� distance in T then � = � . If
 −−!
(�; �0),

 −−!
(�; �0) are

two cobounded lines in T which have �nite Hausdor� distance then, up to
relabelling the ends of one of the lines, we have � = � and �0 = �0 , and so −−!
(�; �0) =

 −−!
(�; �0).

Proof For the proof we review briefly notions of extremal length, in the clas-
sical setting of simple closed curves, as well as Kerckho�’s extension to the
setting of measured foliations [26].

Recall that for any conformal structure on an open annulus A there is a unique
Euclidean annulus of the form S1 � (0;M) conformally equivalent to A, with
M 2 R+ [ f1g; the modulus of A, denoted M(A), is de�ned to be the
number M . For any Riemann surface S� and any isotopy class of simple closed
curves [c] 2 C , the extremal length ‘ext(�; [c]) is the in�mum of 1=M(A) taken
over all annuli A � F whose core is in the isotopy class [c].

Kercko� proved [26] that the function ‘ext : T � (R+ � C) ! (0;1) de�ned by
‘ext(�; r[c]) 7! r‘ext(�; [c]) extends continuously to a function ‘ext : T �MF !
[0;1). Moreover, for any transverse pair of measured foliations Fx;Fy with
associated conformal structure � = �(Fx;Fy) and quadratic di�erential q =
q(Fx;Fy), we have

‘ext(�;Fy) =
p
kqk

Given X 2 MF , the extremal length horoball based at X is de�ned to be
H(X) = f� 2 T

�� ‘ext(�;X) � 1g. Note for example that, setting � = PX , for

every � 2 PMF the extremal length of X at points of
 −!
(�; �) decreases strictly

monotonically to zero as the point moves towards � , and so every Teichmüller
geodesic with positive direction PX eventually enters H(X) in the positive
direction and, once in, never leaves. Given � 2 PMF , there is a one parameter
family of extremal length horoballs based at � , namely H(X) for all X 2MF
such that PX = � .

For the �rst sentence of the theorem, consider two geodesic rays
−−!
[�; �),

−−!
[�; �)

such that � 6= � 2 PMF . Pick any extremal length horoball H based at � .
The proof of Theorem 4.3 of [38] shows that H \

−−!
[�; �) is bounded. However,

H \
−−!
[�; �) is an in�nite subray of

−−!
[�; �), and moreover as a point p 2

−−!
[�; �)

travels to in�nity in
−−!
[�; �) the horoball H contains a larger and larger ball in T

centered on p. It follows that
−−!
[�; �) and

−−!
[�; �) have in�nite Hausdor� distance

in T .
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The second sentence follows from the �rst, by dividing each line into two rays.

Remark Combining results of Masur mentioned above, one can show that
even more is true: two cobounded geodesic rays which have �nite Hausdor�
distance are asymptotic, meaning that as they go to 1, the distance between
the rays approaches zero. To see why, as mentioned earlier Masur proves that
if
−−!
[�; �) is cobounded then � is uniquely ergodic. Furthermore, two rays

−−!
[�; �),−−!

[�; �) with uniquely ergodic endpoint � are asymptotic, according to [28].

2.3 Singular SOLV spaces

Consider a geodesic g =
 −!
(�; �) in T , and let Sg ! g be the canonical marked

Riemann surface bundle over g , obtained by pulling back the canonical marked
Riemann surface bundle S ! T . Topologically we identify Sg = S� g . Choos-
ing a transverse pair of measured foliations Fx;Fy representing �; � respec-
tively, we have g(t) = �(e−tFx; etFy). Let jdyj be the transverse measure on
the horizontal measured foliation Fx and let jdxj be the transverse measure
on the vertical measured foliation Fy . We may assume that the pair Fx;Fy is
normalized, meaning that the Euclidean area equals 1:

kq(Fx;Fy)k =
Z
S
jdxj � jdyj = 1

and hence for all t 2 R the pair e−tFx; etFy is normalized:∥∥q(e−tFx; etFy)∥∥ =
Z
S

��etdx��� ��e−tdy�� = 1

Note that the singular Euclidean metric on each �ber Sg(t) , may be expressed
as

ds2
� = e2t jdxj2 + e−2t jdyj2

De�ne the singular solv metric on Sg to be the singular Riemannian metric
given by the formula:

ds2
g = e2t jdxj2 + e−2t jdyj2 + dt2

We use the notation Ssolv

g to denote Sg equipped with this metric. The univer-
sal cover of Sg is the canonical Poincar�e disc bundle Hg over g , and lifting the
singular solv metric from Ssolv

g to Hg we obtain a singular solv space denoted
Hsolv

g . The singular locus of Ssolv

g = S � g is the union of the singular lines
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s � g , one for each singularity s of the pair Fx;Fy . Away from the singular
lines, Ssolv

g and Hsolv

g are locally modelled on 3{dimensional solv{geometry.
On each singular line the metric is locally modelled by gluing together several
copies of the half-plane y � 0 in solv{geometry.

2.4 Comparing hyperbolic and singular Euclidean structures

Given � 2 T , the Riemann surface S� has several important metrics in its
conformal class: a unique hyperbolic metric; and one singular Euclidean metric
for each q 2 QD� . These lift to the universal cover H� . Given �; � 2 T , if
each Riemann surface S� , S� is given either its unique hyperbolic metric or
one of its singular Euclidean metrics, then for any marked map � : S� ! S� ,
each lift e� : H� ! H� is a quasi-isometry. We are interested in how the quasi-
isometry constants of e� compare to the Teichmüller distance d(�; �), although
we need only the crudest estimates. Proposition 2.5 shows how to bound the
quasi-isometry constants in terms of d(�; �). Part 1 of this proposition was �rst
proved by Minsky in [37], Lemma 3.3; we give a quicker proof using Lemma 2.2.

Proposition 2.5 For each bounded subset B � M and each r > 0 there
exists K � 1; C � 0; A � 0 such that the following hold:

(1) Suppose that �; � 2 T are each B{cobounded and d(�; �) � r . Let
f�� : S� ! S� be the canonical marked map S� = S � � ! S � � = S� .
If we impose on S� and S� either the hyperbolic metric or the singular
Euclidean metric associated to some normalized quadratic di�erential,
then any lift ef�� : H� !H� of f�� is a K;C quasi-isometry.

(2) Let �i 2 T , i = 1; 2; 3, be B{cobounded and have pairwise distances � r ,
let metrics be imposed on S�i as above, and let fij : S�i ! S�j , etc. be the

marked maps as above, with K;C{quasi-isometric lifts efij : H�i ! H�j .

If ef13 is the unique lift of f13 such that

@ ef23 � @ ef12 = @ ef13;

then

dsup( ef23 � ef12; ef13) � A:

Proof Part (1) is an easy consequence of Lemma 2.2, as follows. Choose a com-
pact subset A � T whose image in M covers B and such that over any point of
B there exists a point � 2 A such that BT (�; r) � A. It follows that the points
�; � in (1) may be translated to lie in A. Identifying SA di�eomorphically with
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S �A, compactness of A produces a compact family of hyperbolic metrics on
S , and compactness of the restriction of QD1 to A produces a compact family
of singular Euclidean metrics. Now apply Lemma 2.2.

For part (2), note that by compactness of A and of the compactness of the
restriction of QD1 to A, there exists a uniform � such that any hyperbolic
metric and any normalized singular Euclidean structure determined by an el-
ement � 2 A has a �{hyperbolic universal cover. Part (2) is now a direct
consequence of Lemma 2.3.

3 Convex cocompact subgroups of Isom(T )

3.1 Variations of convex cocompactness

Given a proper, geodesic metric space X , a subset L � X is quasiconvex if
there exists A � 0 such that every geodesic segment in X with endpoints in L
is contained in the A{neighborhood of L.

When G is a �nitely generated, discrete subgroup of the isometry group of Hn ,
it is well known that the following properties of G are all equivalent to each
other:

Orbit Quasiconvexity Any orbit of G is a quasiconvex subset of Hn .

Single orbit quasiconvexity There exists an orbit of G which is quasicon-
vex in Hn .

Convex cocompact G acts cocompactly on the convex hull of its limit set
�.

Moreover, these properties imply that G is word hyperbolic, and there is a
continuous G{equivariant embedding of the Gromov boundary @G into @Hn

whose image is the limit set �. Similar facts hold for �nitely generated groups
acting discretely on any Gromov hyperbolic space, for example �nitely gener-
ated subgroups of Gromov hyperbolic groups.

In this section we prove Theorem 1.1, which is a list of similar equivalences
for �nitely generated subgroups of the isometry group of the Teichmüller space
T of S . In this case the entire isometry group Isom(T ) acts discretely on
T , and in fact by Royden’s Theorem [45], [24] the canonical homomorphism
MCG ! Isom(T ) is an isomorphism, except in genus 2 where the kernel is
cyclic of order 2.
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Although T fails to be negatively curved in any reasonable sense, nevertheless
one can say that it behaves in a negatively curved manner as long as one focusses
only on cobounded aspects. This, at least, is one way to interpret the projection
properties introduced by Minsky in [38] and further developed by Masur and
Minsky in [32]. Given a B{cobounded geodesic g in T , Minsky’s projection
property says that a closest point projection map of T onto g behaves in
a negatively curved manner, such that the quality of the negative curvature
depends only on B . See Theorem 3.6 for the precise statement.

For a �nitely generated subgroup G � Isom(T ) we can obtain equivalences as
above, as long as we tack on an appropriate uniform coboundedness property;
in some cases the desired property comes for free by uniform coboundedness of
the action of G on any of its orbits.

First we have some properties of G which are variations on orbit quasiconvexity:

Orbit quasiconvexity Any orbit of G is quasiconvex in T .

Single orbit quasiconvexity There exists an orbit of G that is quasiconvex
in T .

Weak orbit quasiconvexity There exists a constant A and an orbit O of G,
and for each x; y 2 O there exists a geodesic segment [x0; y0] in T , such
that d(x; x0) � A, d(y; y0) � A, and [x0; y0] is in the A{neighborhood of
O .

The latter is a more technical version of orbit quasiconvexity which is quite
useful in several settings.

Another property of G is a version of convex cocompactness, into which we
incorporate the hyperbolicity properties mentioned above:

Convex cocompact The group G is word hyperbolic, and there exists a con-
tinuous G{equivariant embedding f1 : @G ! PMF with image �G ,
such that �G � �G −� � PFP , and the following holds. Letting

WHG = [f
 −−!
(�; � 0)

�� � 6= � 0 2 �Gg

be the weak hull of �G , if f : G!WHG is any G{equivariant map, then
f is a quasi-isometry and the map f = f [ f1 : G [ @G!WHG [�G is
continuous.

In this de�nition, WHG is metrized by restricting the Teichmüller metric on T ,
which a posteriori has the e�ect of making WHG into a quasigeodesic metric
space. The de�nition implies that G acts cocompactly on WHG : since �G �
�G−� is a closed subset of PFP it follows that WHG is a closed subset of T ;
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and since G acts coboundedly on itself it follows that G acts coboundedly on
WHG ; thus, the image of WHG in moduli space is closed and bounded, hence
compact.

3.2 Properties of convex cocompact subgroups

In this section we prove several properties of convex cocompact subgroups of
Isom(T ) which are analogues of well known properties in Isom(Hn).

Proposition 3.1 Every in�nite order element g of a convex cocompact sub-
group G < Isom(T ) �MCG is a pseudo-Anosov mapping class.

Proof Any in�nite order element of a word hyperbolic group has source{sink
dynamics on its Gromov boundary, and so g has source{sink dynamics on @G �
�G . It follows that g has an axis in WHG . But the elements of Isom(T ) �
MCG having an axis in T are precisely the pseudo-Anosovs [5].

The following is a consequence of work of McCarthy and Papadoupolos [36].

Proposition 3.2 If G is a convex cocompact subgroup of Isom(T ) then:

(1) �G is the smallest nontrivial closed subset of T = T [ PMF invariant
under G.

(2) The action of G on PMF n �G is properly discontinuous.

Proof The Gromov boundary of a word hyperbolic group is the closure of the
�xed points of in�nite order elements in the group, and so by Proposition 3.1
the set �G is the closure of the �xed points of the pseudo-Anosov elements of
G. Item (1) now follows from Theorem 4.1 of [36].

To prove (2), let

Z(�) = f� 2 PMF
�� there exists � 0 2 � such that i(�; � 0) = 0g

Theorem 6.16 of [36] says that G acts properly discontinuously on PMF −
Z(�), and so it su�ces to prove that � = Z(�). Each point � 0 2 � is the ideal
endpoint of a cobounded geodesic ray, which implies that � 0 is uniquely ergodic
and �lls the surface [29], and so if i(�; � 0) = 0 then � = � 0 .

Geometry & Topology, Volume 6 (2002)



Convex cocompact subgroups of mapping class groups 119

Remark One theme of [36] is that for a general �nitely generated subgroup
G < MCG, there are several di�erent types of \limit sets" for the action of G
on PMF . Assuming that G contains a pseudo-Anosov element, the two sets
mentioned in the proof above play key roles in [36]: �(G) which is the closure
of the �xed points of pseudo-Anosov elements of the subgroup, and is also the
smallest nontrivial closed G{invariant subset; and the set Z(�(G)). What we
have proved is that for a convex cocompact subgroup G, these two sets are
identical. Henceforth we refer to �G as the limit set for the action of G on
PMF .

The analogue of the following result is true for convex cocompact discrete sub-
groups of Hn , as well as for word hyperbolic groups [2]; the proof here is similar.

Proposition 3.3 Let G be a convex cocompact subgroup of Isom(T ), and
let NG and CommG be the normalizer and the relative commensurator of G
in Isom(T ). Then each of the inclusions G < NG < CommG is of �nite index,
and we have CommG = Stab(�G) = Stab(WHG).

Proof Let �G be the limit set of G, with weak hull WHG , and note that we
trivially have Stab(WHG) = Stab(�G).

Note that Stab(WHG) acts properly on WHG . Indeed, Isom(T ) acts properly
on T , and so any subgroup of Isom(T ) acts properly on any subset of T
which is invariant under that subgroup. Since G � Stab(WHG), and since G
acts cocompactly on WHG , it follows that G is contained with �nite index in
Stab(WHG). This implies that Stab(WHG) � CommG . To complete the proof
we only have to prove the reverse inclusion CommG � Stab(WHG).

Given g 2 Isom(T ), suppose that g 2 CommG , and choose �nite index sub-
groups H;K < G such that g−1Hg = K . By the de�nition of convex cocom-
pactness it follows that WHH = WHG = WHK . Since g(WHK) = WHH it
follows that g 2 Stab(WHG).

Remark Another natural property for subgroups G < MCG is quasiconvex-
ity with respect to the word metric on MCG. It seems possible to us that this
is not equivalent to orbit quasiconvexity of G in Isom(T ). Masur and Minsky
[33] give an example of an in�nite cyclic subgroup of Isom(T ) which is not orbit
quasiconvex, and yet this subgroup is quasi-isometrically embedded in MCG
[14]; it may also be quasiconvex in MCG, but we have not investigated this.
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3.3 Equivalence of de�nitions: Proof of Theorem 1.1

Here is our main result equating the various quasiconvexity properties with
convex cocompactness:

Theorem 1.1 If G is a �nitely generated subgroup of Isom(T ), the following
are equivalent:

(1) Orbit quasiconvexity

(2) Single orbit quasiconvexity

(3) Weak orbit quasiconvexity

(4) Convex cocompactness

Because of this theorem we are free to refer to \quasiconvexity" or \convex
cocompactness" of G without any ambiguity.

Proof of Theorem 1.1 The key ingredients in the proof are results of Minsky
from [38] concerning projections from balls and horoballs in T to geodesics in
T , and results of Masur{Minsky [32] characterizing �{hyperbolicity of proper
geodesic metric spaces in terms of projections properties to paths.

To begin with, note that the implications (1) ) (2) ) (3) are obvious. We
now prove that (3)) (1).

Suppose we have an orbit O of G and a constant A, and for each x; y 2 O we
have two points x0; y0 2 T , endpoints of a unique geodesic segment [x0; y0] in
T , such that d(x; x0) � A, d(y; y0) � A, and [x0; y0] � NA(O). The set O maps
to a single point in M and so the projection of NA(O) to M is a bounded
set B . It follows that each [x0; y0] is B{cobounded. Now consider an arbitrary
orbit O1 of G; we must prove that O1 is quasiconvex in T . The orbits O;O1

have �nite Hausdor� distance C in T . Given x1; y1 2 O1 , choose x; y 2 O
within distance C of x1; y1 , respectively, and consider the geodesic segment
[x0; y0] and the piecewise geodesic path

γ = [x0; x] � [x; x1] � [x1; y1] � [y1; y] � [y; y0]

Of the �ve subsegments of γ , all but the middle subsegment have length
� MaxfA;Cg, and it follows that γ is a (1;D){quasigeodesic in T , with D
depending only on A;C . Since the geodesic [x0; y0] is B{cobounded we can
apply the following result of Minsky [38] to obtain � , depending only on B and
D , such that γ � N�[x0; y0].
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Theorem 3.4 (Stability of cobounded geodesics) For any bounded subset B
of M and any K � 1; C � 0 there exists � � 0 such that if γ is a K;C
quasigeodesic in T with endpoints x; y , and if [x; y] is B{cobounded, then
γ � N�[x; y].

It follows that [x1; y1] � γ � N�+AO � N�+A+CO1 , proving quasiconvexity of
O1 in T .

Weak orbit quasiconvexity implies convex cocompactness Fix an orbit
O of G, and so O is quasiconvex in T . Let G be the set of all geodesic segments,
rays, and lines that are obtained as pointwise limits of sequences of geodesics
with endpoints in O . Let [G � T be the union of the elements of G . The left
action of G on O is evidently cobounded. By quasiconvexity of O it follows
that the action of G on the union of geodesic segments with endpoints in O
is cobounded, which implies in turn that the action of G on [G is cobounded.
Since [G is closed and T is locally compact, it follows that the G action on
[G is cocompact. The set [G therefore projects to a compact subset of M
which we denote B . All geodesics in G are therefore B{cobounded.

Let [G be equipped with the restriction of the Teichmüller metric. Note that
while [G is not a geodesic metric space, it is a quasigeodesic metric space:
there exists A � 0 such that any x; y 2 [G are within distance A of points
x0; y0 2 O � [G , and the geodesic [x0; y0] is contained in [G .

To prepare for the proof that G is word hyperbolic, �x a �nite generating set for
G with Cayley graph Γ, and �x a G{equivariant map f : Γ ! [G taking the
vertices of Γ to O and taking each edge of Γ to an element of G . Since G acts
properly and coboundedly on both Γ and [G , and since both are quasigeodesic
metric spaces, it follows that the equivariant map f is a quasi-isometry between
Γ and [G ; pick a coarse inverse F : [ G ! Γ.

By de�nition the group G is word hyperbolic if and only if the Cayley graph Γ
is �{hyperbolic for some � � 0. Our proof that G is word hyperbolic will use
a result of Masur and Minsky, Theorem 2.3 of [32]:

Theorem 3.5 Let X be a geodesic metric space and suppose that there is a
set of paths P in X with the following properties:

Coarse transitivity There exists C � 0 such that for any x; y 2 X with
d(x; y) � C there is a path in P joining x and y .

Contracting projections: There exist a; b; c > 0, and for each path γ : I !
X in P there exists a map � : X ! I such that:
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Coarse projection For each t 2 I we have diam (γ[t; �(γt)]) � c.
Coarse lipschitz If d(x; y) � 1 then diam (γ[�x; �y]) � c.
Contraction If d(x; γ(�x)) � a and d(x; y) � b � d(x; γ(�x)) then

diam (γ[�x; �y]) � c

Then X is �{hyperbolic for some � � 0.

To prove that G is �{hyperbolic we take P to be the set of geodesic segments
in G, and we look at the set of paths f � P = ff � γ

�� γ 2 Pg in [G . Using
some results of Minsky [38], we will show that f �P satis�es the hypotheses of
Theorem 3.5. Then we shall pull the hypotheses back to P and apply Theorem
3.5.

The �rst result of Minsky that we need is the main theorem of [38]:

Theorem 3.6 (Contraction Theorem) For every bounded subset B of M
there exists c > 0 such that if γ is any B{cobounded geodesic in T then
the closest point projection T ! γ satis�es the (a; b; c) contracting projection
property with (a; b) = (0; 1).

In our context, where we have a uniform B such that each geodesic in G is
B{cobounded, it follows that there is a uniform c such that each geodesic in G
satis�es the (0; 1; c) contracting projection property.

Now consider γ = [x0; x1; : : : ; xn] a geodesic in the Cayley graph Γ, mapping
via f to a piecewise geodesic fγ = [fx0; fx1] [ � � � [ [fxn−1; fxn] in [G , with
each subsegment [fxi; fxi+1] an element of G . It follows that fγ is a K;C
quasigeodesic in T , for K � 1; C � 0 independent of the given geodesic in
Γ. The T {geodesic [fx0; fxn] is B{cobounded. Applying Theorem 3.4 it fol-
lows that fγ � ND[fx0; fxn], where D depends only on B;K;C . As noted
above, closest point projection from T onto [fx0; fxn] satis�es the (0; 1; c)
contracting projection property. From this it follows that closest point projec-
tion � : T ! fγ satis�es the (a0; b0; c0) contraction property where (a0; b0; c0)
depend only on B;K;C . Now de�ne the projection Γ! γ to be the composi-
tion Γ

f−! [G �−! fγ
F−! Γ ! γ where the last map is closest point projection

in Γ. This composition clearly satis�es the (a00; b00; c00) projection property
where (a00; b00; c00) depend only on (a0; b0; c0) and the quasi-isometry constants
and coarse inverse constants for f; F .

Geodesics in Γ are clearly coarsely transitive, and applying Theorem 3.5 it
follows that G is word hyperbolic. This means that geodesic triangles in Γ are
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uniformly thin, and it implies that for each K;C there is a � such that K;C
quasigeodesic triangles in Γ are �{thin. Applying the quasi-isometry between
Γ and [G , it follows that there is a uniform � such that for each x; y; z 2 O
the geodesic triangle 4[x; y; z] in [G is �{thin; we �x this � for the arguments
below.

Now we turn to a description of the \limit set" � � PMF of G, with the
ultimate goal of identifying it with the Gromov boundary @G.

Each geodesic ray in G has the form
−−!
[x; �), for some x 2 O , � 2 PMF ; de�ne

� � PMF be the set of all such points � , over all geodesic rays in G . The set
� is evidently G{equivariant.

Fact 1 For any x 2 O , � 2 �, the ray
−−!
[x; �) in T is an element of G .

To prove this, by de�nition of � there exists a ray
−−!
[y; �) in G for some y 2 O .

Choose a sequence y1; y2; : : : 2 O staying uniformly close to
−−!
[y; �) and going

to in�nity. Pass to a subsequence so that the sequence of segments [x; yn]
converges to some ray

−−−!
[x; �0) 2 G ; it su�ces to show that �0 = � . Since x is

�xed and the points yn stay uniformly close to
−−!
[y; �), it follows by Theorem

3.4 that the segments [x; yn] stay uniformly close to
−−!
[y; �), and so

−−−!
[x; �0) is in

a �nite neighborhood of
−−!
[y; �). The reverse inclusion, that

−−!
[y; �) is in a �nite

neighborhood of
−−−!
[x; �0), is a standard argument: as points move to in�nity in−−−!

[x; �0) taking bounded steps, uniformly nearby points move to in�nity in
−−!
[y; �)

also taking bounded steps, and thus must come uniformly close to an arbitrary
point of

−−!
[y; �). This shows that the rays

−−−!
[x; �0),

−−!
[y; �) have �nite Hausdor�

distance, and applying Lemma 2.4 (End Uniqueness) shows that � = �0 .

Note that in the proof of Fact 1 we have established a little more, namely that
for any x; y 2 O and � 2 � the rays

−−!
[x; �) and

−−!
[y; �) have �nite Hausdor�

distance. This will be useful below.

Fact 2 For any � 6= � 2 � there exists a line
 −!
(�; �) contained in G .

From Fact 2 it immediately follows that ���−� � PFP , that the weak hull
WHG of � is de�ned, and that G acts coboundedly on WHG , since G acts
coboundedly on [G .

To prove Fact 2, pick a point x 2 O , and note that by Fact 1 we have two
rays

−−!
[x; �),

−−!
[x; �) in G . Pick a sequence yn 2 O staying uniformly close to
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−−!
[x; �) and going to in�nity, and a sequence zn 2 O staying uniformly close
to
−−!
[x; �) and going to in�nity. We have a sequence of triangles [x; yn; zn] in

G , all �{thin. Applying Theorem 3.4 there is a D such that the sides [x; yn]
are contained in the D{neighborhood of

−−!
[x; �), and the sides [x; zn] are con-

tained in the D{neighborhood of
−−!
[x; �). Each side [yn; zn], being contained in

the �{neighborhood of [x; yn] [ [x; zn], is therefore contained in the D + �{
neighborhood of

−−!
[x; �) [

−−!
[x; �).

We claim that the point x is uniformly close to the segments [yn; zn]. If not,
then from uniform thinness of the triangles [x; yn; zn] it follows that there are
points y0n 2 [x; yn] and z0n 2 [x; zn] such that the segments [x; y0n] and [x; z0n]
get arbitrarily long while the Hausdor� distance between them stays uniformly
bounded. This implies that there are sequences y00n 2

−−!
[x; �) going to in�nity

and z00n 2
−−!
[x; �) going to in�nity such that the Hausdor� distance between the

segments [x; y00n] and [x; z00n] stays uniformly bounded, which implies in turn
that the rays

−−!
[x; �) and

−−!
[x; �) have �nite Hausdor� distance. Applying End

Uniqueness 2.4, it follows that � = � , contradicting the hypothesis of Fact 2,
and the claim follows.

Passing to a subsequence and applying Ascoli{Arzela it follows that [yn; zn]
converges to a line in G . One ray of this line is Hausdor� close to

−−!
[x; �) and so

has endpoint � , and the other ray is Hausdor� close to
−−!
[x; �) and so has endpoint

� , by End Uniqueness. We therefore have lim[yn; zn] =
 −!
(�; �), completing the

proof of Fact 2.

Now we de�ne a map f1 : @G! �. Recall that the relation of �nite Hausdor�
distance is an equivalence relation on geodesic rays in the Cayley graph Γ
of G, and @G is the set of equivalence classes. Consider then a point � 2
@G represented by two geodesic rays [x0; x1; : : : ) and [y0; y1; : : : ) with �nite
Hausdor� distance in Γ. These map to piecewise geodesic, quasigeodesic rays
� = [fx0; fx1][ [fx1; fx2][ � � � and � = [fy0; fy1][ [fy1; fy2][ � � � with �nite
Hausdo� distance in [G . The sequence of geodesic segments [fx0; fxn] in G
has a subsequence converging to some ray

−−−−!
[fx0; �) in G , and [fy0; fyn] has a

subsequence converging to some ray
−−−−−!
[fy0; �

0) in G . To obtain a well de�ned
map @G! � it su�ces to prove that � = � 0 , and then we can set f1(�) = � .

To prove that � = � 0 it su�ces, by End Uniqueness 2.4, to prove that the rays−−−−!
[fx0; �) and

−−−−−!
[fy0; �

0) have �nite Hausdor� distance in T . Since the piecewise
geodesic rays �; � have �nite Hausdor� distance in T , it su�ces to prove that �
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has �nite Hausdor� distance from
−−−−!
[fx0; �), and similarly � has �nite Hausdor�

distance from
−−−−−!
[fy0; �

0). Consider a point p 2 �. For su�ciently large n we
have p 2 �n = [fx0; fx1] [ � � � [ [fxn−1; fxn]. Applying Theorem 3.4 there
is a uniform constant D such that �n � ND([fx0; fxn]), and so p is within
distance D of some point in [fx0; fxn]. Since

−−−−!
[fx0; �) is the pointwise limit of

[fx0; fxn] as n !1 it follows that p is within a uniformly bounded distance
of
−−−−!
[fx0; �). This shows that � is within a �nite neighborhood of

−−−−!
[fx0; �). The

reverse inclusion is a standard argument: as points move along � towards the
end taking bounded steps, uniformly nearby points move along

−−−−!
[fx0; �) towards

the end also taking bounded steps, and thus must come uniformly close to some
point of

−−−−!
[fx0; �).

Hence f1 : @G ! � is well de�ned. Observe that a similar argument proves
a little more: if xi 2 G converges to � 2 @G then the segments [fx0; fxi]
converge in the compact{open topology to the ray

−−−−−!
[fx0; f�); details are left to

the reader.

We now turn to verifying required properties of f1 .

To see that f1 is surjective, consider a point � 2 � and pick a ray
−−!
[x; �) in G . It

follows that � = F
�−−!

[x; �)
�

is a quasigeodesic ray in Γ. Since Γ is �{hyperbolic
it follows that � has �nite Hausdor� distance from some geodesic ray �0 in Γ,
with endpoint � 0 2 @G. As shown above, f(�0) has �nite Hausdor� distance
from some geodesic ray

−−−−−−!
[x0; f1� 0). Since f; F are coarse inverses it follows that

−−!
[x; �) has �nite Hausdor� distance from

−−−−−−!
[x0; f1� 0), and so by End Uniqueness

it follows that � = f1� 0 .

To see that f1 is injective, consider two points �; � 2 @G and suppose that
f1(�) = f1(�); let � 2 � be this point. Pick rays �; � in Γ representing �; �
respectively. As we have just seen, the images f(�), f(�) have �nite Hausdor�
distance in T to rays

−−!
[y; �),

−−!
[z; �) in G , respectively. As noted at the end of the

proof of Fact 1, the rays
−−!
[y; �) and

−−!
[z; �) have �nite Hausdor� distance in T ;

applying the coarse inverse F it follows that �; � have �nite Hausdor� distance
in Γ and therefore � = � .

We have shown that f1 is a bijection between @G and �. We want to prove
that f1 is a homeomorphism, and that the extension f = f [ f1 : G [ @G !
T = T [PMF is continuous. For this purpose �rst we establish:

Fact 3 � is a closed subset of PMF , and therefore compact.
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To prove this, choose a sequence �n 2 � so that lim �n = �1 in PMF ; we must
prove that �1 2 �. Choose a point x 2 O , and apply Fact 1 to obtain rays−−−!
[x; �n). Passing to a subsequence these converge to a limiting ray lim

−−−!
[x; �n) =−−−−!

[x; � 01) in G , and so � 01 2 �. Looking in the unit tangent bundle of T at the
point x it follows that lim �n = � 01 , and so �1 = � 01 2 �.

Fact 4 f1 : @G! � is a homeomorphism.

Since both the domain and range are compact Hausdor� spaces it su�ces to
prove continuity in one direction. Continuity of f−1

1 follows by simply noting
that for �xed x 2 O and for a convergent sequence �n ! � in � � PMF ,
the sequence of rays

−−−!
[x; �n) converges in the compact open topology to the ray−−!

[x; �).

Fact 5 The map f = f [ f1 : G [ @G! T = T [PMF is continuous.

To be precise, this map is continuous using the Thurston compacti�cation T
of T . We prove this by showing �rst that the map is continuous using the Te-
ichmüller compacti�cation, and then we apply Masur’s Two Boundaries Theo-
rem [30] which says that the map from the Teichmüller compacti�cation to the
Thurston compacti�cation is continuous at uniquely ergodic points of PMF .

First we recall the Teichmüller compacti�cation in a form convenient for our cur-
rent purposes. There are actually many di�erent Teichmüller compacti�cations,
one for each choice of a base point in T ; we shall �x a base point z = f(x) 2 O
for some x 2 G. As we have seen, there is a unique geodesic segment [z; z0]
for each z0 2 T , and a unique geodesic ray

−−!
[z; �) for each � 2 PMF . The

Teichmüller topology on T = T [ PMF restricts to the standard topologies
on T and on PMF , it has T as a dense open subset, and a sequence zi 2 T
converges to � 2 PMF if and only if the sequence of segments [z; zi] converges
to the ray

−−!
[z; �) in the compact open topology; equivalently, letting B denote

the unit ball in T centered on z , the distance d(z; zi) goes to in�nity and the
set [z; zi] \B converges to the set

−−!
[z; �) \B in the Hausdor� topology.

We already proved in Fact 4 that f1 is continuous; for this we implicitly used
the fact that the Thurston topology on PMF is identical to the Teichmüller
topology, de�ned by identifying PMF with the unit tangent bundle at x.
We also observed earlier, after the proof that f1 is well-de�ned, that if xi 2
G converges to � 2 @G, then f(xi) 2 T converges to f1(�) 2 PMF in
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the Teichmüller topology on T . Putting these together it follows that f is
continuous using the Teichmüller topology on T . Since � = f1(@G) consists
entirely of uniquely ergodic points in PMF , Masur’s Two Boundaries Theorem
[30] implies that the identity map on T is continuous from the Teichmüller
topology to the Thurston topology at each point of �, and so f is continuous
using the Thurston topology on T .

We now put the pieces together to complete the proof of convex cocompact-
ness. Let f 0 : G ! WHG be an arbitrary G{equivariant map, and de�ne
f 01 : @G! PMF to be equal to f1 . We must prove that f 0 is a quasi-isometry
and that the extension �f 0 = f 0[f 01 : G[@G!WHG [�G is continuous. From
Facts 1{5 above, it follows that the quasi-isometry f : G! [G has continuous
extension �f : G[@G! [G[�, and so [G is a Gromov hyperbolic metric space
with Gromov compacti�cation [G[�. Since WHG � [G is a G{invariant sub-
set, it follows that WHG is Gromov hyperbolic with Gromov compacti�cation
WHG [�. The map f 0 is a G{equivariant map between quasigeodesic metric
spaces on which G acts properly and coboundedly by isometries, and hence f 0

is a quasi-isometry. Since d(f 0(x); f(x)) is uniformly bounded for x 2 G, then
from the fact that f 01 = f1 it follows that �f 0 is continuous.

This completes the proof that weak orbit quasiconvexity implies convex cocom-
pactness.

Convex cocompact implies weak orbit quasiconvexity Assuming G is
convex cocompact, pick a �nite generating set for G with Cayley graph Γ and
G{equivariant, coarsely inverse quasi-isometries f : Γ!WHG , f : WHG ! Γ.

Let O be an orbit of G in T . Since G acts coboundedly on WHG it follows
that O has �nite Hausdor� distance from WHG in T . It su�ces to show that
for any two points x; y 2 O there is a geodesic line whose in�nite ends are in
� such that x; y come within a uniformly �nite distance of that line.

Pick a G{equivariant map g : Γ ! T taking the vertices of Γ bijectively to
O and each edge of Γ to a geodesic segment, so f and g di�er by a bounded
amount. Since Γ is �{hyperbolic it follows that there is a constant A such that
any two vertices of Γ lie within distance A of some bi-in�nite geodesic. Pick
x; y 2 O , and pick a bi-in�nite geodesic γ in Γ such that g−1(x); g−1(y) are
within distance A of γ . Let �; � 2 @G be the two ends of γ . By the statement
of convex cocompactness, there is a K;C quasigeodesic line in Γ of the form
f
� −−−−−−!

(f1�; f1�)
�

whose two in�nite ends are �; � , where K;C are independent
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of �; � . It follows that γ and f
� −−−−−−!

(f1�; f1�)
�

are uniformly close, and so f(γ)

and
 −−−−−−!
(f1�; f1�) are uniformly close, and so the points x; y are uniformly close

to
 −−−−−−!
(f1�; f1�).

4 Hyperbolic surface bundles over graphs

In this section our goal is to give an explicit construction of model geometries for
surface group extensions, and to study regularity properties of these geometries.
Here is a brief outline; detailed constructions follow.

Consider a �nitely generated group G and a homomorphism f : G! Isom(T ) �
MCG. Let X be a Cayley graph for G. Choose a map �: X ! T which is
equivariant with respect to the homomorphism f , that is, �(g �x) = f(g) ��(x),
x 2 X; g 2 G, where we use the � notation to denote an action. By pulling
back the canonical marked hyperbolic surface bundle S ! T via the map �
we obtain a marked hyperbolic surface bundle SX ! X . By pulling back
the canonical hyperbolic plane bundle H ! T we obtain a hyperbolic plane
bundle HX ! X , and a covering map HX ! SX with deck transformation
group �1(S). There is an action of the extension group ΓG on HX such that
the covering map HX ! SX is equivariant with respect to the homomorphism
ΓG ! G.

By imposing a G{equivariant, proper, geodesic metric on SX and lifting to
HX , we can then use HX as a model geometry for the extension group ΓG .

We may summarize all this in the following commutative diagrams:

H //

��@
@@

@@
@@

@ S

��

MCG(S; p) //

''OO
OO

OO
OO

OO
O

MCG(S)

��
HX

=={{{{{{{{
//

!!D
DD

DD
DD

D
SX

??~~~~~~~~

��

T ΓG

99ssssssssss
//

%%L
LL

LL
LL

LL
LL

G f

77ooooooooooooo

��

MCG(S)

X

�

>>}}}}}}}}
G f

77ooooooooooooo

Each group in the right hand diagram acts on the corresponding space in the
left hand diagram, and each map in the left hand diagram is equivariant with
respect to the corresponding group homomorphism in the right hand diagram.

We will impose several ΓG{equivariant structures on the space HX , by �nding
appropriate G{equivariant structures on SX and lifting.

Geometry & Topology, Volume 6 (2002)



Convex cocompact subgroups of mapping class groups 129

For example, we put an equivariant, proper, geodesic metric on HX by lifting
an equivariant, proper, geodesic metric on SX . These metrics will have the
property that the topological �brations SX ! X , HX ! X are also \metric
�brations" in the following sense. In a metric space Z , given subsets A;B � Z ,
denote the min distance by dmin(A;B) = inffd(a; b)

�� a 2 A; b 2 Bg, and the
Hausdor� distance by dHaus(A;B) = inffr

�� A � Nr(B); B � Nr(A)g.

Metric �bration property A map of metric spaces f : Z ! Y satis�es the
metric �bration property if Y is covered by neighborhoods U such that
if y; z 2 U then

dmin(f−1(y); f−1(z)) = dHaus(f−1(y); f−1(z)) = dY (y; z)

4.1 Metrics and connections on surface bundles over paths

The marked hyperbolic surface bundle over a path in T Consider �rst
a smooth path � : I ! T , de�ned on a closed connected subset I � R, that
is, a closed interval, a closed ray, or the whole line. Pulling back the canonical
marked hyperbolic surface bundle S ! T via the map � we obtain a marked
hyperbolic surface bundle S� ! I . We impose a Riemannian metric on S� as
follows.

Recall that we have chosen a connection on the bundle S ! T . By pulling back
the connection on the bundle S ! T we obtain a connection on the bundle
S� ! I , that is, a 1-dimensional sub-bundle of TS� which is complementary to
the vertical sub-bundle TvS� . There is a unique vector �eld V on S� parallel to
the connection such that the projection map S� ! I takes each vector of V to
a positive unit vector in the tangent bundle of I � R. There is now a unique
Riemannian metric on S whose restriction to TvS� is the given hyperbolic
metric along leaves of S� , and such that V is a unit vector �eld orthogonal
to TvS� . Since I is closed subset of R, the path metric on S� induced from
this Riemannian metric is proper, and so by Fact 2.1 we may regard S� as a
geodesic metric space.

Here is another description of the Riemannian metric on S� . Integration of
the connection sub-bundle de�nes a 1-dimensional foliation on S� transverse
to the surface �bration, whose leaves are called connection paths. Choosing a
base leaf of the �bration S� ! I , and identifying this base leaf with S , we may
project along connection paths to de�ne a �bration S� ! S . Combining this
with the �bration S� ! I we obtain a di�eomorphism S� � S � I . Letting gt
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be the given Riemannian metric of curvature −1 on the leaf St � S � t, t 2 I ,
we obtain the Riemannian metric on S� via the formula

ds2 = g2
t + dt2:

Remark The metric on S� depends on the choice of a connection on the
bundle S ! T . However, when � is cobounded, two di�erent connections on
S ! T will induce metrics on S� which are bilipschitz equivalent, with bilips-
chitz constant depending only on the pair of connections and on the cobound-
edness of �, not on � itself.

For each s; t 2 I we have a connection map hst : Ss ! St , de�ned by moving
each point of Ss along a connection path until it hits St . Clearly we have
hst � hrs = hrt , (r; s; t 2 I ). Notice that the map hst takes each point of Ss to
the unique closest point on St , and that point is at distance js− tj. In fact,
starting from an arbitrary point on Ss , all paths to St have length � js− tj,
and the connection path is the unique one with length = js− tj. It follows that
the map S� ! I satis�es the metric �bration property.

Consider more generally a piecewise smooth path � : I ! T . On each subinter-
val I 0 � I over which � is smooth, there is a Riemannian metric as constructed
above. At a point t 2 I where two such subintervals meet, the Riemannian
metrics on the two sides agree when restricted to St . We therefore have a
piecewise Riemannian metric on S� , inducing a proper geodesic metric. The
connection paths which are de�ned over each smooth subinterval I 0 � I piece
together to give connection paths on all of S� , and we obtain connection maps
hst : Ss ! St for all s; t 2 I .

Note that since the connection on S ! T is equivariant with respect to the ac-
tion of MCG, the piecewise Riemannian metric on each S� is natural, meaning
that for any h 2MCG, the induced map S� ! Sh�� is an isometry. Similarly,
the connection paths and connection maps are also natural.

Each connection map hst : Ss ! St is clearly a di�eomorphism, and since its
domain is compact it follows that hst is bilipschitz. The next proposition ex-
hibits some regularity, bounding the bilipschitz constant of hst by a function
of js− tj that depends only on the coboundedness of the path � : I ! T , and
a lipschitz constant for �. For technical reasons we state the lemma only for
paths � : I ! T which are piecewise a�ne, meaning that I is a concatenation
of subintervals I 0 such that �

�� I 0 is an a�ne path, a constant speed reparam-
eterization of a Teichmüller geodesic. Piecewise a�ne paths are su�cient for
all of what follows.
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Lemma 4.1 For each bounded subset B � M and each � � 1 there exists
K � 1 such that the following happens. If � : I ! T is a B -cobounded,
�-lipschitz, piecewise a�ne path, then for each s; t 2 I the connection map
hst : Ss ! St is K js−tj{bilipschitz.

In what follows we shall describe the conclusion of this proposition by saying
that K is a bilipschitz constant for the connection maps on S� .

Proof A standard lemma found in most O.D.E. textbooks shows that if � is
a smooth flow on a compact manifold then there is a constant K � 1 such that
k�t(v)k � K jtj kvk. We can plug into this argument as follows.

The conclusion of the lemma is local, and so it su�ces to prove it under the
assumption that I = [0; 1] and that � is a�ne. There exists a compact subset
A � T such that any B{cobounded, �{lipschitz path � : [0; 1] ! T , can be
translated by the action of MCG to lie in the set A. Let C(A; �) be the set
of all �{lipschitz a�ne paths [0; 1] 7! A, a compact space in the compact open
topology. By naturality of the metric on S� , it su�ces to prove the lemma for
� 2 C(A; �). For each � 2 C(A; �) and each vector ~w tangent to a �ber Ss ,
s 2 [0; 1], de�ne:

l(~w) = lim
t!0

1
t

log
�
kDhs;s+t(~w)k

k~wk

�
=

d

dt

�����
t=0

log
�
kDhs;s+t(~w)k

k~wk

�
Since l(c~w) = l(~w) for c 6= 0, we may regard l(~w) as a function de�ned on
the projective tangent bundle of S crossed with I , a compact space. As ~w
varies, and as � varies over the compact space C(A; �), the function l(~w) varies
continuously, and so by compactness l(~w) has a �nite upper bound l . Setting
K = el , it now follows by standard methods that khs;s+t(~w)k � K jtj k~wk when
~w is tangent to Ss , and so hs;s+t is K jtj bilipschitz.

The hyperbolic plane bundle over a path in T Letting � : I ! T be a
piecewise a�ne path as above, by pulling back the canonical hyperbolic plane
bundle H ! T we obtain a bundle H� ! I . Note that there is a universal
covering map H� ! S� with deck transformation group �1(S) such that the
composition H� ! S� ! S equals the composition H� ! H ! S , and also
the composition H� ! S� ! I equals the �bration map H� ! I . By lifting
the piecewise Riemannian metric from S� we obtain a piecewise Riemannian
metric on H� , inducing a proper, geodesic metric. The map H� ! I satis�es
the metric �bration property. The connection paths on S� lift to connection
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paths on H� , and we obtain connection maps hst : Hs ! Ht . By applying
Lemma 4.1 it follows that if � is B{cobounded and �{lipschitz then the same
constant K = K(B; �) is a bilipschitz constant for the connection maps on H� .

4.2 Metrics and connections on surface bundles over graphs

Let f : G!MCG be a homomorphism de�ned on a �nitely generated group G.
We have a canonical extension 1! �1(S)! ΓG ! G! 1.

Fix once and for all a Cayley graph X for G, on which G acts cocompactly with
quotient a rose. Fix a geodesic metric on X with each edge having length 1.
Choose a G{equivariant map �: X ! T taking each edge of X to an a�ne
path in T . Letting k�k be the maximum speed of the map �, ie, the maximal
length of the image of an edge of X under �, it follows that � is a k�k{lipschitz
map. Evidently the image of � is a cobounded subset of T , because the vertices
of X map to a single orbit and each edge of X maps to a geodesic of length
� k�k. Choose a compact set B �M so that image(�) is B{cobounded.

Using the method of Section 4.1, for each edge e of X we have a bundle Se ! e
equipped with a Riemannian metric. Given any vertex v of X , for any two
edges e; e0 incident to v the Riemannian metrics on Se and Se0 �t together
isometrically at Sv . We may therefore paste together the Riemannian metrics
on Se for all edges e to obtain a marked hyperbolic surface bundle SX ! X
equipped with a piecewise Riemannian metric. The induced path metric on SX
is a proper, geodesic metric. By naturality of the metrics on the bundles Se ,
the action of G on X lifts to an isometric action on SX .

By lifting the metric from SX to its universal cover HX we obtain a hyper-
bolic plane bundle HX ! X on which the extension group ΓG acts cocom-
pactly, equipped with a ΓG equivariant, piecewise Riemannian metric, inducing
a proper, geodesic metric on HX . Note in particular that ΓG is thus quasi-
isometric to HX .

Note that this construction produces bundles SX ! X and HX ! X isomor-
phic to the pullback bundles described at the beginning of Section 4. Since each
map Se ! e, He ! e satis�es the metric �bration property, it follows that the
maps SX ! X , HX ! X also satisfy that property.

The connections on the spaces Se , for edges e of X , piece together to de�ne a
G{equivariant connection on SX . To make sense out of this, we consider only
the connection map de�ned for a piecewise path γ : [a; b]! X , as follows. The
bundle SX ! X pulls back to give a bundle Sγ ! [a; b], and the connection
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paths over each edge of X piece together to give connection paths on Sγ , with
an induced connection map hγ : Sγ(a) ! Sγ(b) . It follows immediately from
Lemma 4.1 that hγ is K len(γ) {bilipschitz, where K = K(B; k�k).

By lifting to HX , for each piecewise geodesic path γ : [a; b] ! X we similarly
obtain a K len(γ) bilipschitz connection map ehγ : Hγ(a) !Hγ(b) .

4.3 Large scale geometry of surface bundles over paths

Our goal now is to compare metrics on Hγ and H� for paths γ; � in T which
are closely related.

Given a metric space Z , two paths γ; � : I ! Z , and a constant A � 0, we
say that γ; � are A{fellow travellers if d(γ(t); �(t)) � A for all t 2 I . More
generally, given paths γ : I ! Z , � : J ! Z , a constant A � 0, and constants
� � 1; � � 0, we say that γ , � are asynchronous A{fellow travellers with
respect to a �; � quasi-isometry � : I ! J if the paths γ and � � � are A{
fellow travellers. It is a well known and simple fact that given a quasigeodesic
γ : I ! Z and another path � : J ! Z , the following are equivalent:

(1) � is a quasigeodesic and �; γ have �nite Hausdor� distance;

(2) � is an asynchronous fellow traveller of γ .

Moreover, the constants are uniformly related: in 1 =) 2, there exist asyn-
chronous fellow traveller constants A;�; � depending only on the quasigeodesic
constants for � and the Hausdor� distance of �; γ ; in 2 =) 1, there exist
quasigeodesic constants for � and a bound on the Hausdor� distance between
� and γ depending only on the asynchronous fellow traveller constants.

The following proposition says that if γ : I ! T , � : J ! T are asynchronous
fellow travellers in T , then there is a �ber preserving quasi-isometry Hγ !H� .
Moreover, if γ is a geodesic, and if instead of Hγ we use the singular solv space
Hsolv

γ , then there is a �ber preserving quasi-isometry Hsolv

γ ! H� .

Proposition 4.2 For each bounded subset B � M, and each � � 1, � � 1,
� � 0, A � 0, K � 1, there exists K 0 � 1, C 0 � 0 such that the following hold.
Suppose that γ : I ! T , � : J ! T are B{cobounded �{Lipschitz, piecewise
a�ne paths in T . Suppose also that γ; � are asynchronous A{fellow travellers,
with respect to a �; � quasi-isometry � : I ! J . Then:
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(1) There exists a commutative diagram

Sγ �
//

��

S�

��
I

�
// J

such that the top row preserves markings, and such that any lifted mape�: Hγ !H� is a K 0; C 0 quasi-isometry.

(2) If γ is a geodesic, then there exists a commutative diagram

Ssolv

γ
�

//

��

S�

��
I

�
// J

such that the top row preserves markings, and such that any lifted mape�: Hsolv

γ ! H� is a K 0; C 0 quasi-isometry.

One way to interpret item (1) of this proposition is that a cobounded, lipschitz
path in Teichmüller space has a well-de�ned geometry associated to it: ap-
proximate the given path by a piecewise a�ne path and take the associated
hyperbolic plane bundle; the metric on that bundle is well-de�ned up to quasi-
isometry, independent of the approximation. A further argument shows that
the geometry is independent of the choice of an equivariant connection on the
bundle S ! T : any two equivariant connections are related in a uniformly
bilipschitz manner over any cobounded subset of T .

Proof Both (1) and (2) are proved in the same manner using Proposition 2.5;
we prove only (1).

To smooth the notation in the proof we denote t0 = �(t), we let St denote the
�ber Sγ(t) of Sγ , we let S 0t0 denote the corresponding �ber S�(�(t0)) of S� , etc.

To prove (1), by applying Proposition 2.5(1) we choose for each t 2 R a marked
map �t : St ! S 0t0 for which any lift e�t : Ht ! H0t0 is a K1; C1 quasi-isometry,
where the constants K1; C1 depend only on B; A. Since each �t preserves
markings we may choose the lifts e�t so that for any s; t we have a commutative
diagram of induced boundary maps:

@Hs
@�̃s

//

@h̃st
��

@H0s0
@h̃0

s0t0
��

@Ht
@�̃t

// @H0t0
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Applying Proposition 2.5(2) it follows that if we strip o� the @ symbols from
the above diagram, and if we choose s; t so that js− tj � 1, then we obtain the
following diagram, a coarsely commutative diagram in the sense that the two
paths around the diagram di�er in the sup norm by a constant C2 depending
only on B; �; �; �;A;K :

Hs
�̃s

//

h̃s;t
��

H0s0

h̃s0t0
��

Ht
�̃t

// H0t0

De�ne e�: Hγ !H� so that e� �� Hs = e�s . To prove that e� is a quasi-isometry
we need only show that if x; y 2 Hγ satisfy d(x; y) � 1 then d(e�(x); e�(y)) is
bounded by a constant depending only on B; �; �; �;A;K , and then carry out
the similar argument with inverses.

Given x; y 2 Hγ with d(x; y) � 1, choose s; t so that x 2 Hs , y 2 Ht . By the
metric �bration property we have js− tj � 1. Changing notation if necessary
we may assume that s � t. Let � be the geodesic in Hγ connecting x and y ,
and by the metric �bration property note that � � H[s−1;t+1] . Consider the
map p : H[s−1;t+1] ! Ht whose restriction to Hr is the connection map ehrt ;
it follows that p is bilipschitz with constant Kt−s+2 � K3 . The distance in
Ht between the point p(x) = hst(x) and the point y is therefore at most K3 .
Mapping over to H� we have

d(e�(x); e�(y)) � d
(e�(x); hs0t0(e�(x))

�
+ d
(
hs0t0(e�(x)); e�(hst(x))

�
+ d
(e�(hst(x)); e�(y)

�
�
��s0 − t0��+ C2 + (K1K

3 + C1)

and since js0 − t0j � � js− tj+ � � �+ �, the proof is done.

5 Hyperbolic extension implies convex cocompact
quotient

In this section we prove Theorem 1.2.

Fix a homomorphism f : G ! MCG de�ned on a �nitely generated group G,
and suppose that the extension group ΓG is word hyperbolic. We must prove
that f has �nite kernel and that f(G) is a convex cocompact subgroup of
MCG.
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Fix a Cayley graph X for G and an f {equivariant map �: X ! G which
is a�ne on edges of X . Choose a bounded subset B � M and a number
� � 1 such that � is B{cobounded and �{lipschitz. We have a hyperbolic
plane bundle HX ! X , and an action of ΓG on HX , such that the �bration
HX ! X is equivariant with respect to the homomorphism ΓG ! G. We
also have a piecewise Riemannian metric for which HX ! X satis�es the
metric �bration property. We also have a connection on HX , in the form of a
connection map hγ : Hγ(a) ! Hγ(b) for any geodesic path γ : [a; b] ! X . The
connection and metric are each equivariant with respect to ΓG . Since HX is
a proper geodesic metric space, it follows that HX is a model geometry for
ΓG . Since ΓG is word hyperbolic, it follows that HX is �{hyperbolic for some
� � 0.

Fact 5.1 For each point x 2 X , the inclusion map Hx ,! HX is uniformly
proper, with uniform properness data independent of x.

Proof This follows because the subgroup of ΓG stabilizing Hx is the normal
subgroup �1(S), and the inclusion map �1(S) ,! ΓG is uniformly proper with
respect to word metrics, a fact that holds for any �nitely generated subgroup
of a �nitely generated group.

For each geodesic path γ : I ! X , I a closed, connected subset of R, we
obtain a piecewise a�ne path � � γ : I ! T and a hyperbolic plane bundle
Hγ ! I , which can be regarded either as the pullback of the bundle H ! T
via � � γ , or as the restriction of the bundle HX ! X to γ . In either case,
we obtain a piecewise Riemannian metric and connection on Hγ , natural with
respect to the action of �1(S). The connection on Hγ has bilipschitz constant
K depending only on B and �, meaning that for any s; t 2 R, the connection
map hst : Hs !Ht is K js−tj{bilipschitz.

Here is an outline of the proof of Theorem 1.2.

Our main task will be to prove that for each geodesic path γ : I ! X , the space
Hγ is a �0{hyperbolic metric space, for some constant �0 depending only on B ,
�, and � . Of course, when I is a �nite segment the space Hγ is quasi-isometric
to the hyperbolic plane and so Hγ is a hyperbolic metric space, but uniformity
of the hyperbolicity constant �0 is crucial. This is obtained using the concept of
flaring, introduced by Bestvina and Feighn for their combination theorem [6],
and further developed by Gersten in [18]. The combination theorem says, in
an appropriate context, that flaring implies hyperbolicity. Gersten’s converse,
proved in the same context, says that hyperbolicity implies flaring. We shall
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give a new technique for proving the converse, which applies in a much broader,
\higher-dimensional" context, and using this technique we show that since HX
is �{hyperbolic it follows that each Hγ satis�es flaring, with uniformity of
constants. Then we shall apply the Bestvina{Feighn combination theorem in
its original context to conclude that Hγ is �0{hyperbolic.

Next we will apply a result of Mosher [41] which says that since Hγ is hyper-
bolic, the path � � γ : I ! T is a quasigeodesic which is Hausdor� close to a
Teichmüller geodesic, again with uniformity of constants. This will quickly im-
ply �niteness of the kernel of f . The collection of these Teichmüller geodesics,
one for each geodesic γ in X , will be used to verify the orbit quasiconvexity
property for the group f(G).

In what follows, a path I
γ−! X will often be confused with the composed path

I
γ−! X

�−! T ; the context should make the meaning clear.

Remark The context of the Bestvina{Feighn combination theorem, and Ger-
sten’s converse, is the following. Consider a �nite graph of groups Γ, with word
hyperbolic vertex and edge groups, such that each edge-to-vertex group injec-
tion is a quasi-isometric embedding. Associated to this is the Bass{Serre tree
T , and a graph of spaces X ! T on which �1Γ acts properly discontinuously
and cocompactly. For each path in the tree T , Bestvina{Feighn de�ne a flaring
condition on the portion of X lying over that path. The combination theorem
combined with Gersten’s converse says that flaring is satis�ed uniformly over
all paths in the Bass{Serre tree if and only if �1Γ is word hyperbolic. When G
is a free group mapped to MCG then the extension 1! �1S ! ΓG ! G! 1
�ts into this context, because ΓG is the fundamental group of a graph of groups
with edge and vertex groups isomorphic to �1S , and with isomorphic edge-to-
vertex injections, where the underlying graph is a rose with fundamental group
G. This was the technique used in [40] to construct examples where ΓG is
word hyperbolic. When G is not free then this doesn’t work, motivating our
\higher-dimensional" version of Gersten’s result.

5.1 Flaring

Motivated by the statement of the Bestvina{Feighn combination theorem, we
make the following de�nitions.

Consider a sequence of positive real numbers (rj)j2J , indexed by a subinterval
J of Z.
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The L{lipschitz condition says that ri=rj < Lji−jj for all i; j , or equivalently
ri=rj < L whenever ji− jj = 1.

Given � > 1, an integer n � 1, and A � 0, we say that (rj) satis�es the
(�; n;A){flaring property if, whenever the three integers j −n, j , j +n are all
in J , we have:

rj > A =) Maxfrj−n; rj+ng � � � rj
The number A is called the flaring threshold. Having a positive flaring threshold
A allows the sequence to stay bounded by A on arbitrarily long intervals.
However, at any place where the sequence has a value larger than A, exponential
growth kicks in inexorably, in either the positive or the negative direction.

Consider a piecewise a�ne, cobounded, lipschitz path γ : I ! T and the corre-
sponding hyperbolic plane bundle Hγ ! I . A �{quasivertical path in Hγ is a
�{lipschitz path � : I 0 !Hγ , de�ned on a subinterval I 0 � I , which is a section
of the projection map Hγ ! I . For example, a �{quasivertical path is a con-
nection path if and only if it is 1{quasivertical. Note that each �{quasivertical
path is a (�; 0){quasigeodesic.

The vertical flaring property for the �bration Hγ ! γ says that there exists
� > 1, an integer n � 1, and a function A(�) : [1;1) ! (0;1), such that if
�; � : I ! Hγ are two �{quasivertical paths with the same domain I 0 , then
setting J = I 0 \ Z the sequence

dj
(
�(j); �(j)

�
; j 2 J

satis�es the �; n;A(�) flaring property, where dj is the distance function on
Hj , j 2 J . One can check that if the vertical flaring property holds for some
function A(�) then it holds for a function which grows linearly.

Lemma 5.2 (Hyperbolicity of HX implies vertical flaring of Hγ )
With notation as above, for every � there exists �, n, A(�) such that if HX
is �{hyperbolic then for each bi-in�nite geodesic γ in X the �bration Hγ ! I
satis�es �, n, A(�) vertical flaring.

The intuition behind the proof is that the flaring property is exactly analogous
to the geodesic divergence property in hyperbolic groups, described by Cannon
in [12]. The geodesic divergence property says that in a �{hyperbolic metric
space, if p is a base point and if �; � are a pair of geodesic rays based at p, and
if di is the shortest length of a path between �(i) and �(i) that stays outside
of the ball of radius i centered on p, then the sequence di satis�es a flaring
property with constants independent of �; � . In our context, � and � will no
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longer have one endpoint in common. But the quasivertical property together
with the metric �bration property give us just what we need to adapt Cannon’s
proof of geodesic divergence given in [12], substituting the geodesic triangles in
Cannon’s proof with geodesic rectangles.

Proof We use d for the metric on HX .

First observe that any �{quasivertical path � in Hγ is a (�; 0){quasigeodesic
in HX , in fact

js− tj � d(�(s); �(t)) � � js− tj

The upper bound is just the fact that � is �{lipschitz, and the lower bound
follows from the metric �bration property for HX ! X , together with the fact
that γ is a geodesic in X .

Consider then a pair of �{quasivertical paths �; � : I 0 ! Hγ de�ned on a
subinterval I 0 � I , and let J = I 0 \ Z = fj−; : : : ; j+g. We assume that
j+ − j− is even and let j0 = j+−j−

2 2 J . For each j 2 J we have a �ber Hj
isometric to H2 , with metric denoted dj . We must prove that the sequence
Dj = dj(�(j); �(j)) satis�es �; n;A flaring, with �; n independent of � and
with �; n;A independent of �, � , and γ .

For j; k 2 J let hjk : Hj ! Hk be the connection map, a K jj−kj bilipschitz
map.

For each j 2 J we have an Hj geodesic �j : [0;Dj ]! Hj with endpoints �(j),
�(j).

Claim 5.3 There is a family of quasivertical paths v described as follows:

� For each j 2 J and each t 2 [0;Dj ] the family contains a unique qua-
sivertical path vjt : [j−; j+] ! Hγ that passes through the point �j(t).
If we �x j 2 J , we thus obtain a parameterization of the family vjt by
points t 2 [0;Dj ].

� The ordering of the family vjt induced by the order on t 2 [0;Dj ] is
independent of j . The �rst path vj0 in the family is identi�ed with �,
and the last path vjDj is identi�ed with � .

� Each vjt is �0{quasivertical, where �0 depends only on � and K .

When j is assumed �xed, we write vt for the path vjt .
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Proof of claim Given j−1; j 2 J , consider the following (K; 0){quasigeodesic
in Hj :

�0j = hj−1;j � �j−1 : [0;Dj−1]! Hj
Since connection paths are geodesics, and since �; � are �{quasivertical, it fol-
lows that the endpoint �0j(0) = hj−1;j(�(j−1)) and the corresponding endpoint
�j(0) = �(j) have distance in HX at most �+ 1, and similarly for the opposite
endpoints �0j(Dj−1) = hj−1;j(�(j−1)) and �j(Dj) = �(j). Each endpoint of �0j
and the corresponding endpoint of �j therefore have distance in Hj bounded by
a constant depending only on �; this follows from Fact 5.1. Since the spaces Hj
are all isometric to H2 , it follows that the Hausdor� distance between �j and
�0j in Hj is bounded by a constant depending only on K , �, which implies in
turn that there is a quasi-isometric reparameterization rj : [0;Dj−1] ! [0;Dj ]
such that

dj
(
�0j(t); �j(rj(t))

�
� D

where the constant D and the quasi-isometry constants for rj depend only on
K , �. By possibly increasing the quasi-isometry constants we may assume fur-
thermore that rj is an orientation preserving homeomorphism. It follows that
we may connect the point �j−1(t) to the point �j(rj(t)) by a �0{quasivertical
path de�ned over the interval [j − 1; j] � R, where �0 depends only on K , �;
when t = 0 we may choose the path to be �

�� [j− 1; j], and when t = Dj−1 we
may choose the path �

�� [j − 1; j]. By piecing together these paths as j varies
over J , we obtain the required family of paths v .

We use �{hyperbolicity of HX in the following manner. First, for any geodesic
rectangle a � b � c � d in HX it follows that any point on a is within distance
2� of b [ c [ d. Second, for any (�0; 0) quasigeodesic in HX , the Hausdor�
distance to any geodesic with the same endpoints is bounded by a constant �1

depending only on �; �0 . For any rectangle of the form v �� �w ��0 where �; �0

are geodesics and v;w are (�0; 0) quasigeodesics, it follows that any point on v
is within distance �2 = 2� + 2�1 of � [ w [ �0 .
By Fact 5.1 there exists a constant �3 such that:

for all j 2 J; x; y 2 Hj; if d(x; y) � (1 + �0)�2 then dj(x; y) � �3

We are now ready to de�ne the flaring parameters �; n;A. Let

� =
3
2

n = b�2 + 3�3c+ 1
A = �3
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where bxc is the greatest integer � x. Assuming as we may that j� = j0 � n
(and so the Hausdor� distance between Hj0 and Hj� in HX equals n), we
must prove:

� if Dj0 > A then maxfDj− ;Dj+g � �Dj0 :

Case 1 maxfDj− ;Dj+g � 6�3 It follows that there is a rectangle in HX of
the form ���− �� ��+ where �� is a geodesic in HX with the same endpoints
as �j� , and where �� has length � 6�3 . Consider now the point �(j0), whose
distance from some point z 2 �− [ � [ �+ is at most �2 . If z 2 �− then it
follows that

d(�(j0);Hj+) � �2 +
6�3

2
< n;

a contradiction. We reach a similar contradiction if z 2 �+ . Therefore z 2 � .
It follows that z = �(s) 2 Hs for some s such that js− j0j � �2 , and so by
following along � a length at most �0�2 we reach the point �(j0). This shows
that d(�(j0); �(j0)) � (1 + �0)�2 , and so Dj0 � �3 , that is, Dj0 � A.

Case 2 maxfDj− ;Dj+g � 3�3 In the family v , we claim that there is a
discrete subfamily � = vt0 ; vt1 ; : : : ; vtK = � , with t0 < t1 < � � � < tK , such that
the following property is satis�ed: for each k = 1; : : : ;K , letting

�k� = dj�
(
vtk−1

(j�); vtk (j�)
�

then we have
maxf�k−;�k+g 2 [3�3; 6�3]:

By assumption of Case 2, the subfamily f� = vt0 ; � = vt1g has the property
maxf�k−;�k+g = maxfDj− ;Dj+g � 3�3 (for k = 1). Suppose by induction
that we have a subfamily � = vt0 ; vt1 ; : : : ; vtK = � , with t0 < t1 < � � � < tK ,
such that maxf�k−;�k+g � 3�3 for all k , but suppose that maxf�k−;�k+g >
6�3 for some k . If, say, �k+ > 6�3 , then we subdivide the geodesic segment
�j+[vtk−1

(j+); vtk(j+)] in half at a point t 2 �j+ , yielding two subsegments of
length > 3�3 , and we add the path vj+t to our subfamily; similarly, if �k− > 6�3

then we subdivide the interval �j− [vtk−1
(j−); vtk(j−)] in half. This process must

eventually stop, because

K � 1
3�3

(
Dj− +Dj+

�
thereby proving the claim.
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From the exact same argument as in Case 1, using the fact that

maxf�k−;�k+g � 6�3;

it now follows that

�k0 = dj0
(
vtk−1

(j0); vtk (j0)
�
� �3

for all k = 1; : : : ;K .

We therefore have:

Dj0 =
KX
k=1

�k0 � K�3

Dj− +Dj+ =
KX
k=1

�k− + �k+ �
KX
k=1

maxf�k−;�k+g

� K � 3�3

maxfDj− ;Dj+g �
3
2
K�3

� 3
2
Dj0

This completes the proof of Lemma 5.2.

Remark The argument given in Lemma 5.2, while stated explicitly only for
groups of the form ΓG , generalizes to a much broader context. Graphs of
groups, the context for the Bestvina{Feighn combination theorem [6] and Ger-
sten’s converse [18], have been generalized to triangles of groups by Gersten
and Stallings [46], and to general complexes of groups by Haefliger [20]. The
arguments of Lemma 5.2 will also apply to show that a developable complex of
groups with word hyperbolic fundamental group satis�es a flaring property over
any geodesic in the universal covering complex. A converse would also be nice,
giving a higher dimensional generalization of the Bestvina{Feighn combination
theorem, but we do not know how to prove such a converse, nor do we have
any examples to which it might apply (see Question 1.7 in the introduction).

Next we have:

Lemma 5.4 (Flaring implies hyperbolic) For each bounded subset B � M,
each � � 1, and each set of flaring data � > 1, n � 1, A(�), there exists � � 0
such that the following holds. If γ : I ! T is a B{cobounded, �{lipschitz,
piecewise a�ne path de�ned on a subinterval I � R, and if the metric �bration
Hγ ! I satis�es �; n;A(�) vertical flaring, then Hγ is �{hyperbolic.
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Proof This is basically an immediate application of the Bestvina{Feighn com-
bination theorem [6]. To be formally correct, some remarks are needed to trans-
late from our present geometric setting, of a hyperbolic plane bundle Hγ ! I ,
to the combinatorial setting of [6], and to justify that our vertical flaring prop-
erty for Hγ corresponds to the \hallways flare condition" of [6].

We may assume that the endpoints of the interval I , if any, are integers.

The �rst observation is that there is a �1(S){equivariant triangulation e� of Hγ
with the following properties:

Graph of spaces

� For each n 2 J = I \ Z there is a 2-dimensional subcomplex e�n
which is a triangulation of the hyperbolic plane Hn .

� Each 1-cell of e� is either horizontal (a 1-cell of some �n ), or vertical
(connecting a vertex of some �n to a vertex of some �n+1);

� each 2-cell of e� is either horizontal (a 2-cell of some e�n), or vertical
(meaning that the boundary contains exactly two vertical 1-cells).

Bounded combinatorics There is an upper bound depending only on B , �
for the valence of each 0-cell and the number of sides of each 2-cell.

Quasi-isometry The inclusion of the 1-skeleton of e� into Hγ is a quasi-
isometry with constants depending only on B and �.

To see why e� exists as described, consider the marked hyperbolic surface bundle
Sγ ! I . For each hyperbolic surface Sn , n 2 J , there is a geodesic triangulation
�n of Sn with one vertex, whose edges have length bounded only in terms of B .
It follows that there are constants K 0 , C 0 depending only on B , such that if e�n
is the lifted triangulation in Hn , then the inclusion of the 1-skeleton of e�n into
Hn is a (K 0; C 0) quasi-isometry. Then, regarding

S
n2J �n as a triangulation

of
S
n2J Sn , we can extend to a cell-decomposition � of Sγ which is a graph

of spaces of bounded combinatorics. The existence of � uses the fact that each
connection map hn;n+1 : Sn ! Sn+1 is K{bilipschitz, so by moving each vertex
of �n along a connection path into Sn+1 and them moving a �nite distance to
a vertex of �n+1 we obtain a (K 00; C 00){quasi-isometry h0n;n+1 : e�n ! e�n+1 , with
(K 00; C 00) depending only on K , and from this we easily construct � so that its
lift e� has the desired properties.

The second observation is that vertical flaring in Hγ is equivalent to the \hall-
way flare condition" of [6] for e� , and this equivalence is uniform with respect to
the parameters in each property. To see why, note that quasivertical paths in
Hγ correspond to thin paths in e� as de�ned implicitly in [6] Section 2: an edge
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path � : I 0 = [m;n] ! e� is �{thin if the restriction of � to each subinterval
[i; i + 1] lies in e�[i;i+1] and is a concatenation of at most � edges. Under the
quasi-isometry e� ! Hγ and its coarse inverse Hγ ! e� , �{quasivertical paths
in Hγ correspond to �{thin paths with a uniform relation between � and �.

In order to complete the translation from the geometric setting to the combi-
natorial setting, while the results of [6] are stated only when e� is the universal
cover of a �nite graph of spaces, nevertheless, the proofs hold as stated for
any graph of spaces with uniformly bounded combinatorics: all the steps in
the proof extend to such graphs of spaces, regardless of the presence of a deck
transformation group with compact quotient. The conclusion of the combina-
tion theorem is the �0{hyperbolicity of the 1-skeleton of e� , with �0 depending
only on the flaring constants for e� , which depend in turn only on B , �, and the
flaring constants for Hγ . It follows that Hγ is � hyperbolic with the correct
dependency for the constant � .

5.2 Proof of Theorem 1.2

We adopt the notation from the beginning of Section 5: a homomorphism
f : G ! MCG determining the group ΓG , a Cayley graph X for G, and a
piecewise a�ne f {equivariant map �: X ! T which is B{cobounded and �{
lipschitz. We have already proved, in Section 1.2, that word hyperbolicity of
ΓG implies �niteness of the kernel of f .

Letting X0 be the 0-skeleton, on which G acts transitiveily, it follows that
�(X0) is an orbit of f(G) in T . We prove that f(G) is convex cocompact by
proving that �(X0) satis�es orbit quasiconvexity.

Choose two points x; y 2 X0 . Let γ : I ! X be a geodesic segment connecting
x to y . Consider the composed path I

γ−! X
�−! T , which by abuse of notation

we shall also denote γ . There is a corresponding hyperbolic plane bundle Hγ !
I . Recall that γ is B{cobounded and �{lipschitz in T , with B , � independent
of γ . Now apply Lemmas 5.2 and 5.4, to conclude that Hγ is �{hyperbolic,
with � independent of γ .

Now we quote the following result to obtain a Teichmüller geodesic:

Theorem 5.5 [41] For every bounded set B � M, � � 1, and � � 0, there
exists � � 1, � > 0, and A such that the following hold. If γ : I ! T is
B{cobounded and �{lipschitz, and if Hγ is �{hyperbolic, then γ is a (�; �){
quasigeodesic, and there exists a Teichmüller geodesic g , sharing any endpoints
of γ , such that γ and g have Hausdor� distance at most A.

Geometry & Topology, Volume 6 (2002)



Convex cocompact subgroups of mapping class groups 145

Letting g be the Teichmüller geodesic connecting x to y provided by the theo-
rem, it follows that g is contained in the A+ � neighborhood of �(X0). Since
x; y 2 �(X0) are arbitrary, this proves orbit quasiconvexity, and so f(G) is
convex cocompact.

6 Schottky groups

De�nition A Schottky subgroup of MCG is a free, convex cocompact sub-
group.

The limit set � � PMF of a Schottky subgroup is therefore a Cantor set, and
every nontrivial element is pseudo-Anosov.

In this section we prove Theorem 1.3, that a surface-by-free group is word
hyperbolic if and only if the free group is Schottky. One direction is already
proved by Theorem 1.2, and so we need only prove that when F �MCG is a
Schottky subgroup then ΓF � �1(S)o F is word hyperbolic.

Continuing with earlier notation, let � � PMF be the limit set of F with
weak hull WH� . Let t be a Cayley graph for the group F , a tree on which
F acts properly discontinuously with quotient a rose. Let �: t ! T be an
F {equivariant map, a�ne on each edge, and �{lipschitz for some � � 1. There
is a bounded subset B � M so that both WH� and �(t) are B{cobounded.
We have a hyperbolic plane bundle Ht ! t, on which �1(S)o F acts properly
discontinuously and cocompactly, and we have a piecewise Riemannian metric
on Ht on which �1(S)o F acts by isometries.

We must prove that Ht is �{hyperbolic. By the Bestvina{Feighn combina-
tion theorem [6], it is enough to show that for each bi-in�nite geodesic γ in
t, the bundle Hγ ! R satis�es vertical flaring, with flaring data �; n;A(�)
independent of the choice of γ (see the proof of Lemma 5.4 for translating the
combinatorial setting of [6] to our present geometric setting).

Since F is convex cocompact, there is a geodesic line g in WH� which has
�nite Hausdor� distance from �(γ). Let Hsolv

g be the singular solv{space
thereby obtained. By Proposition 4.2, the closest point map γ ! g lifts to a
quasi-isometry Hγ ! Hsolv

g , with quasi-isometry constants independent of γ ,
depending only on B and �. It therefore su�ces to check the flaring condition
in Hsolv

g , with flaring data independent of anything.

Take any � with 1 < � < e2

2
p

2
, say � = 2:6. Let n = 2. We show that for

any � there is an A such that any two � quasivertical lines in Hsolv

g satisfy
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the (�; 2; A){flaring condition. For this argument we do not need that g is
cobounded (although in that case Hsolv

g may not have bounded geometry).

Let �;�0 : [−2; 2] ! Hsolv

g be two � quasivertical lines, lying over a length
4 subsegment [r − 2; r + 2] of g � R. Let xi; yi be the points where �;�0

respectively intersect Hr+i . Let �0 = x0 and let �i be obtained by flowing x0

vertically into Hr+i ; de�ne �0 = y0 and �i similarly. Note that for i 2 [−2; 2]
the points �i and xi are connected in Hsolv

g by a path which goes along � from
�i to �0 travelling a distance at most 2�, and then vertically from �0 = x0 to
xi ; the vertical projection of this path into Hi has length at most 2e2�, and so
di(xi; �i) � 2e2�. Similarly, di(yi; �i) � 2e2�.

We turn for the moment to showing that the sequence

dr+i(�i; �i); i = −2;−1; 0; 1; 2

satis�es the ( e2

2
p

2
; 2; 0){flaring condition. In the singular Euclidean surface

Hr+i , let ‘i be the geodesic from �i to �i , so the above sequence becomes:

len(‘i); i = −2;−1; 0; 1; 2

The singular Euclidean geodesic ‘0 is a concatenation of subsegments of con-
stant slope, two consecutive subsegments meeting at a singularity. If at least
half of ‘0 has slope of absolute value � 1 then:

1
2

len(‘0) � 1p
2
� e2 � len(‘2)

If at least half of ‘0 has slope of absolute value � 1, we get a similar inequality
but with len(‘−2) on the right hand side. We have therefore shown:

maxfdr+2(�2; �2); dr−2(�−2; �−2)g � e2

2
p

2
d0(�0; �0)

It follows that

maxfdr+2(x2; y2); dr−2(x−2; y−2)g � e2

2
p

2
d0(x0; y0)− 2e2�

� �d0(x0; y0)

where the last inequality holds as long as:

d0(x0; y0) � A =
2e2�
e2

2
p

2
− �

This ends the proof that �1(S)o F is word hyperbolic when F is Schottky.
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7 Extending the theory to orbifolds

In this section we sketch how the theory can be extended to 2-dimensional
orbifolds. We shall consider only those compact orbifolds whose underlying
2-manifold is closed, and whose orbifold locus therefore consists only of cone
points, what we shall call a cone orbifold. The reason for this restriction is that
if the underlying 2-manifold has nonempty boundary then the orbifold does not
support any pseudo-Anosov homeomorphisms, since the isotopy classes of the
boundary curves must be permuted.4

As it turns out, the mapping class group and Teichmüller space of a cone orbifold
depend not on the actual orders of the di�erent cone points, but only on the
partition of the set of cone points into subsets of constant order. For example,
a spherical orbifold with one Z=2 cone point and three Z=4 cone points has the
same mapping class group and Teichmüller space as a spherical orbifold with
three Z=42 cone points and one Z=1000 cone point. The relevant structures can
therefore be described more directly and economically in the following manner.

Let S be a closed surface, not necessarily orientable. Let P = fPigi2I be
a �nite, pairwise disjoint collection of �nite, nonempty subsets of S . Let
Homeo(S;P) be the group of homeomorphisms of S which leave invariant
each of the sets Pi , i 2 I . Let Homeo0(S;P) be the component of the iden-
tity of Homeo(S;P) with respect to the compact open topology; equivalently,
Homeo0(S;P) consists of all elements of Homeo(S;P) which are isotopic to
the identity through elements of Homeo(S;P). The mapping class group is
MCG(S;P) = Homeo(S;P)=Homeo0(S;P).

To de�ne the Teichmüller space, �rst we must widen the concept of a conformal
structure so that it applies to non-orientable surfaces, and we do this by allowing
overlap maps which are anticonformal as well as conformal. The Teichmüller
space T (S;P) is then de�ned to be the set of conformal structures on S modulo
the action of Homeo0(S;P). Quadratic di�erentials and measured foliations on
(S;P) are de�ned using the usual local models at points of S − [P, but at a
point of P a quadratic di�erential can have the local model zn−2dz2 for any
n � 1; the horizontal measured foliation of zn−2dz2 is the local model for
an n{pronged singularity of a measured foliation. Thus, at a point of [P a
measured foliation can have any number of prongs � 1, whereas a singularity
in S −[P must have � 3 prongs as usual. With these de�nitions, Teichmüller
maps are de�ned as usual, making T (S;P) into a proper geodesic metric space

4While the monograph [16] develops a kind of pseudo-Anosov theory on a bounded
surface, it is not appropriate for our present purposes.
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on which MCG(S;P) acts properly discontinuously, but not cocompactly; also,
pseudo-Anosov homeomorphisms of (S;P) are de�ned as usual.

We shall assume that (S;P) actually supports a pseudo-Anosov homeomor-
phism which has an n{pronged singularity with n 6= 2. This rules out a small
number of special cases, as follows. When S is a sphere, [P must have at least
four points. When S is a projective plane, [P must have at least two points.
When S is a torus or Klein bottle, [P must have at least one point. When S
is the surface of Euler characteristic −1, namely the connected sum of a torus
and a projective plane, the curve along which the torus and the projective plane
are glued is actually a characteristic curve for S , meaning that it is preserved
up to isotopy by any mapping class; therefore, in order for (S;P) to support a
pseudo-Anosov homeomorphism, [P must have at least one point.

Now we apply these concepts to 2-dimensional cone orbifolds. Suppose O is a
cone orbifold with underlying surface S . Let Pn be the set of Z=n cone points,
and let P = fPngn�2 . Then we may de�ne the mapping class group MCG(O)
to be MCG(S;P), and the Teichmüller space T (O) to be T (S;P). Note that
with the restrictions above on the type of (S;P), the orbifold O has negative
Euler characteristic. It follows that if eO ! O is the orbifold universal covering
map, then for any conformal structure on O the lifted conformal structure is
isomorphic to the Riemann disc. It follows that any conformal structure on
O can be uniquely uniformized to produce a hyperbolic structure, with a cone
angle of 2�=n at each Z=n cone point.

At this stage we must confront the fact that the universal extension for surface
groups, as formulated in Section 1.2, must be reformulated before it can be
applied to orbifolds. The Dehn{Nielsen{Baer{Epstein theorem is still true, as
long as one uses orbifold fundamental groups: if p is a generic point of the
cone orbifold O , and if �1(O; p) is the orbifold fundamental group, then we
have MCG(O) � Out(�1(O; p)). However, the \once-punctured" mapping
class group MCG(O; p) is not isomorphic to Aut(�1(O; p)). For example, take
a based simple loop ‘ which bounds a disc whose interior contains a single Z=n
cone point. In the group �1(O; p), the loop ‘ represents an element of order n,
and under the usual injection �1(O; p) ,! Aut(�1(O; p)) we obtain an element
of order n. However, the element of MCG(O; p) obtained by pushing p around
‘ has in�nite order in MCG(O; p).

To repair this we need another group to take over the role of MCG(O; p).
Let H̃omeo(O) denote the group of homeomorphisms of eO which are lifts of
homeomorphisms of O , that is, a homeomorphism ~f : eO ! eO is in the group
H̃omeo(O) if and only if there exists a homeomorphism f : O ! O such that
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the following diagram commutes:

eO ~f
//

��

eO
��

O
f

// O

With respect to the compact open topology, H̃omeo(O) becomes a topological
group. Let H̃omeo0(O) be the component of the identity H̃omeo(O). Equiv-
alently, H̃omeo0(O) is the subgroup of elements of H̃omeo(O) isotopic to the
identity through elements of H̃omeo(O); alternatively it is the subgroup of
H̃omeo(O) acting trivially on the circle at in�nity of eO � H2 . De�ne

M̃CG(O) = H̃omeo(O)=H̃omeo0(O):

Note that universal covering map eO ! O induces a surjective homomorphism
M̃CG(O) ! MCG(O), and the kernel is the group of deck transformations,
isomorphic to �1(O). We now have a natural isomorphism of short exact se-
quences

1 // �1(O) // M̃CG(O) //

��
�O

�O
�O

�O
�O
�O

MCG(O) //

��
�O

�O
�O

�O
�O
�O

1

1 // �1(O) // Aut(�1(O)) // Out(�1(O)) // 1

where we have suppressed the generic base point needed to de�ne �1(O).

We are now in a position to state that our main results, Theorem 1.1, 1.2, 1.3,
and 1.4, are true with the orbifold O in place of the surface S , and the proofs
are unchanged. Although the references that we quote are stated solely in terms
of surfaces, namely [38] and [32] for Theorem 1.1, [39] for Theorem 1.2, and [40]
for Theorem 1.4, nevertheless all the proofs in those references work just as well
for orbifolds instead of surfaces.
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