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312 Peter Ozsv�ath and Zolt�an Szab�o

1 Introduction

The purpose of this paper is to verify that the Heegaard Floer homology of [27]
determines the Thurston semi-norm of its underlying three-manifold. This fur-
ther underlines the relationship between Heegaard Floer homology and Seiberg{
Witten monopole Floer homology of [16], for which an analogous result has been
established by Kronheimer and Mrowka, cf. [18].

Recall that Heegaard Floer homology dHF (Y ) is a �nitely generated, Z=2Z{
graded Z[H1(Y ;Z)]{module associated to a closed, oriented three-manifold Y .
This group in turn admits a natural splitting indexed by Spinc structures s

over Y , dHF (Y ) =
M

s2Spinc(Y )

dHF (Y; s):

(We adopt here notation from [27]; the hat signi�es here the simplest variant
of Heegaard Floer homology, while the underline signi�es that we are using the
construction with \twisted coe�cients", cf. Section 8 of [26].)

The Thurston semi-norm [39] on the two-dimensional homology of Y is the
function

�: H2(Y ;Z) −! Z�0

de�ned as follows. The complexity of a compact, oriented two-manifold �+(�)
is the sum over all the connected components �i � � with positive genus
g(�i) of the quantity 2g(�i)− 2. The Thurston semi-norm of a homology class
� 2 H2(Y ;Z) is the minimum complexity of any embedded representative of � .
(Thurston extends this function by linearity to a semi-norm �: H2(Y ;Q) −!
Q.)

Our result now is the following:

Theorem 1.1 The Spinc structures s over Y for which the Heegaard Floer
homology dHF (Y; s) is non-trivial determine the Thurston semi-norm on Y , in
the sense that:

�(�) = max
fs2Spinc(Y )

��ĤF (Y;s)6=0g
jhc1(s); �ij

for any � 2 H2(Y ;Z).

The above theorem has a consequence for the \knot Floer homology" of [31],
[35]. For simplicity, we state this for the case of knots in S3 .
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Recall that knot Floer homology is a bigraded Abelian group associated to an
oriented knot K � S3 ,

ĤFK(K) =
M

d2Z;s2Z
ĤFKd(K; s):

These groups are a re�nement of the Alexander polynomial of K , in the sense
that X

s

�
�
ĤFK�(K; s)

�
T s = �K(T );

where here T is a formal variable, �K(T ) denotes the symmetrized Alexander
polynomial of K , and

�
�
ĤFK�(K; s)

�
=
X
d2Z

(−1)drk ĤFKd(K; s);

(cf. Equation 1 of [31]). One consequence of the proof of Theorem 1.1 is the
following quantitative sense in which ĤFK distinguishes the unknot:

Theorem 1.2 Let K � S3 be a knot, then the Seifert genus of K is the
largest integer s for which the group ĤFK�(K; s) 6= 0.

This result in turn leads to an alternate proof of a theorem proved jointly
by Kronheimer, Mrowka, and us [19], �rst conjectured by Gordon [13] (the
cases where p = 0 and �1 follow from theorems of Gabai [9] and Gordon and
Luecke [14] respectively):

Corollary 1.3 [19] Let K � S3 be a knot with the property that for some
integer p, S3

p(K) is di�eomorphic to S3
p(U) (where here U is the unknot) under

an orientation-preserving di�eomorphism, then K is the unknot.

The �rst ingredient in the proof of Theorem 1.1 is a theorem of Gabai [8]
which expresses the minimal genus problem in terms of taut foliations. This
result, together with a theorem of Eliashberg and Thurston [5] gives a reformu-
lation in terms of certain symplectically semi-�llable contact structures. The
�nal breakthrough which makes this paper possible is an embedding theorem of
Eliashberg [3], see also [6] and [25], which shows that a symplectic semi-�lling
of a three-manifold can be embedded in a closed, symplectic four-manifold.
From this, we then appeal to a theorem [34], which implies the non-vanishing
of the Heegaard Floer homology of a three-manifold which separates a closed,
symplectic four-manifold. This result, in turn, rests on the topological quan-
tum �eld-theoretic properties of Heegaard Floer homology, together with the

Geometry & Topology, Volume 8 (2004)



314 Peter Ozsv�ath and Zolt�an Szab�o

suitable handle-decomposition of an arbitrary symplectic four-manifold induced
from the Lefschetz pencils provided by Donaldson [2]. (The non-vanishing re-
sult from [34] is analogous to a non-vanishing theorem for the Seiberg{Witten
invariants of symplectic manifolds proved by Taubes, cf. [36] and [37].)

1.1 Contact structures

In another direction, the strategy of proof for Theorem 1.1 shows that, just like
its gauge-theoretic counterpart, the Seiberg{Witten monopole Floer homology,
Heegaard Floer homology provides obstructions to the existence of weakly sym-
plectically �llable contact structures on a given three-manifold, compare [17].

For simplicity, we restrict attention now to the case where Y is a rational
homology three-sphere, and hence dHF (Y ) �= dHF (Y ). In [30], we constructed
an invariant c(�) 2dHF (Y ), which we showed to be non-trivial for Stein �llable
contact structures. In Section 4, we generalize this to the case of symplectically
semi-�llable contact structures (see Theorem 4.2 for a precise statement). It
is very interesting to see if this non-vanishing result can be generalized to the
case of tight contact structures. (Of course, in the case where b1(Y ) > 0, a
reasonable formulation of this question requires the use of twisted coe�cients,
cf. Section 4 below.)

In Section 4 we also prove a non-vanishing theorem using the \reduced Hee-
gaard Floer homology" HF+

red(Y ) (for the image of c(�) under a natural mapdHF (Y ) −! HF+
red(Y )), in the case where b+2 (W ) > 0 or W is a weak sym-

plectic semi-�lling with more than one boundary component. According to a
result of Eliashberg and Thurston [5], a taut foliation F on Y induces such a
structure.

One consequence of this is an obstruction to the existence of such a �lling
(or taut foliation) for a certain class of three-manifolds Y . An L{space [29]
is a rational homology three-sphere with the property that dHF (Y ) is a free
Z{module whose rank coincides with the number of elements in H1(Y ;Z).
Examples include all lens spaces, and indeed all Seifert �bered spaces with
positive scalar curvature. More interesting examples are constructed as follows:
if K � S3 is a knot for which S3

p(K) is an L{space for some p > 0, then so
is S3

r (K) for all rational r > p. A number of L{spaces are constructed in [29].
It is interesting to note the following theorem of N�emethi: a three-manifold
Y is an L{space which is obtained as a plumbing of spheres if and only if it
is the link of a rational surface singularity [24]. L{spaces in the context of
Seiberg{Witten monopole Floer homology are constructed in Section ( of [19]
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(though the constructions there apply equally well in the context of Heegaard
Floer homology).

The following theorem should be compared with [20], [25] and [19] (see also [21]):

Theorem 1.4 An L{space Y has no symplectic semi-�lling with disconnected
boundary; and all its symplectic �llings have b+2 (W ) = 0. In particular, Y
admits no taut foliation.

1.2 Morse theory and minimal genus

Theorem 1.1 admits a reformulation which relates the minimal genus problem
directly in terms of Morse theory on the underlying three-manifold. For sim-
plicity, we state this in the case where M is the complement of a knot K � S3 .

Fix a knot K � S3 . A perfect Morse function is said to be compatible with K ,
if K is realized as a union of two of the flows which connect the index three
and zero critical points (for some choice of generic Riemannian metric � on
S3 ). Thus, the knot K is speci�ed by a Heegaard diagram for S3 , equipped
with two distinguished points w and z where the knot K meets the Heegaard
surface. In this case, a simultaneous trajectory is a collection x of gradient
flowlines for the Morse function which connect all the remaining (index two
and one) critical points of f . From the point of view of Heegaard diagrams, a
simultaneous trajectory is an intersection point in the g{fold symmetric product
of �, Symg(�), (where g is the genus of �) of two g{dimensional tori T� =
�1 � ::: � �g and T� = �1 � :::� �g , where here f�iggi=1 resp. f�iggi=1 denote
the attaching circles of the two handlebodies.

Let X = X(f; �) denote the set of simultaneous trajectories. Any two simulta-
neous trajectories di�er by a one-cycle in the knot complement M and hence,
if we �x an identi�cation H1(M ;Z) �= Z, we obtain a di�erence map

� : X �X −! Z:

There is a unique map s : X −! Z with the properties that s(x)−s(y) = �(x;y)
for all x;y 2 X , and also #fx

��s(x) = ig � #fx
��s(x) = −ig (mod 2) for all

i 2 Z.

Although we will not need this here, it is worth pointing out that simultaneous
trajectories can be viewed as a generalization of some very familiar objects from
knot theory. To this end, note that a knot projection, together with a distin-
guished edge, induces in a natural way a compatible Heegaard diagram. The
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simultaneous trajectories for this Heegaard diagram can be identi�ed with the
\Kau�man states" for the knot projection; see [15] for an account of Kau�man
states, and [33] for their relationship with simultaneous trajectories.

The following is a corollary of Theorem 1.1.

Corollary 1.5 The Seifert genus of a knot K is the minimum over all compat-
ible Heegaard diagrams for K of the maximum of s(x) over all the simultaneous
trajectories.

It is very interesting to compare the above purely Morse-theoretic characteri-
zation of the Seifert genus with Kronheimer and Mrowka’s purely di�erential-
geometric characterization of the Thurston semi-norm on homology in terms of
scalar curvature, arising from the Seiberg{Witten equations, cf. [18]. It would
also be interesting to �nd a more elementary proof of the above result.

1.3 Remark

This paper completely avoids the machinery of gauge theory and the Seiberg{
Witten equations. However, much of the general strategy adopted here is based
on the proofs of analogous results in monopole Floer homology which were ob-
tained by Kronheimer and Mrowka, cf. [18]. It is also worth pointing out that
although the construction of Heegaard Floer homology is completely di�erent
from the construction of Seiberg{Witten monopole Floer homology, the invari-
ants are conjectured to be isomorphic. (This conjecture should be viewed in
the light of the celebrated theorem of Taubes relating the Seiberg{Witten in-
variants of closed symplectic manifolds with their Gromov{Witten invariants,
cf. [38].)

1.4 Organization

We include some preliminaries on contact geometry in Section 2, and a quick
review of Heegaard Floer homology in Section 3. In Section 4, we prove the non-
vanishing results for symplectically semi-�llable contact structures (including
Theorem 1.4). In Section 5 we turn to the proofs of Theorems 1.1 and 1.2 and
Corollaries 1.3 and 1.5.
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2 Contact geometric preliminaries

The three-manifolds we consider in this paper will always be oriented and con-
nected (unless speci�ed otherwise). A contact structure � is a nowhere inte-
grable two-plane distribution in TY . The contact structures we consider in
this paper will always be cooriented, and hence (since our three-manifolds are
also oriented) the two-plane distributions � are also oriented. Indeed, they can
be described as the kernel of some smooth one-form � with the property that
�^d� is a volume form for Y (with respect to its given orientation). The form
d� induces the orientation on � .

A contact structure � over Y naturally gives rise to a Spinc structure, its
canonical Spinc structure, written k(�), cf. [17]. Indeed, Spinc structures in
dimension three can be viewed as equivalence classes of nowhere vanishing vec-
tor �elds over Y , where two vector �elds are considered equivalent if they are
homotopic in the complement of a ball in Y , cf. [40], [12]. Dually, an oriented
two-plane distribution gives rise to an equivalence class of nowhere vanishing
vector �elds (which are transverse to the distribution, and form a positive basis
for TY ). Now, the canonical Spinc structure of a contact structure is the Spinc

structure associated to its two-plane distribution. The �rst Chern class of the
canonical Spinc structure k(�) is the �rst Chern class of � , thought of now as
a complex line bundle over Y .

Four-manifolds considered in this paper are also oriented. A symplectic four-
manifold (W;!) is a smooth four-manifold equipped with a smooth two-form !
satisfying d! = 0 and also the non-degeneracy condition that !^! is a volume
form for W (compatible with its given orientation).
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Let (W;!) be a compact, symplectic four-manifold W with boundary Y . A
four-manifold W is said to have convex boundary if there is a contact structure
� over Y with the property that the restriction of ! to the two-planes of �
is everywhere positive, cf. [4]. Indeed, if we �x the contact structure Y over
� , we say that W is a convex weak symplectic �lling of (Y; �). If W is a
convex weak symplectic �lling of a possibly disconnected three-manifold Y 0

with contact structure �0 , and if Y � Y 0 is a connected subset with induced
contact structure � , then we say that W is a convex, weak semi-�lling of (Y; �).
Of course, if a symplectic four-manifold W has boundary Y , equipped with a
contact structure � for which the restriction of ! is everywhere negative, we
say that W has concave boundary, and that W is a concave weak symplectic
�lling of Y . (We use the term \weak" here to be consistent with the accepted
terminology from contact geometry. We will, however, never use the notion of
strong symplectic �llings in this paper.)

If a contact structure (Y; �) admits a weak convex symplectic �lling, it is called
weakly �llable. Note that every contact structure (Y; �) can be realized as the
concave boundary of some symplectic four-manifold (cf. [7], [10], and [3]). This
is one justi�cation for dropping the modi�er \convex" from the terminology
\weakly �llable". If a contact structure (Y; �) admits a weak symplectic semi-
�lling, then it is called weakly semi-�llable. According to a recent result of
Eliashberg (cf. [3], restated in Theorem 4.1 below) any weakly semi-�llable
contact structure is weakly �llable, as well.

A symplectic structure (W;!) endows W with a canonical Spinc structure,
denoted k(!), cf. [36]. This can be thought of as the canonical Spinc struc-
ture associated to any almost-complex structure J over W compatible with ! ,
compare [36]. In particular, the �rst Chern class the Spinc structure k(!) is
the �rst Chern class of its complexi�ed tangent bundle. If (W;!) has convex
boundary (Y; �), then the restriction of the canonical Spinc structure over W
to Y is the canonical Spinc structure of the contact structure � .

2.1 Foliations and contact structures

Recall that a taut foliation is a foliation F which comes with a two-form !
which is positive on the leaves of F (note that like our contact structures, all the
foliations we consider here are cooriented and hence oriented). An irreducible
three-manifold is a three-manifold Y with �2(Y ) = 0. A fundamental result
of Gabai states that if Y is irreducible and �0 � Y is an embedded surface
which minimizes complexity in its homology class, and with has no spherical or
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toroidal components, then there is a smooth, taut foliation F which contains
�0 as a union of compact leaves. In particular, this shows that if Y is an irre-
ducible three-manifold with non-trivial Thurston semi-norm, and � � Y is an
embedded surface which minimizes complexity in its homology class, then there
is a smooth, taut foliation F with the property that hc1(F); [�]i = −�+(�).
(Here, we let F be a taut foliation whose closed leaves include all the compo-
nents of � with genus greater than one.)

The link between taut foliations and semi-�llable contact structures is provided
by an observation of Eliashberg and Thurston, cf. [5], according to which if Y
admits a smooth, taut foliation F , then W = [−1; 1] � Y can be given the
structure of a convex symplectic manifold, where here the two-plane �elds ��
over f�1g � Y are homotopic to the two-plane �eld of tangencies to F .

3 Heegaard Floer homology

Heegaard Floer homology is a collection of Z=2Z{graded homology theories as-
sociated to three-manifolds, which are functorial under smooth four-dimensional
cobordisms (cf. [27] for their constructions, and [28] for the veri�cation of their
functorial properties).

There are four variants, dHF (Y ), HF−(Y ), HF1(Y ), and HF+(Y ). HF−(Y )
is the homology of a complex over the polynomial ring Z[U ], HF1(Y ) is the
associated \localization" (i.e. it is the homology of the complex associated to
tensoring with the ring of Laurent polynomials over U ), HF+(Y ) is associated
to the cokernel of the localization map, and �nally dHF (Y ) is the homology
of the complex associated to setting U = 0. Indeed, all these groups admit
splittings indexed by Spinc structures over Y . The various groups are related
by long exact sequences

::: −−−−! dHF (Y; t) i−−−−! HF+(Y; t) U−−−−! HF+(Y; t) −−−−! :::

::: −−−−! HF−(Y; t)
j−−−−! HF1(Y; t) �−−−−! HF+(Y; t) −−−−! :::;

(1)

where here t 2 Spinc(Y ). The \reduced Heegaard Floer homology" HF+
red(Y; t)

is the cokernel of the map � . Sometimes we distinguish this from HF−red(Y; t),
which is the kernel of the map j , though these two Z[U ] modules are identi�ed
in the long exact sequence above.

For Y = S3 , we have that dHF (S3) �= Z. We can now lift the Z=2Z grading to
an absolute Z{grading on all the groups, using the following conventions. The
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group dHF (S3) �= Z is supported in dimension zero, the maps i, j , and � from
Equation (1) preserve degree, and U decreases degree by two. Indeed, for S3 ,
we have an identi�cation of Z[U ] modules:

0 −−−−! HF−(S3) −−−−! HF1(S3) −−−−! HF+(S3) −−−−! 0

=

??y =

??y =

??y
0 −−−−! U � Z[U ] −−−−! Z[U;U−1] −−−−! Z[U;U−1]=U � Z[U ] −−−−! 0;

where here the element 1 2 Z[U;U−1] lies in grading zero and U decreases
grading by two. (See [32] for a de�nition of absolute gradings in more general
settings.)

To state functoriality, we must �rst discuss maps associated to cobordisms. Let
W1 be a smooth, oriented four-manifold with @W1 = −Y1 [ Y2 , where here Y1

and Y2 are connected. (Here, of course, −Y1 denotes the three-manifold under-
lying Y1 , endowed with the opposite orientation.) In this case, we sometimes
write W1 : Y1 −! Y2 ; or, turning this around, we can view the same four-
manifold as giving a cobordism W1 : − Y2 −! −Y1 . There is an associated
map bFW1 : dHF (Y1) −!dHF (Y2);

well-de�ned up to an overall multiplication by �1, which can be decomposed
along Spinc structures over W1 :bFW1;s : dHF (Y1; t1) −!dHF (Y2; t2);

where here ti = sjYi , i.e. so that

bFW1 =
X

s2Spinc(W1)

bFW1;s:

There are similarly induced maps F+
W1;s

on HF+ which are equivariant under
the action of Z[U ]. For HF1 and HF− , there are again induced maps F1W1;s

and F−W1;s
for each �xed Spinc structure s 2 Spinc(W1) (but now, we can

no longer sum maps over all Spinc structures, since in�nitely many might be
non-trivial). Indeed, these maps are compatible with the natural maps from
Diagram (1); for example, all the squares in the following diagram commute:

::: −−−−! HF−(Y1; t1) −−−−! HF1(Y1; t1) −−−−! HF+(Y1; t1) −−−−! :::

F−W1;s

??y F1W1;s

??y F+
W1;s

??y
::: −−−−! HF−(Y2; t2) −−−−! HF1(Y2; t2) −−−−! HF+(Y2; t2) −−−−! :::
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Functoriality of Floer homology is to be interpreted in the following sense.
Let W1 : Y1 −! Y2 and W2 : Y2 −! Y3 . We can form then the composite
cobordism

W1#Y2W2 : Y1 −! Y3:

We claim that for each si 2 Spinc(Wi) with s1jY2 = s2jY2 , we have thatX
fs2Spinc(W1#Y2

W2)
��sjWi=sig

bFW;s = bFW2;s2 � bFW1;s1; (2)

with analogous formulas for HF− , HF1 , and HF+ as well (this is the \com-
position law", Theorem 3.4 of [28]).

Of these theories, HF1 is the weakest at distinguishing manifolds. For ex-
ample, if W : Y1 −! Y2 is a cobordism with b+2 (W ) > 0, then for any Spinc

structure s 2 Spinc(W ) the induced map

F1W;s : HF
1(Y1; sjY1) −! HF1(Y2; sjY2)

vanishes (cf. Lemma 8.2 of [28]).

Floer homology can be used to construct an invariant for smooth four-manifolds
X with b+2 (X) > 1 (here, b+2 (X) denotes the dimension of the maximal sub-
space of H2(X;R) on which the cup-product pairing is positive-de�nite) en-
dowed with a Spinc structure s 2 Spinc(X)

�X;s : Z[U ] −! Z;

which is well-de�ned up to an overall sign. This invariant is analogous to
the Seiberg{Witten invariant, cf. [41]. This map is a homogeneous element in
Hom(Z[U ];Z) with degree given by

c1(s)2 − 2�(X) − 3�(X)
4

:

For a �xed four-manifold X , the invariant �X;s is non-trivial for only �nitely
many s 2 Spinc(X). (Note that the four-manifold invariant �X;s constructed
in [28] is slightly more general, as it incorporates the action of H1(X;Z), but
we do not need this extra structure for our present applications.)

The invariant is constructed as follows. Let X be a four-manifold, and �x a
separating hypersurface N � X with 0 = �H1(N ;Z) � H2(X;Z), so that
X = X1 [N X2 , with b+2 (Xi) > 0 for i = 1; 2. (Here, � : H1(Y ;Z) −!
H2(X;Z) is the connecting homomorphism in the Mayer-Vietoris sequence for
the decomposition of X into X1 and X2 .) Such a separating three-manifold
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is called an admissible cut in the terminology of [28]. Given such a cut, delete
balls B1 and B2 from X1 and X2 respectively, and consider the diagram:

HF−(S3) −−−−! HF1(S3)

F−X1−B1;s1

??y F1X1−B1;s1

??y0

HF1(N; t) −−−−! HF+(N; t) −−−−! HF−(N; t) −−−−! HF1(N; t)

0

??yF1X2−B2;s2

??yF+
X2−B2;s2

HF1(S3) −−−−! HF+(S3);

where here t = sjN and si = sjXi . Since the two maps indicated with 0 vanish
(as b+2 (Xi −Bi) > 0), there is a well-de�ned map

Fmix
X−B1−B2;s : HF

−(S3) −! HF+(S3);

which factors through HF+
red(N; t).

The invariant �X;s corresponds to Fmix
X−B1−B2;s

under the natural identi�cation

HomZ[U ](Z[U ];Z[U;U−1]=Z[U ]) �= Hom(Z[U ];Z)

According to Theorem 9.1 of [28], �X;s is a smooth four-manifold invariant.

The following property of the invariant is immediate from its de�nition: if X =
X1 [N X2 where N is a rational homology three-sphere with HF+

red(N) = 0,
and the four-manifolds Xi have the property that b+2 (Xi) > 0, then for each
s 2 Spinc(X),

�X;s � 0:

The second property which we rely on heavily in this paper is the following
analogue of a theorem of Taubes [36] and [37] for the Seiberg{Witten invariants
for four-manifolds: if (X;!) is a smooth, closed, symplectic four-manifold with
b+2 (X) > 1, then if k(!) 2 Spinc(X) denotes its canonical Spinc structure, then
we have that

�X;k(!) � �1;

while if s 2 Spinc(X) is any Spinc structure for which �X;s 6� 0, then we have
that

hc1(k(!)) [ !; [X]i � hc1(s) [ !; [X]i;

with equality i� s = k(!). This result is Theorem 1.1 of [34], and its proof relies
on a combination of techniques from Heegaard Floer homology (speci�cally, the
surgery long exact sequence from [26]) and Donaldson’s Lefschetz pencils for
symplectic manifolds, [2].
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3.1 Three-manifolds with b1(Y ) > 0

There is a version of Floer homology with \twisted coe�cients" which is relevant
in the case where b1(Y ) > 0. Fundamental to this construction is a chain
complex dCF (Y ) (and also corresponding complexes CF− , CF1 , and CF+)
with coe�cients in Z[H1(Y ;Z)] which is a lift of the complex dCF (Y ) (whose
homology calculates dHF (Y )), in the following sense. Let Z be the module
over Z[H1(Y ;Z)], where the elements of H1(Y ;Z) act trivially. Then, there
is an identi�cation dCF (Y ) �= dCF (Y ) ⊗Z[H1(Y ;Z)] Z. Thus, there is a change
of coe�cient spectral sequences which relates the homology of dCF (Y ), writtendHF (Y ), with dHF (Y ).

Indeed, given any module M over Z[H1(Y ;Z)], we can form the groupdHF (Y ;M) = H�
�dCF (Y )⊗Z[H1(Y ;Z)] M

�
;

which gives Floer homology with coe�cients twisted by M . The analogous
construction in the other versions of Floer homology gives groups HF−(Y ;M),
HF1(Y ;M), and HF+(Y ;M). All of these are related by exact sequences
analogous to those in Diagram (1). In particular, we can form a reduced group
HF+

red(Y ;M), which is the cokernel of the localization map HF1(Y ;M) −!
HF+(Y ;M).

In particular, if we �x a two-dimensional cohomology class [!] 2 H2(Y ;R), we
can view Z[R] as a module over Z[H1(Y ;Z)] via the ring homomorphism

[γ] 7! T
∫
Y

[γ]^!

(where here T r denotes the group-ring element associated to the real number
r). This gives us a notion of twisted coe�cients which we denote by dHF (Y ; [!]).

This can be thought of explicitly as follows. Choose a Morse function on Y
compatible with a Heegaard decomposition (�; �; � ; z), and �x also a two-
cocycle ! over Y which represents [!]. We obtain a map from Whitney disks
u in Symg(�) (for T� and T� ) to two-chains in Y : u induces a two-chain in �
with boundaries along the � and � . These boundaries are then coned o� by
following gradient trajectories for the �{ and �{circles. Since ! is a cocycle,
the evaluation of ! on u depends only on the homotopy class � of u. We
denote this evaluation by

R
[�] ! . (This determines an additive assignment in

the terminology of Section 8 of [26].) The di�erential on HF+(Y ; [!]) is given
by

@+[x; i] =
X

y2T�\T�

X
f�2�2(x;y)

���(�)=1g

#
�
M(�)
R

�
� T
∫
[�] ! � [y; i − nz(�)];
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where here we adopt notation from [26]: �2(x;y) denotes the space of homotopy
classes of Whitney disks in Symg(�) for T� and T� connecting x and y , �(�)
denotes the formal dimension of its space M(�) of holomorphic representatives,
and nz(�) denotes the intersection number of � with the subvariety fzg �
Symg−1(�) � Symg(�).

Now, if W : Y1 −! Y2 , and M1 is a module over H1(Y1;Z), there is an induced
map

F+
W ;M1

: HF+(Y1;M1) −! HF+(Y2;M1 ⊗H1(Y1;Z) H
2(W;Y1 [ Y2));

well-de�ned up to the action by some unit in Z[H2(Y1 [ Y2;Z)], de�ned as in
Subsection 3.1 [28]. (Indeed, in that discussion, the construction is separated
according to Spinc structures over W , which we drop at the moment for no-
tational simplicity.) In the case of !{twisted coe�cients, this gives rise to a
map

F+
W ;[!] : HF

+(Y1; [!]jY1) −! HF+(Y2; [!]jY2)

(again, well-de�ned up to multiplication by �T c for some c 2 R) which can be
concretely described as follows.

Suppose for simplicity that W is represented as a two-handle addition, so that
there is a corresponding \Heegaard triple" (�; �; � ; γ ; z). The corresponding
four-manifold X�;�;γ represents W minus a one-complex. Fix now a two-cocycle
! representing [!] 2 H2(W ;R). Again, a Whitney triangle u in Symg(�) for
T� , T� , and Tγ (with vertices at x, y , and w) determines a two-chain in
X�;�;γ , whose evaluation on ! depends on u only through its induced homotopy
class  in �2(x;y;w), denoted by

R
[ ] ! . Now,

F+
W ;[!][x; i] =

X
y2T�\Tγ

X
f 2�2(x;�;y)

���( )=0g

# (M( )) �T
∫
[ ] ! � [y; i−nz( )]; (3)

where � 2 T� \ Tγ represents a canonical generator for the Floer homology
HF� = H�(U−1 �CF−) of the three-manifold determined by (�; � ; γ ; z), which
is a connected sum #g−1(S2�S1). This can be extended to arbitrary (smooth,
connected) cobordisms from Y1 to Y2 as in [28].

(In the present discussion, since we have suppressed Spinc structures from the
notation, a subtlety arises. The expression analogous to Equation (3), only
using HF− , is not well-de�ned since, in principle, there might be in�nitely
many di�erent homotopy classes which induce non-trivial maps { i.e. we are
trying to sum the maps on HF− induced by in�nitely many di�erent Spinc

structures. However, if the cobordism W has b+2 (W ) > 0, then there are
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only �nitely many Spinc structures which induce non-zero maps, according to
Theorem 3.3 of [28].)

Note that when W is a cobordism between two integral homology three-spheres,
the above construction is related to the construction in the untwisted case by
the formula

F+
W ;[!] = �T c �

X
s2Spinc(W )

T hc1(s)[[!];[W ]i � F+
W;s

for some constant c 2 R.

4 Invariants of weakly �llable contact structures

We briefly review the construction here of the Heegaard Floer homology element
associated to a contact structure � over the three-manifold Y , c(�) 2dHF (−Y ).
After sketching the construction, we describe a re�nement which lives in Floer
homology with twisted coe�cients.

The contact invariant is constructed with the help of some work of Giroux.
Speci�cally, in [11], Giroux shows that contact structures over Y are in one-
to-one correspondence with equivalence classes of open book decompositions
of Y , under an equivalence relation given by a suitable notion of stabilization.
Indeed, after stabilizing, one can realize the open book with connected binding,
and with genus g > 1 (both are convenient technical devices). In particular,
performing surgery on the binding, we obtain a cobordism (obtained by a single
two-handle addition) W0 : Y −! Y0 , where here the three-manifold Y0 �bers
over the circle. We call this cobordism a Giroux two-handle subordinate to
the contact structure over Y . This cobordism is used to construct c(�), but to
describe how, we must discuss the Heegaard Floer homology for three-manifolds
which �ber over the circle.

Let Z be a (closed, oriented) three-manifold endowed with the structure of a
�ber bundle � : Z −! S1 . This structure endows Z with a canonical Spinc

structure k(�) 2 Spinc(Z) (induced by the two-plane distribution of tangents
to the �ber of �). According to [34], if the genus g of the �ber is greater than
one, then

HF+(Z; k(�)) �= Z:

In particular, there is a homogeneous generator c0(�) for dHF (Z; k(�)) �= Z�Z
which maps to the generator c+0 (�) of HF+(Z; k(�)). This generator is, of
course, uniquely determined up to sign.
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With these remarks in place, we can give the de�nition of the invariant c(�)
associated to a contact structure over Y . If Y is given a contact structure, �x a
compatible open book decomposition (with connected binding, and �ber genus
g > 1), and consider the corresponding Giroux two-handle W0 : − Y0 −! −Y
(which we have \turned around" here), and let

bFW0 : dHF (−Y0) −!dHF (−Y )

be the induced map. Then, de�ne c(�) 2 dHF (−Y )=f�1g to be the imagebFW0(c0(�)). It is shown in [30] that this element is uniquely associated (up
to sign) to the contact structure, i.e. it is independent of the choice of com-
patible open book. In fact, the element c(�) is supported in the summanddHF (Y; k(�)) � dHF (Y ), where here k(�) is the canonical Spinc structure as-
sociated to the contact structure � , in the sense described in Section 2. (In
particular, the canonical Spinc structure of the �bration structure on −Y0 is
Spinc cobordant to the canonical Spinc structure of the contact structure over
−Y via the Giroux two-handle.)

With the help of Giroux’s characterization of Stein �llable contact structures, it
is shown in [30] that c(�) is non-trivial for a Stein structure. This non-vanishing
result can be strengthened considerably with the help of the following result of
Eliashberg [3].

Theorem 4.1 (Eliashberg [3]) Let (Y; �) be a contact three-manifold, which
is the convex boundary of some symplectic four-manifold (W;!). Then, any
Giroux two-handle W0 : Y −! Y0 can be completed to give a compact symplec-
tic manifold (V; !) with concave boundary @(V; !) = (Y; �), so that ! extends
smoothly over X = W [Y V .

Although Eliashberg’s is the construction we need, concave �llings have been
constructed previously in a number of di�erent contexts, see for example [22],
[1], [7], [10], [25]. Indeed, since the �rst posting of the present article, Etnyre
pointed out to us an alternate proof of Eliashberg’s theorem [6], see also [25].

In the construction, V is given as the union of the Giroux two-handle with a
surface bundle V0 over a surface-with-boundary which extends the �ber bundle
structure over Y0 . Moreover, the �bers of V0 are symplectic. By forming a
symplectic sum if necessary, one can arrange for b+2 (V ) to be arbitrarily large.

To state the stronger non-vanishing theorem, we use a re�nement of the contact
element using twisted coe�cients. We can repeat the construction of c(�) with
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coe�cients in any module M over Z[H1(Y ;Z)] (compare Remark 4.5 of [30]),
to get an element

c(�;M) 2dHF (Y ;M)=Z[H1(Y ;Z)]�:

As the notation suggests, this is an element c(�;M) 2dHF (Y ;M), which is well-
de�ned up to overall multiplication by a unit in the group-ring Z[H1(Y ;Z)]. Let
c+(�;M) denote the image of c(�;M) under the natural map dHF (−Y ;M) −!
HF+(−Y ;M), and let c+red(�;M) denote its image under the projection
HF+(−Y ;M) −! HF+

red(−Y ;M).

In our applications, we will typically take the module M to be Z[R], with
the action speci�ed by some two-form ! over Y , so that we get c(�; [!]) 2dHF (−Y ; [!]). The following theorem should be compared with a theorem of
Kronheimer and Mrowka [17], see also Section 6 of [19]:

Theorem 4.2 Let (W;!) be a weak �lling of a contact structure (Y; �). Then,
the associated contact invariant c(�; [!]) is non-trivial. Indeed, it is non-torsion
and primitive (as is its image in HF+(Y ; [!]). Indeed, if (W;!) is a weak-semi-
�lling of (Y; �) with disconnected boundary or (W;!) is a weak �lling of Y with
b+2 (W ) > 0, then the reduced invariant c+red(�; [!]) is non-trivial (and indeed
non-torsion and primitive).

Proof Let (W;!) be a symplectic �lling of (Y; �) with convex boundary.

Consider Eliashberg’s cobordism bounding Y , V = W0 [Y0 V0 , where here
W0 : Y −! Y0 is the Giroux two-handle and V0 is a surface bundle over a
surface-with-boundary. Now, the union

X = V0 [−Y0 [W0 [−Y W

is a closed, symplectic four-manifold. (As the notation suggests, we have
\turned around" W0 , to think of it as a cobordism from −Y0 to −Y ; similarly
for V0 .) Arrange for b+2 (V0) > 1, and decompose V0 further by introducing an
admissible cut by N . Now, N decompose X into two pieces X = X1 [N X2 ,
where b+2 (Xi) > 0, and we can suppose now that X2 contains the Giroux
cobordism, i.e.

X2 = (V0 −X1) [−Y0 [W0 [−Y W: (4)

Now, by the de�nition of �, for any given s 2 Spinc(X), there is an element
� 2 HF+(N; sjN ) with the property that

�X;s = F+
X2−B2

(�):
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(By de�nition of �, the element � here is any element of HF+(N; sjN ) whose
image under the connecting homomorphism in the second exact sequence in
Equation (1) coincides with the image of a generator of HF−(S3) under the
map F−X1−B1

: HF−(S3) −! HF−(N; sjN ).) Applying the product formula for
the decomposition of Equation (4), we get thatX

�2H1(Y ;Z)

�X;k(!)+�� = F+
W−B2

� F+
W0
� F+

V0−X1
(�):

In terms of !{twisted coe�cients, we have thatX
�2H1(Y0;Z)

�X;k(!)+�� � T h![c1(k(!)+��);[X]i = F+
W−B2;[!] � F

+
W0;[!] � F

+
V0−X1;[!](�):

(Here, � 2 HF+(N; sjN ; [!]) is the analogue of the class � considered earlier.)
But HF+(Y0; t) �= Z[R] is generated by c+0 (�) (where here � : Y0 −! S1 is
the projection obtained from restricting the bundle structure over V0 , and t is
the restriction of k(!) to Y0 ), so there is some element p(T ) 2 Z[R] with the
property that F+

V0−nd(F )(�) = p(T ) � c+(�). Thus,X
�2H1(Y0;Z)

�X;k(!)+�� � T h![c1(k(!)+��);[X]i = p(T ) � F+
W−B2

(c+(�; [!])):

The left-hand-side here gives a polynomial in T (well de�ned up to an overall
sign and multiple of T ) whose lowest-order term is one, according to Theo-
rem 1.1 of [34] (recalled in Section 3). It follows at once that F+

W−B2
(c+(�; [!]))

is non-trivial. Indeed, it also follows that F+
W−B2

(c+(�; [!])) is a primitive ho-
mology class (since the leading coe�cient is 1), and no multiple of it zero. This
implies the same for c(�; [!]).

Now, when b+2 (W ) > 0, we use Y as a cut for X to show that the induced
element c+red(�; [!]) is non-trivial (primitive and torsion). In the case where
Y is semi-�llable with disconnected boundary, we can close o� the remaining
boundary components as in Theorem 4.1 to construct a new symplectic �lling
W 0 of Y with one boundary component and b+2 (W 0) > 0, reducing to the
previous case.

Proof of Theorem 1.4 A three-manifold Y is an L{space if it is a rational
homology three-sphere and dHF (Y ) is a free Z{module of rank jH1(Y ;Z)j.
Note that for an L-space, HF+

red(Y ) ⊗Z Q = 0. This is an easy application
of the long exact sequence (1), together with the fact that the the intersection
of the kernel of U : HF+(Y ) −! HF+(Y ) with the image of HF1(Y ) inside
HF+(Y ) has rank jH1(Y ;Z)j, since HF1(Y ) �= Z[U;U−1] (cf. Theorem 10.1
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of [26]), the map from HF1(Y ) to HF+(Y ) is an isomorphism in all su�ciently
large degrees (i.e. U−n for n su�ciently large), and it is trivial in all su�ciently
small degrees.

For a three-manifold Y with b1(Y ) = 0, HF+(Y ; [!]) �= HF+(Y )⊗ZZ[R], since
[!] 2 H2(Y ;Q) is exact. Thus, the reduced group in which c+red(�; [!]) lives
consists only of torsion classes, and the result now follows from Theorem 4.2.

Sometimes, it is easier to use Z=pZ coe�cients (especially when p = 2). To
this end, we say that Y a rational homology three-sphere is a Z=pZ{L{space
for some prime p if dHF (Y ;Z=pZ) has rank jH1(Y ;Z)j over Z=pZ (of course,
an L space is automatically a Z=pZ{L{space for all p). Since c+(�; [!]) is
primitive, the above argument shows that a Z=pZ{L{space (for any prime p)
cannot support a taut foliation.

The need to use twisted coe�cients in the statement of Theorem 4.2 is illus-
trated by the three-manifold Y obtained as zero-surgery on the trefoil. The re-
duced Heegaard Floer homology with untwisted coe�cients is trivial (cf. Equa-
tion 26 of [32]), but this three-manifold admits a taut foliation. (In particular
the reduced Heegaard Floer homology of this manifold with twisted coe�cients
is non-trivial, cf. Lemma 8.6 of [32].)

5 The Thurston norm

We turn our attention to the proof of Theorem 1.1.

Proof of Theorem 1.1 It is shown in Section 1.6 of [26] that if dHF (Y; s) 6= 0,
then

jhc1(s); �ij � �(�): (5)

(The result is stated there for HF+ with untwisted coe�cients, but the argu-
ment there applies to the case of dHF .) It remains to prove that if � � Y is
an embedded surface which minimizes complexity in its homology class � , then
there is a Spinc structure s with dHF (Y; s) 6= 0 and

hc1(s); [�]i = −�+(�): (6)

The Künneth principle for connected sums (cf. Theorem 1.5 of [26]) states thatdHF (Y1#Y2; s1#s2)⊗Z Q �= dHF (Y1; s1)⊗Z dHF (Y2; s2)⊗Z Q:

In particular, if dHF (Y1; s1) ⊗Z Q and dHF (Y2; s2) ⊗Z Q are non-trivial, then
so is dHF (Y1#Y2; s1#s2) ⊗Z Q. Since every closed three-manifold admits a
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connected sum decomposition where the summands are all either irreducible
or copies of S2 � S1 [23], it su�ces to verify that dHF (Y; s) ⊗Z Q is non-
trivial for the elementary summands of Y . (It is straightforward to see that
�Y1#Y2(�1 + �2) = �Y1(�1) + �Y2(�2) in Y1#Y2 , where here �i 2 H2(Yi), under
the natural identi�cation H2(Y1#Y2) �= H2(Y1)�H2(Y2).)

We �rst observe that if Y has trivial Thurston semi-norm (for example, when
b1(Y ) = 0 or Y = S2 � S1 ), then there is an element s 2 Spinc(Y ) for whichdHF (Y; s) 6= 0. Indeed, it is shown in Theorem 10.1 of [26] that HF1(Y; s) �=
Z[U;U−1] for any s with c1(s) = 0. Also, for such Spinc structures, the map
from HF1(Y; s) to HF+(Y; s) is non-trivial. The non-triviality of dHF (Y; s)
follows at once (using the analogue of Exact Sequence (1) for the case of twisted
coe�cients).

In the case where Y is an irreducible three-manifold with non-trivial Thurston
norm, and � is a surface which minimizes complexity in its homology class,
Gabai [8] constructs a smooth taut foliation F for which

hc1(F); [�]i = −�+(�):

According to a theorem of Eliashberg and Thurston, then [−1; 1] � Y can be
equipped with a convex symplectic form, which extends F , thought of as a
foliation over f0g � Y . In particular, their result gives a weakly symplectically
semi-�llable contact structure � with hc1(�); [�]i = −�+(�). It follows now
from Theorem 4.2 that c(�; [!]) 2dHF (Y; [!]; s(�)) ⊗Z Q 6= 0.

One approach to Theorem 1.2 would directly relate knot Floer homology with
the twisted Floer homology of the zero-surgery. We opt, however, to give an
alternate proof which uses the relation between the knot Floer homology and
the Floer homology of the zero-surgery in the untwisted case, and adapts the
proof rather than the statement of Theorem 1.1. The relevant relationship
between these groups can be found in Corollary 4.5 of [31], according to which
if d > 1 is the smallest integer for which ĤFK(K;d) 6= 0, then

ĤFK(K;d) �= HF+(S3
0(K); d− 1); (7)

where here we have identi�ed Spinc(S3
0(K)) �= Z by the map s 7! hc1(s); [�]i=2,

where [�] 2 H2(S3
0(K);Z) �= Z is some generator. (Note that the choice of gen-

erator is not particularly important, as HF+(S3
0(K); i) �= HF+(S3

0(K);−i),
according to the conjugation invariance of Heegaard Floer homology, Theo-
rem 2.4 of [26].)

This result will be used in conjunction with the \adjunction inequality" for
knot Floer homology, Theorem 5 of [31], which shows that ĤFK(K; i) = 0 for
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all jij > g(K); and indeed, the proof of that result proceeds by constructing a
compatible doubly-pointed Heegaard diagram (from a genus-minimizing Seifert
surface for K ) which has no simultaneous trajectories x with s(x) > g(K).

Proof of Theorem 1.2 Let K � S3 be a knot with genus g . Assume for
the moment that g > 1. Let Y be the three-manifold obtained as zero-framed
surgery on S3 along K , and let [�] 2 H2(Y ;Z) denote a generator. In this
case, Gabai [9] constructs a taut foliation F over Y with hc1(F); [�]i = 2−2g .
Eliashberg’s theorem [3] now provides a symplectic four-manifold X = X1 [Y
X2 , where here b+2 (Xi) > 0. According to the product formula Equation (2),
the sum X

�2H1(Y )

�X;k(!)+��

is calculated by a homomorphism which factors through the Floer homology
HF+(Y; k(!)jY ). On the other hand, c1(k(!)) gives a cohomology class whose
evaluation on a generator for H2(Y ;Z) is non-trivial when g > 1 (for a suitable
generator, this evaluation is given by 2 − 2g). Since the image of a generator
of H1(Y ;Z) is represented by a surface in X with square zero and non-zero
evaluation of c1(s(!)), it follows that the various terms in the sum are homo-
geneous of di�erent degrees. But by Theorem 1.1 of [34], it follows that the
term corresponding to k(!) (and hence the sum) is non-trivial. It follows now
that HF+(Y; k(!)jY ) = HF+(S3

0(K); g − 1) (for suitably chosen generator) is
non-trivial and hence, in view of Equation (7), Theorem 1.2 follows for knots
with genus at least two.

Suppose that g = 1. In this case, we have a Künneth principle for the knot Floer
homology (cf. Equation 5 of [31]), according to which (since ĤFK(K; s) = 0
for all s > 1),

ĤFK(K#K; 2)⊗Z Q �= ĤFK(K; 1) ⊗Q ĤFK(K; 1):

But K#K is a knot with genus 2, and hence ĤFK(K#K; 2) is non-trivial;
and hence, so is ĤFK(K; 1).

Proof of Corollary 1.3 According to the integral surgeries long exact se-
quence for Heegaard Floer homology (in its graded form), if S3

p(K) �= L(p; 1),
the Alexander polynomial of K is trivial (indeed HF+(S3

0(K)) �= HF+(S2 �
S1)), cf. Theorem 1.8 of [32]. In [29], it is shown that if S3

p(K) is a lens space
for some integer p, then the knot Floer homology ĤFK�(K; �) is determined
by the Alexander polynomial �K(T ) (cf. Theorem 1.2 of [29]) which in the
present case is trivial. Thus, in view of Theorem 1.2, the knot K is trivial.
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Proof of Corollary 1.5 In the proof of Theorem 5 of [31], we demonstrate
that if a knot has genus g , then there is a compatible Heegaard diagram with
no simultaneous trajectories x for which s(x) > g . In the opposite direction,
note that ĤFK(K;d) is generated by simultaneous trajectories with s(x) =
d. According to Theorem 1.2, ĤFK(K; g) 6= 0, and hence any compatible
Heegaard diagram must contain some simultaneous trajectories x with s(x) =
g .
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