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The mean curvature integral is invariant
under bending

Frederic J Almgren Jr

Igor Rivin

Abstract Suppose Mt is a smooth family of compact connected two di-
mensional submanifolds of Euclidean space E3 without boundary varying
isometrically in their induced Riemannian metrics. Then we show that
the mean curvature integrals ∫

Mt

Ht dH2

are constant. It is unknown whether there are nontrivial such bendings
Mt . The estimates also hold for periodic manifolds for which there are
nontrivial bendings. In addition, our methods work essentially without
change to show the similar results for submanifolds of Hn and Sn , to
wit, if Mt = @Xt

d

∫
Mt

Ht dH2 = −kn− 1dV (Xt);

where k = −1 for H3 and k = 1 for S3 . The Euclidean case can be
viewed as a special case where k = 0. The rigidity of the mean curvature
integral can be used to show new rigidity results for isometric embeddings
and provide new proofs of some well-known results. This, together with
far-reaching extensions of the results of the present note is done in the
preprint [6]. Our result should be compared with the well-known formula
of Herglotz (see [5], also [8] and [2]).

AMS Classi�cation 53A07, 49Q15

Keywords Isometric embedding, integral mean curvature, bending,
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1 Introduction

The underlying idea of this note is the following. Suppose Nt is a smoothly vary-
ing family of polyhedral solids having edges

�
Et(k)

}
k

, and associated (signed)
dihedral angles

�
�t(k)

}
k

. According to a theorem of Schlafli [7]X
k

��Et(k)
�� d
dt
�t(k) = 0:
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In case edge length is preserved in the family, ie
d

dt

��Et(k)
�� = 0

for each time t and each k , then also (product rule)
d

dt

X
k

��Et(k)
�� �t(k) = 0:

Should the @Nt ’s be polyhedral approximations to submanifolds Mt varying
isometrically, one might regardX

k

��Et(k)
�� �t(k)

as a reasonable approximation to the mean curvature integralsZ
Mt

Ht dH2

and expect
d

dt

��Et(k)
��

to be small. Hence it is plausible that the mean curvature integrals of the Mt ’s
might be constant. In this note we show that that is indeed the case.
Examples such as the isometry pictured on page 306 of volume 5 of [8] show
that the mean curvature integral is not preserved under discrete isometries.
Two comments are in order. The �rst is that it is very likely that there are
no isometric bendings of hypersurfaces. One reason for the existence of the
current work is to produce a tool for resolving this conjecture (as Herglotz’ mean
curvature variation formula can be used to give a simple proof of Cohn{Vossen’s
theorem on rigidity of convex hypersurfaces). Secondly, the main theorem can
be viewed as a sort of dual bellows theorem (when the hypersurface in question
lies in Hn or Sn ): as the surface is isometrically deformed, the volume of the
polar dual stays constant. This should be contrasted with the usual bellows
theorem recently proved by Sabitov, Connelly and Walz [4].

2 Terminology and basic facts
Our object in this section is to set up terminology for a family of manifolds
varying smoothly through isometries. We consider triangulations of increasing
�neness varying with the manifolds. To make possible our mean curvature anal-
ysis we associate integral varifolds with both the manifolds and the polyhedral
surfaces determined by the triangulations. The mean curvature integral of in-
terest is identi�ed with (minus two times) the varifold �rst variation associated
with the unit normal initial velocity vector �eld.
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2.1 Terminology and facts for a static manifold M

2.1.1 We suppose that M � R3 is a compact connected smooth two di-
mensional submanifold of R3 without boundary oriented by a smooth Gauss
mapping n: M! S2 of unit normal vectors.

2.1.2 H: M! R denotes half the sum of principal curvatures in direction n
at points in M so that Hn is the mean curvature vector �eld of M.

2.1.3 We denote by U a suitable neighborhood of M in R3 in which a smooth
nearest point retraction mapping �: U !M is well de�ned. The smooth signed
distance function �: U ! R is de�ned by requiring p = �(p) + �(p) n(�(p)) for
each p. We set

g = r�: U ! R3

(so that gjM = n); the vector �eld g is the initial velocity vector �eld of the
deformation

Gt: U ! R3; Gt(p) = p+ t g(p) for p 2 U:

2.1.4 We denote by
V = v(M)

the integral varifold associated with M [1, 3.5]. The �rst variation distribution
of V [1, 4.1, 4.2] is representable by integration [1, 4.3] and can be written

�V = H2 M^ (−2H)n

[1, 4.3.5] so that

�V (g) =
d

dt
H2
(
Gt(M)

�����
t=0

= −2
Z
M
g �H n dH2 = −2

Z
M
H dH2;

here H2 denotes two dimensional Hausdor� measure in R3 .

2.1.5 By a vertex p in M we mean any point p in M. By an edge hpqi
in M we mean any (unordered) pair of distinct vertexes p, q in M which are
close enough together that there is a unique length minimizing geodesic arc
[[pq]] in M joining them; in particular hpqi = hqpi. For each edge hpqi we write
@hpqi = fp; qg and call p a vertex of edge hpqi, etc. We also denote by pq
the straight line segment in R3 between p and q , ie the convex hull of p and
q . By a facet hpqri in M we mean any (unordered) triple of distinct vertexes
p, q , r which are not collinear in R3 such that hpqi, hqri, hrpi are edges in
M; in particular, hpqri = hqpri = hrpqi, etc. For each facet hpqri we write
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@hpqri =
�
hpqi; hqri; hrpi

}
and call hpqi an edge of facet hpqri and also denote

by pqr the convex hull of p, q , r in R3 .

2.1.6 Suppose 0 < � < 1 and 0 < � < 1. By a �; � regular triangulation T
of M of maximum edge length L we mean

(i) a family T2 of facets in M, together with

(ii) the family T1 of all edges of facets in T2 together with

(iii) the family T0 of all vertexes of edges in T1

such that

(iv) pqr � U for each facet hpqri in T2

(v) M is partitioned by the family of subsets�
�
(
pqr � (pq [ qr [ rq)

�
: hpqri 2 T2

�
[
�
�(pq) � fp; qg : hpqi 2 T1

�
[
�
fpg : p 2 T0

�
(vi) for facets hpqri 2 T2 we have the uniform nondegeneracy condition: if we
set u = q − p and v = r − p then����v − � u

juj � v
�

u

juj

���� � � jvj
(vii) L = sup

�
jp − qj : hpqi 2 T1

}
(viii) for edges in T1 we have the uniform control on the ratio of lengths:

inf
�
jp− qj : hpqi 2 T1

}
� �L:

2.1.7 Fact [3] It is a standard fact about the geometry of smooth subman-
ifolds that there are 0 < � < 1 and 0 < � < 1 such that for arbitrarily small
maximum edge lengths L there are �; � regular triangulations of M of max-
imum edge length L. We �x such � and �. We hereafter consider only �; �
regular triangulations T with very small maximum edge length L. Once L is
small the triangles pqr associated with hpqri in T2 are very nearly parallel with
the tangent plane to M at p.

2.1.8 Associated with each facet hpqri in T2 is the unit normal vector n(pqr)
to pqr having positive inner product with the normal n(p) to M at p.

Frederic J Almgren Jr and Igor Rivin

Geometry and Topology Monographs, Volume 1 (1998)

4



2.1.9 Associated with each edge hpqi in T1 are exactly two distinct facets
hpqri and hpqsi in T2 . We denote by

n(pq) =
n(pqr) + n(pqs)��n(pqr) + n(pqs)

��
the average normal vector at pq .

For each hpqi we further denote by �(pq) the signed dihedral angle at pq be-
tween the oriented plane directions of pqr and pqs which is characterized by
the condition

2 sin
�
�(pq)

2

�
n(pq) = V +W

where

� V is the unit exterior normal vector to pqr along edge pq , so that, in
particular,

V � (p− q) = V � n(pqr) = 0;

� W is the unit exterior normal vector to pqs along edge pq .

One checks that
cos �(pq) = n(pqr) � n(pqs):

Finally for each hpqi we denote by

g(pq) = jp− qj−1

Z
pq

g dH1 2 R3

the pq average of g ; here H1 is one dimensional Hausdor� measure in R3 .

2.1.10 Associated with our triangulation T of M is the polyhedral approxi-
mation

N [T ] = [
�
pqr : hpqri 2 T2

}
and the integral varifold

V [T ] =
X

hpqri2T2

v
(
pqr
�

= v
(
N (T )

�
whose �rst variation distribution is representable by integration

�V [T ] =
X
hpqi2T1

H1 pq ^
�
2 sin

�
�(pq)

2

��
n(pq)

[1, 4.3.5] so that

�V [T ](g) =
X
hpqi2T1

�
jp− qj

� �
2 sin

�
�(pq)

2

���
n(pq) � g(pq)

�
:
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2.2 Terminology and facts for a flow of manifolds Mt

2.2.1 As in 2.1.1 we suppose that M � R3 is a compact connected smooth
two dimensional submanifold of R3 without boundary oriented by a smooth
Gauss mapping n: M ! S2 of unit normal vectors. We suppose additionally
that ’: (−1; 1) �M ! R3 is a smooth mapping with ’(0; p) = p for each
p 2M. For each t we set

’[t] = ’(t; �): M! R3 and Mt = ’[t](M):

Our principal assumption is that, for each t, the mapping ’[t]: M ! Mt is
an orientation preserving isometric imbedding (of Riemannian manifolds). In
particular, each Mt � R3 is a compact connected smooth two dimensional
submanifold of R3 without boundary oriented by a smooth Gauss mapping
nt: Mt ! S2 of unit normal vectors.

2.2.2 As in 2.1.2, for each t, we denote by Htnt the mean curvature vector
�eld of Mt .

2.2.3 As in 2.1.3, for each t we denote by Ut a suitable neighborhood of Mt

in R3 in which a smooth nearest point retraction mapping �t: Ut !Mt is well
de�ned together with smooth signed distance function �t: Ut ! R; also we set
g[t] = r�t: Ut ! R3 as an initial velocity vector �eld.

2.2.4 By a convenient abuse of notation we assume that we can de�ne a smooth
map

’: (−1; 1)� U0 ! R3;

’(t; p) = ’
(
t; �0(p) + �0(p)n0(�(p)

�
= ’

(
t; �0(p)

�
+ �0(p)nt(�0(p)

�
for each t and p. With ’[t] = ’(t; �) we have ’[0] = 1U0 and, additionally,
�0(p) = �t

(
’[t](p)

�
. We further assume that

Ut = ’[t]U0

for each t.

2.2.5 Fact If we replace our initial ’[t]: M! R3 ’s by ’[�t] for large enough
� (equivalently, restrict times t to −1=� < t < 1=�) and decrease the size of U0

then the extended ’[t]: U0 ! R3 ’s will exist. Such restrictions do not matter
in the proof of our main assertion, since it is local in time and requires only
small neighborhoods of the Mt ’s.

2.1.6 As in 2.1.4, for each t we denote by

Vt = v(Mt)
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the integral varifold associated with Mt .

2.2.7 We �x 0 < � < 1=2 and 0 < � < 1=2 as in 2.1.7 and �x 2� , 2�
regular triangulations T (1), T (2), T (3), : : : of M having maximum edge
lengths L(1), L(2), L(3) : : : respectively with limj!1 L(j) = 0: For each j ,
the vertexes of T (j) are denoted T0(j), the edges are denoted T1(j), and the
facets are denoted T2(j). For all large j and each t we have triangulations
T (1; t), T (2; t), T (3; t), : : : of Mt as follows. With notation similar to that
above we specify, for each j and t,

T0(j; t) =
�
’[t](p) : p 2 T0(j)

�
; T1(j; t) =

�〈
’[t](p)’[t](q)

�
: hpqi 2 T1(j)

�
;

T2(j; t) =
�〈
’[t](p)’[t](q)’[t](r)

�
: hpqri 2 T2(j)

�
:

2.2.8 Fact If we replace ’[t] by ’[�t] for large enough � (equivalently, re-
strict times t to −1=� < t < 1=�) then T (1; t), T (2; t), T (3; t), : : : will
a sequence of �; � regular triangulations of M with maximum edge lengths
L(j; t) converging to 0 uniformly in time t as j !1. Such restrictions do not
matter in the proof of our main assertion, since it is local in time. We assume
this has been done, if necessary, and that each of the triangulations T (j; t) is
�; � regular with maximum edge lengths L(j; t) converging to 0 as indicated.

2.2.9 As in 2.1.8 we associate with each j , t, and hpqri 2 T2(j) a unit normal
vector n[t; j](pqr) to ’[t](p)’[t](q)’[t](r) . As in 2.1.9 we associate with each
j , t, and hpqi 2 T1(j) an average normal vector n[t; j](pq) at ’[t](p)’[t](q)
and a signed dihedral angle �[t; j](pq) at ’[t](p)’[t](q) and the ’[t](p)’[t](q)
average g[t; j](pq) of g[t].

2.2.10 As in 2.1.10 we associate with each triangulation T (j; t) of Mt a
polyhedral approximation N [T (j; t)] and an integral varifold

V [T (j; t)] = v
(
N [T (j; t)]

�
=

X
hpqri2T1(j)

v
�
’[t](p)’[t](q)’[t](r)

�
with �rst variation distribution

�V [T (j; t)] =
X

hpqi2T1(j)

H1

�
’[t])p)’[t](q)

�
^
�
2 sin

�
�[t; j](pq)

2

��
n[t; j](pq):
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so that
�V [T (j; t)]

(
g[t]
�

=
X

hpqi2T1(j)

���’[t](p)− ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

���
n[t; j](pq) � g[t; j](pq)

�
:

2.2.11 The quantity we wish to show is constant in time isZ
Mt

Ht dH2 = −
�

1
2

�
�Vt
(
g[t]
�
:

Since, for each time t,

Vt = lim
j!1

V [T (j; t)] (as varifolds)

we know, for each t,

�Vt
(
g[t]) = lim

j!1
�V [T (j; t)]

(
g[t]
�
:

We are thus led to seek to estimate
d

dt
�V [T (j; t)]

(
g[t]
�

using the formula in 2.2.10. A key equality it provided by Schlafli’s theorem
mentioned above which, in the present terminology, asserts for each j and t,X

hpqi2T1(j)

���’[t](p)− ’[t](q)
��� d
dt

�
�[t; j](pq)

�
= 0:

2.2.12 Fact Since, for each hppqi in T2(j), @hpqri consists of exactly three
edges, and, for each hpqi in T1(j), there are exactly two distinct facets hpqri
in T2(j) for which hpqi 2 @hpqri we infer that, for each j ,

card
�
T1(j)

�
=

3
2
card

�
T2(j)

�
:

We then use the �; � regularity of the the T (j)’s to check that that, for each
time t and each hppqi in T2(j) the following four numbers have bounded ratios
(independent of j , t, and hppqi) with each other

H2

�
’[t](p)’[t](q)’[t](r)

�
;

��’[t](p) − ’[t](q)
��2; L(j; t)2; L(j)2:

Since
lim
j!1

H2
(
N [j; t]

�
= H2

(
Mt

�
= H2

(
M
�
;

we infer

sup
j

X
hpqi2T1(j)

L(j)2 <1; lim
j!1

X
hpqi2T1(j)

L(j)3 = 0:
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3 Modi�cations of the flow

3.1 Justi�cation for computing with modi�ed flows

As indicated in 2.2, we wish to estimate the time derivatives of
�V [T (j; t)]

(
g[t]
�

=
X

hpqi2T1(j)

���’[t](p)− ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

���
n[t; j](pq) � g[t; j](pq)

�
:

In each of the hpqi summands, each of the three factors���’[t](p)− ’[t](q)
���; �

2 sin
�
�[t; j](pq)

2

��
;

�
n[t; j](pq) � g[t; j](pq)

�
is an intrinsic geometric quantity (at each time) whose value does not change
under isometries of the ambient R3 . With hpqri and hpqsi denoting the two
facets sharing edge hpqi, we infer that each of the factors depends at most on
the relative positions of ’[t](p), ’[t](q), ’[t](r), ’[t](s) and ’[t]M. Suppose
 : (−1; 1)�R3 ! R3 is continuously di�erentiable, and for each t, the function
 [t] =  (t; �): R3 ! R3 is an isometry. Suppose further, we set

’�(t; p) =  
(
t; ’(t; p)

�
; ’�[t] = ’�(t; �)

for each t and p so that ’�[t] =  [t] � ’[t]. If we replace M by M� =  [0]M
and ’ by ’� then we could follow the procedures of 2.1 and 2.2 to construct
triangulations and polyhedral approximations T �[j; t] and varifolds V � , etc.
with

�V [T (j; t)]
(
g[t]
�

= �V �[T �(j; t)]
(
g�[t]

�
:

Not only do we have equality in the sum, but, for each hpqi the corresponding
summands are identical numerically. Hence, in evaluating �V [T (j; t)]

(
g[t]
�

we
are free to (and will) use a di�erent  and ’� for each summand.

3.2 Conventions for derivatives

Suppose W is an open subset of RM and f =
(
f1; f2; : : : ; fN

�
: W ! RN is

K times continuously di�erentiable. We denote by

jjjDKf jjj
the supremum of the partial derivatives

@kfK

@xi(1)@xi(2) : : : @xi(K)
(p)

corresponding to all points p 2 W , all
�
i(1); i(2); : : : ; i(K)

}
�
�

1; : : : ; M
}

and k = 1; : : : ;N , all choices of orthonormal coordinates (x1; : : : ; xM ) for RM
and all choices of orthonormal coordinates (y1; : : : ; yN ) for RN .
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3.3 Conventions for inequalities

In making various estimates we will use use the largest edge length of the
j th triangulation, typically called L, and a general purpose constant C . The
constant C will have di�erent values in di�erent contexts (even in the same
formula). What is implied is that, with M and ’ �xed, the constants C can
be chosen independent of the level of triangulation (once it is �ne enough) and
independent of time t and independent of the various modi�cations of our flow
which are used in obtaining our estimates. As a representative example of our
terminology, the expression

A = B � CL2

means
−CL2 � A−B � CL2:

3.4 Fixing a vertex at the origin

Suppose p is a vertex in M and

’�(−1; 1)� U0 ! R3; ’�(t; q) = ’(t; q)− ’(t; p) for each q:

Then ’�(t; p) = (0; 0; 0) for each t. One checks, for K = 0; 1; 2; 3 that

jjjDK’� jjj � 2jjjDK’ jjj; jjjDK’�[t] jjj = jjjDK’[t] jjj
for each t.

3.5 Mapping a frame to the basis vectors

Suppose (0; 0; 0) 2 M and that e1 and e2 are tangent to M at (0; 0; 0).
Suppose also ’(t; 0; 0; 0) = (0; 0; 0) for each t. Then the mapping ’� given
by setting

’�[t] =

0B@
@’1

@x1
(t; 0; 0; 0) @’2

@x1
(t; 0; 0; 0) @’3

@x1
(t; 0; 0; 0)

@’1

@x2
(t; 0; 0; 0) @’2

@x2
(t; 0; 0; 0) @’3

@x2
(t; 0; 0; 0)

@’1

@x3
(t; 0; 0; 0) @’2

@x3
(t; 0; 0; 0) @’3

@x3
(t; 0; 0; 0)

1CA � ’[t]

satis�es
’�[t](0; 0; 0) = (0; 0; 0); D’�[t](0; 0; 0) = 1R3

with
jjjDK’�[t]jjj = jjjDK’[t]jjj

for each K = 1; 2; 3 and each t, and������������@’�@t (t; �)
������������ � 3

�
jjjD0’jjj � jjjD2’jjj+ jjjD1’[t]jjj2

�
:

Frederic J Almgren Jr and Igor Rivin

Geometry and Topology Monographs, Volume 1 (1998)

10



3.6 Theorem There is C < 1 such that the following is true for all su�-
ciently small � > 0. Suppose γ0: [0; �] !M is an arc length parametrization
of a length minimizing geodesic in M and set

γ(s; t) = ’[t]
(
γ0(s)

�
for each s and t

so that s ! γ(s; t) is an arc length parametrization of a geodesic in Mt . We
also set

r(s; t) =
��γ(0; t)− γ(s; t)

�� for each s and t

and, for (�xed) 0 < R < � , consider

r(R; t) =
��γ(0; t)− γ(R; t)

�� for each t.

Then
d

dt
r(R; t) = �CR2

and

lim
R#0

R−1 d

dt
r(R; t) = 0:

Proof We will show
d

dt
r(R; t)

����
t=0

= �CR2:

Step 1 Replacing ’(t; p) by ’�(t; p) = ’(t; p)− ’(t; γ0(0)) as in 3.4 if nec-
essary we assume without loss of generality that γ(0; t) = (0; 0; 0) for each
t.

Step 2 Rotating coordinates if necessary we assume without loss of generality
that e1 and e2 are tangent to M0 at (0; 0; 0) and that γ00(0) = e1

Step 3 Rotating coordinates as time changes as in 3.5 if necessary we assume
without loss of generality that D’[t](0; 0; 0) = 1R3 for each t.

Step 4 We de�ne

X(s; t) = γ(s; t) � e1; Y (s; t) = γ(s; t) � e2; Z(s; t) = γ(s; t) � e3

so that
γ(s; t) =

(
X(s; t); Y (s; t); Z(s; t)

�
and estimate for each s and t:

(a) X(0; t) = Y (0; t) = Z(0; t) = 0 (by step 1)
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(b) Xt(0; 0) = Yt(0; 0) = Zt(0; 0) = 0

(c) Xs(s; t)2 + Ys(s; t)2 + Zs(s; t)2 = 1

(d) Xs(s; t) = �1; Ys(s; t) = �1; Zs(s; t) = �1

(e) 1=2 � r(s; t)=jsj � 1 (since � is small)

(f) X(s; 0) = �Cs, Y (s; 0) = �Cs, Z(s; 0) = �Cs

(g) Xs(0; t) = Xs(0; 0), Ys(0; t) = Ys(0; 0), Zs(0; t) = Zs(0; 0) (by step 3)

(h) Xst(0; 0) = Yst(0; 0) = Zst(0; 0) = 0

(i) Xst(s; 0) = Xst(0; 0) +
Z s

0

Xsst(�; 0) d� = 0� s sup
��Xsst

�� = �Cs;

Yst(s; 0) = �Cs; Zst(s; 0) = �Cs

(j) Xt(s; 0) = Xt(0; 0) +
Z s

0

Xst(�; 0) d� = 0� Cs2;

Yt(s; 0) = �Cs2; Zt(s; 0) = �Cs2

(k) r2 = X2 + Y 2 + Z2

(‘) rrs = XXs + Y Ys + ZZs; rs =
1
r

(
XXs + Y Ys + ZZs

�
(m) rrt = XXt + Y Yt + ZZt; rt =

1
r

(
XXt + Y Yt + ZZt

�
(n) rsrt + rrst = XsXt +XXst + YsYt + Y Yst + ZsZt + ZZst

(o) evaluating (n) at t = 0, r > 0 we see

1
r(s; 0)2

(
(�Cs)(�1)

�(
(�Cs)(�Cs2)

�
+ r(s; 0)rst(s; 0)

=(�1)(�Cs2) + (�Cs)(�Cs)

(p) rst(s; 0) = �Cs

(q) rt(R; 0) = rt(0; 0) +
Z R

0

rst(s; 0) ds = 0 +
Z R

0

�Cs ds = �CR2:
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3.7 Corollary Suppose triangulation T (j) has maximum edge length L =
L(j) and hpqi is an edge in T1(j). Then, for each t,����’[t](p)− ’[t](q)

���� = �CL and
d

dt

����’[t](p) − ’[t](q)
���� = �CL2:

3.8 Stabilizing the facets of an edge

Suppose T (j) is a triangulation with maximum edge length L = L(j) and that
hABCi; hACDi are facets in T2(j) as illustrated

D = (e; f; 0)
. -

(0; 0; 0) = A  ! C = (d; 0; 0)
& %

B = (a; b; c)

:

Interchanging B and D if necessary we assume without loss of generality the
the average normal n[0; AC] to M0 at A has positive inner product with
(C −A)� (D −A).

1) Fixing A at the origin Modifying ’ if necessary as in 3.4 if necessary
we can assume without loss of generality that ’[t](A) = (0; 0; 0) for each t. As
indicated there, various derivative bounds are increased by, at most, a controlled
amount.

2) Convenient rotations We set u(t) = ’[t](C); v(t) = ’[t](D) and use
the Gramm{Schmidt orthonormalization process to construct

U(t) =
u(t)
ju(t)j ; V (t) =

v(t)− v(t) � U(t)U(t)
jv(t)− v(t) � U(t)U(t)j ; W (t) = U(t)� V (t):

One uses the mean value theorem in checking

jjjDKU(t)jjj � C

0@K+1X
j=0

jjjDj’jjj

1A ; etc

for each K = 0; 1; 2. We denote by Q(t) the orthogonal matrices having
columns equal to U(t), V (t), W (t) respectively (which is the inverse matrix to
its transpose). Replacing ’t by Q(t) � ’t if necessary, we assume without loss
of generality that there are functions a(t), b(t), c(t), d(t), e(t), f(t), such that

’[t](A) = (0; 0; 0); ’[t](B) = (a(t); b(t); c(t));

’[t](C) = (d(t); 0; 0); ’[t](D) = (e(t); f(t); 0):
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We assume without loss of generality the existence of functions F [t]
(
x; y

�
de-

�ned for (x; y) near (0; 0) such that, near (0; 0; 0) our manifold Mt is the
graph of F [t]. In particular,

c(t) = F [t]
(
a(t); b(t)

�
:

We assert that if jpj � CL, then

jF [t](p)j � CL2; jrF [t](p)j � CL: (3:8:1)

To see this, �rst we note that F [t](A) = F [t](C) = F [t](D) = 0. Next we
invoke Rolle’s theorem to conclude the existence of c1 on segment AD and c2
on segment CD such�

D −A
jD −Aj ; DF [t](c1)

�
= 0 =

�
D − C
jD − Cj ; DF [t](c2)

�
:

Since jpj � CL we infer�
D −A
jD −Aj ; DF [t](p)

�
= �CL;

�
D − C
jD − Cj ; DF [t](p)

�
= �CL:

In view of 2.1.6(vi)(vii)(viii) and 2.2.7 we infer that e1 and e2 are bounded
linear combinations of (D −A)=jD −Aj and (D − C)=jD − Cj from which we
conclude that jrF [t](p)j � CL. This in turn implies that jF [t](p)j � CL2 as
asserted.

Since
@

@t
F [t](0; 0) = 0

we infer
@

@t
F [t](p) = �CL (3:8:2)

and since
@

@t
(’[t](A) � e3) = 0

we infer
c0(t) =

@

@t
F [t](a(t); b(t)) =

@

@t
(’[t](B) � e3) = �CL: (3:8:3)

3.9 Proposition Let L; A; B; C; D; a; b; c; d; e; f be as in 3.8. Then

(1) a0(t) = �CL2

(2) b0(t) = �CL2

(3) c0(t) = �CL
(4) d0(t) = �CL2

(5) e0(t) = �CL2

(6) f 0(t) = �CL2 .
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Proof According to 3.7, if r(t) denotes the distance between the endpoints of
an edge of arc length L at time t, then

r0(t) = �CL2:

(i) We invoke 3.7 directly to infer (4) above.

(ii) We apply 3.7 to the distance between (0; 0; 0) and (e; f; 0) to infer

d

dt

(
e2 + f2

� 1
2 =

(
ee0 + ff 0

�(
e2 + f2

� 1
2

= �CL2; ee0 + ff 0 = �CL3:

(iii) We apply 3.7 to the distance between (d; 0; 0) and (e; f; 0) to infer

d

dt

(
(e− d)2 + f2

� 1
2 =

(
e− d)(e0 − d0) + ff 0

�(
(e− d)2 + f2

� 1
2

= �CL2;

(e−d)(e0 − d0) + ff 0 = �CL3:

We subtract the �rst inequality from the second to infer

ed0 − de0 + dd0 = �CL3; de0 � CL3; e0 = �CL2:

Assertions (5) and (6) follow readily.

(iv) We apply 3.7 to the distance between (0; 0; 0) and (a; b; c) to infer

d

dt

(
a2 + b2 + c2

� 1
2 =

(
aa0 + bb0 + cc0

�(
a2 + b2 + c2

� 1
2

= �CL2; aa0 + bb0 + cc0 = �CL3:

(v) We apply 3.7 to the distance between (d; 0; 0) and (a; b; c) to infer

d

dt

(
(a− d)2 + b2 + c2

� 1
2 =

(
(a− d)(a0 − d0) + bb0 + cc0

�(
(a− d)2 + b2 + c2

� 1
2

= �CL2;

(a− d)(a0 − d0) + bb0 + cc0 = �CL3:

We subtract the �rst inequality form the second to infer

ad0 − da0 + dd0 = �CL3; da0 � CL3; a0 = �CL2;

which gives assertion (1).

(vi) We estimate from 3.8 that

c = F [t](a; b) = �CL2; c0 =
d

dt
F [t](a; b) +rF [t](a; b) � (a0; b0) = �CL;

which gives (3) above. We have also cc0 = �CL3 . We recall (iv) above and
estimate

aa0 + bb0 + cc0 = �CL3; bb0 = �CL3; b0 = �CL2;

which is (2) above.
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3.10 Proposition Suppose T (j) is a triangulation with maximum edge length
L = L(j) and hpqi is an edge in T1(j). Abbreviate �(t) = �[t; j](pq). Then,
for each t,

(1) �(t) = �CL

(2) 2 sin
�
�(t)

2

�
= �CL

(3) �0(t) = �C

(4)
d

dt

�
2 sin

�
�(t)

2

��
= �C

(5)
d

dt

�
2 sin

�
�(t)

2

�
− �
�

= �CL2:

Proof Making the modi�cations of 3.8 if necessary, we assume without loss
of generality (in the terminology there) that ’[t](p) = A = (0; 0; 0), ’[t](q) =
C = (d(t); 0; 0), and that there are hpqB�i; hpqD�i 2 T2(j)0 with ’[t](B�) =
B = (a(t); b(t); c(t)), ’[t](D�) = D = (e(t); f(t); 0).

The unit normal to ACD is (0; 0; 1) while the unit normal to ABC is

(0; −c; b)
(b2 + c2)

1
2

so that cos � =
b

(b2 + c2)
1
2

,

sin � = �
(
1− cos2 �

� 1
2 = �

�
1− b2

b2 + c2

� 1
2

= � c

(b2 + c2)
1
2

= �CL

in view of 3.8. Assertions (1) and (2) follow. We compute further

(sin �)0 = cos � �0 = �
(b2 + c2)

1
2 c0 − c bb0+cc0

(b2+c2)
1
2

b2 + c2
= �C

in view of 3.9(1)(2)(3) and 3.8. Assertion (3) and (4) follow. Assertion (5)
follows from di�erentiation and assertions (1) and (3).
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3.11 Proposition Suppose T (j) is a triangulation with maximum edge length
L = L(j) and hpqi is an edge in T1(j). Then

(1) n[t; j](pq) =
(
0; �CL; 1� CL4

�
(2) (d=dt)

(
n[t; j](pq)

�
=
(
0; �C; �CL

�
+
(
� CL; �CL; �CL

�
(3) g[t; j](pq) =

(
� CL; �CL; 1� CL2

�
(4) (d=dt)g[t; j](pq) =

(
� C; �C; 0

�
+
(
� CL; �CL; �CL

�
(5) n[t; j](pq) � g[t; j](pq) = 1� CL2

(6) (d=dt)
�

n[t; j](pq) � g[t; j](pq)
�

= �CL

(7) 1− n[t; j](pq) � g[t; j](pq) = �CL2 .

Proof We let A, B , C , D , F [t], b(t), c(t), d(t) be as in 3.8. We abbreviate
n = n[t; j](pq) and estimate

n =
(0; 0; 1) + (0; −c; b)=(b2 + c2)

1
2��(0; 0; 1) + (0; −c; b)=(b2 + c2)
1
2
��

=

(
0; −c; b+ (b2 + c2)

1
2
�

2
1
2
(
b2 + c2 + b(b2 + c2)

1
2
� 1

2
:

The �rst assertion follows from 3.8.1. We di�erentiate to conclude n0 =

�CL
(
0; −c0; b0 � C(bb0 + cc0)=L− (L=L)

(
bb0 + cc0 � b0L+�C(b=L)(bb0 + cc0)

�L2

=
(
0; �C; �CL

�
+
(
� CL; �CL; �CL

�
in view of 3.9(2)(3). This is assertion (2).

We abbreviate g = g[t; j](pq) and estimate

g =
1
d(t)

Z d(t)

0

(
− F [t]x; −F [t]y; 1

���(− F [t]x; −F [t]y; 1
���

=
1
d(t)

Z d(t)

0

(
− F [t]x; −F [t]y; 1

��(
F [t]2xF [t]2y + 1

� 1
2
:

The mean curvature integral is invariant  under bending

Geometry and Topology Monographs, Volume 1 (1998)

17



The third assertion follows from 3.8.1. We di�erentiate to estimate that dg=dt
equals

−d0
d2

Z d(t)

0

(
− F [t]x; −F [t]y; 1

�(
1 + F [t]2x + F [t]2y

� 1
2

+
d0

d

(
− F [t]x; −F [t]y; 1

�(
1 + F [t]2x + F [t]2y

� 1
2

+
1
d

Z d

0

�CL
(
− F [t]tx; −F [t]ty ; 0

�
1 + F [t]2x + F [t]2y

− 1
d

Z d

0

(
− F [t]x; −F [t]y; 1

�
(�C=L)

(
F [t]xF [t]tx + F [t]yF [t]ty

�
1 + F [t]2x + F [t]2y

=

L
(
� C; �C; �C

�
+ L

(
� C; �C; �C

�
+
(
� C; �C; 0

�
+ L

(
� C; �C; �C

�
which gives assertion (4). Assertion (5) follows from assertions (1) and (3).
Assertion (6) follows from assertions (1), (2), (3), (4) and integration by parts.
Assertion (7) follows from assertions (1) and (3).

4 Constancy of the mean curvature integral

4.1 The derivative estimates

Suppose triangulation T (j) has maximum edge length L = L(j). We recall
from 2.2.10 that

�V [T (j; t)]
(
g[t]
�

=
X

hpqi2T1(j)

���’[t](p)− ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

�� �
n[t; j](pq) � g[t; j](pq)

�
and we estimate, for each t that

d

dt

�
�V [T (j)t]

(
g[t]
��

=
X

hpqi2T1(j)

���’[t](p)− ’[t](q)
���0 �2 sin

�
�[t; j](pq)

2

���
n[t; j](pq) � g[t; j](pq)

�

+
X

hpqi2T1(j)

���’[t](p)− ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

��0 �
n[t; j](pq) � g[t; j](pq)

�

+
X

hpqi2T1(j)

���’[t](p)− ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

�� �
n[t; j](pq) � g[t; j](pq)

�0
:
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We assert that

d

dt

�
�V [T (j; t)]

(
g[t]
��

=
X

hpqi2T1(j)

�CL3 =
X

hpqi2T1(j)

�CL(j)3:

To see this we will estimate each of the three summands above.

First summand We use 3.7, 3.10(2), 3.11(5) to estimate for each pq ,���’[t](p) − ’[t](q)
���0 �2 sin

�
�[t; j](pq)

2

���
n[t; j](pq) � g[t; j](pq)

�
=
(
CL2

�(
CL
�(

1�CL2
�
:

Second summand We use 3.10(5), 3.11(7) to estimate for each pq ,���’[t](p) − ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

��0 �
n[t; j](pq) � g[t; j](pq)

�
=
���’[t](p) − ’[t](q)

�����[t; j](pq)�0
+
���’[t](p)− ’[t](q)

��� �2 sin
�
�[t; j](pq)

2

�
− �[t; j](pq)

�0
+
���’[t](p)− ’[t](q)

��� �2 sin
�
�[t; j](pq)

2

��0 �
n[t; j](pq) � g[t; j](pq)− 1

�
=
���’[t](p) − ’[t](q)

�����[t; j](pq)�0 � (CL�(CL2
�
�
(
CL
�(
C
�(
CL2

�
:

Third summand We use 3.10(2) and 3.11(6) to estimate���’[t](p) − ’[t](q)
��� �2 sin

�
�[t; j](pq)

2

���
n[t; j](pq) � g[t; j](pq)

�0
=
(
CL
�(
CL
�(
CL
�
:

According to Schlafli’s formula [7],

X
hpqi2T1(j)

���’[t](p)− ’[t](q)
�����[t; j](pq)�0 = 0:

Our assertion follows.
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4.2 Main Theorem

(1) For each �xed time t,

lim
j!1

�V [T (j; t)]
(
g[t]
�

= �Vt
(
g[t]
�
:

(2) For each �xed j , �V [T (j)t]
(
g[t]
�

is a di�erentiable function of t and

lim
j!1

d

dt

�
�V [T (j)t]

(
g[t]
��

= 0

uniformly in t.

(3) For each t Z
Mt

Ht dH2 =
Z
M
H dH2:

This is the main result of this note.

Proof To prove the �rst assertion, we check that

(�t)]V [T (j; t)] = Vt

for each t and all large j . Indeed, the � regularity of our triangulations implies
that the normal directions of the N [T (j)t] are very nearly equal to the normal
directions of nearby points onMt and that the restriction of D�t to the tangent
planes of the N [T (j)t] is very nearly an orthogonal injection. The �rst assertion
follows with use of the �rst variation formula given in [14.1, 4.2]. Assertion (2)
follows from 4.1 since X

hpqi2T1(j)

L(j)2

is dominated by the area of M (see 2.2.12) and limj!1 L(j) = 0. Assertion
(3) follows from assertions (1) and (2) and our observation in 2.1.4.

Acknowledgements Fred Almgren tragically passed away shortly after this
note was written. Since then, the main result for smooth surfaces has been
reproved in an easier way and generalized to the setting of Einstein manifolds
by J-M Schlenker together with the second author of the current paper [6].
Nonetheless, it seems clear that the methods used here can be used to extend
these results in other directions.
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