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A New Minimal Point Theorem in Product Spaces

A. Gopfert, Chr. Tammer and C. Zalinescu

Abstract. We derive a minimal point theorem for a subset A in a cone in product spaces
under a weak assumption concerning the boundedness of the considered set A. Using this
result we improve two vectorial variants of Ekeland’s variational principle. Finally, a new
characterization of well-based cones is given.
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Assume that (X, d) is a complete metric space, Y is a separated locally convex space,
Y* is its topological dual, K C Y is a convex cone, i.e. K+ K C K and [0,00)-K C K,

Kt={y*eY*:(y,y*) >0 forall ye K}
is the dual cone of K and
K#={y*eY*:(y,y*) >0 forall ye K\{0}}.

In this note we suppose that K is pointed, i.e. KN(—K) = {0}. The cone K determines
an order relation on Y, denoted in the sequel by <g; so, for y1,y2 € Y, y1 <k ys if
yo —y1 € K. It is well known that “<g” is reflexive, transitive and antisymmetric. Let
kY € K\ {0}; using the element k% we introduce an order relation on X x Y, denoted
by “=<jo”, in the following manner:

(z1,y1) <ko (z2,¥2) iff y1+ kod($17$2) <K Y2

Note that “<z0” is reflexive, transitive and antisymmetric. That is, our notations are
those of [3].

The essential idea for the derivation of a minimal point theorem (cf. [2, 8]) in
general product spaces X X Y, as well as of the vectorial Ekeland principle, consists in
including the ordering cone K C Y in a “larger” cone B C Y: K \ {0} C int B. We will
use B to define a suitable functional zp : Y — R. Moreover, we will replace the usual
boundedness condition of the projection Py A of A onto Y by a weaker one.
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Theorem 1. Assume that there exists a proper convexr cone B C Y such that
K \ {0} C int B. Suppose that the set A C X XY satisfies the condition

(H1) for every <po-decreasing sequence ((y,yn)) C A with x, — x € X there exists
y €Y such that (z,y) € A and (z,y) <o (Tn,Yyn) for every n € N

and that Py (A) N (y — int B) = 0 for some §y € Y. Then for every (zo,yo) € A there
exists (Z,y) € A, minimal with respect to <o, such that (Z,7) <xo (o, Yo)-
Proof. Let

zp:Y = R zp(y) = inf{t e R:y € tk® — cl B}.

By [3: Lemma 7], zp is a continuous sublinear function such that zp(y+tk®) = zp(y) +1
forallt € Rand y € Y, and for every A € R

{yeY :2p(y) <A} =M’ —clB
{y €Y :zp(y) < A} = Mk’ —int B.

Moreover, if yo —y1 € K \ {0}, then zp(y1) < zB(y2). Observe that for (z,y) € A we
have that zg(y — y) > 0. Otherwise for some (z,y) € A we have zg(y —y) < 0. It
follows that there exists A > 0 such that y — y € —Ak? — cl B. Hence

yeyg— (M +clB)Cy— (intB+clB)Cy—intB

which is a contradiction. Since 0 < zp(y — ¥) < 2B(y) + zB(—y), it follows that zp
is bounded from below on Py (A). Let us construct a sequence ((Zn,yn))n>0 C A as
follows: having (zn,yn) € A we take (p4+1,Yn+1) € A, (Tnt1, Ynt1) k0 (Tn, Yn), such

that
. 1
2 (yns1) < inf {25 (y) : (2,9) € A and (2,9) 4o (v, 90) | + — -

Of course, the sequence ((Zn,yn)) is <go-decreasing. It follows that
Yn+tp T+ kod($n+p; xn) <K Un Von,pe N*

so that
d(-Tn—f-pa xn) < zp (yn) — ZB (yn+p) < Vn,pe N

It follows that (z,) is a Cauchy sequence in the complete metric space (X,d), and so
(5,) is convergent to some Z € X. By condition (H1) there exists ¥ € Y such that
(Z,79) € A and (z,y) <po (Tn,yn) for every n € N.

Let us show that (Z,7) is the desired element. Indeed, (z,y) <xo (2o, yo). Suppose
that (z',y") € A is such that (z',y") <po (%,9) (Zko (Zn,yn) for every n € N). Thus
z(y') + d(2',Z) < z5(¥y), whence

Vn>l1.

S

d(#',7) < zB(y) — zB(Y") < zB(yn) — 2B(Y) <

It follows that d(z',z) = zp(y) — z(y') = 0. Hence 2’ =Z. Asy' <k 7, if y # 7,
then y — ¢y’ € K \ {0}, whence zp(y') < zp(y), which is a contradiction. Therefore
(«",y") = (z,9) N
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Comparing with [3: Theorem 4], note that the present condition on K is stronger
(because in this case K# # ()), while the condition on A is weaker (A may be not
contained in a half-space). Note that when K and k° are as in Theorem 1, Corollaries
2 and 3 from [3] may be improved. In the next result Y* =Y U {oo} with co ¢ Y; we
consider that y < oo for every y € Y. We consider also a function f : X — Y* and
dom f ={x € X : f(x) # o}.

In the following corollary we derive a variational principle of Ekeland’s type for
objective functions which take values in a general space Y (cf. [2, 3, 5 - 7]) under a
weaker assumption with respect to the usual lower semicontinuity. For the case Y = R,
assumption (H4) in Corollary 2 is fulfilled for decreasingly semicontinuous real-valued
functions as in the paper [4].

Corollary 2. Let f : X — Y*. Assume that there exists a proper convexr cone
B CY such that K\{0} C int B and f(X)N(y—B) =0 for somey € Y. Also, suppose
that
(H3) {2’ € X : f(z') + k% (', z) <k f(x)} is closed for every x € X
or
(H4) for every sequence (x,) C dom f with x, — = and (f(x,)) <k-decreasing,
f(z) <k f(zn) for every n € N, and K is closed in the direction k°.

Then for every o € dom f there exists T € X such that

f(@) + k°d(Z, o) <k f(z0)

and
VeeX: f(x)+kd@z)<k f(T) = z=r.

We say that K is closed in the direction k° if K N (y — R, k%) is closed for every
y € K. The proof of Corollary 2 is similar to those of Corollaries 2 and 3 in [3].

As mentioned in [3], condition (H1) is verified if K is a well based convex cone, Y
is a Banach space and A is closed. As usually (cf. [1]), a convex set S is said to be a
base for a convex cone K C Y if

K=R;S={\y:A>0and y € S} and 0¢clS.

The cone K is called well based if K has a bounded base S. Concerning well based
convex cones in normed spaces we have the following characterization.

Proposition 3. LetY be a normed vector space and K CY a proper convexr cone.
Then K is well based if and only if there exist k° € K and z* € K+ such that (k°, z*) > 0
and

KNS Ck’+{yeY:(y,z2*) >0}

where S; ={y €Y : ||ly|| =1} is the unit sphere in Y.

Proof. Suppose first that K is well based with bounded base S; therefore 0 ¢ clS
and K = [0,00) - S. Then there exists z* € Y* such that 1 < (y,z*) for all y € S.
Consider S :={k € K : (k,z*) = 1}. It follows that S is a base of K; moreover, since
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S c[0,1]-8, S is also bounded. Taking k' € K \ {0} we have K NSy C Ak! + B, for
some A > 0, where By = {y € Y : (y, z*) > 0}. Otherwise

1
VneNJk, e KNSy : kn¢5k1+B+.

Therefore (ky, z*) < %(kl,z*) for every n > 1. But, because Sisa base, k, = Anby
with A, > 0 and b, € S; it follows that 1 = [|kn|| = An||bn|| < AuM with M > 0
(because S is bounded). Therefore

M~ <Ay = Db, 2°) = (kp, 2*) <n Nk 2*)  YVneN

whence M~ < 0, which is a contradiction. Thus there exists A > 0 such that K N.S; C
Ak + B,. Taking k° := A\k® the conclusion follows.

Suppose now that K NSy C kY + B, for some kY € K and 2* € K+ with (k°, 2*) =
¢ > 0, where B, is defined as above. Consider S = {k € K : (k,z*) = 1}. Let
k € K\{0}. Then ||k||"'k = k° +y for some y € B,. It follows that (k, 2*) > c||k|| > 0;
therefore z* € K# and so k € (0,00) - S. Since c1S C {y € Y : (k,z*) = 1}, we have
that S is a base of K. Let now y € S (C K). Then ||y||~'y € K N S;. There exists
z € By such that ||y||~'y = k° + 2. We get

1= (y,2") = llyll(k° + 2,2") > clly||

whence ||y|| < ¢7!. Therefore S is bounded, and so K is well-based B
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