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The mathematical theory of dynamical systems is based on the qualitative theo-
ry of ordinary differential equations the foundations of which were laid by Henri
Poincaré (1854-1912). An essential role in its development was also played by the
works of A. M. Lyapunov (1857-1918) and A. A. Andronov (1901-1952). At present
the theory of dynamical systems is an intensively developing branch of mathematics
which is closely connected to the theory of differential equations.

In this chapter we present some ideas and approaches of the theory of dynami-
cal systems which are of general-purpose use and applicable to the systems genera-
ted by nonlinear partial differential equations.

§ 1 Notion of Dynamical System

In this book dynamical system is taken to mean the pair of objects (X, S,) con-
sisting of a complete metric space X and a family S, of continuous mappings of the
space X into itself with the properties

S, =808, tteT,, S,=1I, (1.1)

t+7

where T, coincides with either a set R, of nonnegative real numbers or a set
Z,=1{0,1,2,..}.1f T, =R,, we also assume that y(¢) =S,y is a continuous
function with respect to ¢ for any ¥ € X . Therewith X is called a phase space, or
a state space, the family S, is called an evolutionary operator (or semigroup),
parameter ¢ € T, plays the role of time. If T, =7, , then dynamical system is
called discrete (or a system with discrete time). If T, = R, then (X, ;) is fre-
quently called to be dynamical system with continuous time. If a notion of dimen-
sion can be defined for the phase space X (e. g., if X is a lineal), the value dimX is
called a dimemnsion of dynamical system.

Originally a dynamical system was understood as an isolated mechanical system
the motion of which is described by the Newtonian differential equations and which
is characterized by a finite set of generalized coordinates and velocities. Now people
associate any time-dependent process with the notion of dynamical system. These
processes can be of quite different origins. Dynamical systems naturally arise in
physics, chemistry, biology, economics and sociology. The notion of dynamical sys-
tem is the key and uniting element in synergetics. Its usage enables us to cover
arather wide spectrum of problems arising in particular sciences and to work out
universal approaches to the description of qualitative picture of real phenomena
in the universe.
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Let us look at the following examples of dynamical systems.

Example 1.1

Let f(«) be a continuously differentiable function on the real axis posessing the
property xf(x) = —C(1+ xz) , where C is a constant. Consider the Cauchy
problem for an ordinary differential equation

i) = —f(x(t), >0, 2(0)=x,. (12)

For any « € R problem (1.2) is uniquely solvable and determines a dynamical
systemin R . The evolutionary operator S, is given by the formula S, v, = 2 (t),
where 2(t) is a solution to problem (1.2). Semigroup property (1.1) holds
by virtue of the theorem of uniqueness of solutions to problem (1.2). Equations
of the type (1.2) are often used in the modeling of some ecological processes.
For example, if we take f(z)= o -2 (x —1), o > 0, then we get a logistic equ-
ation that describes a growth of a population with competition (the value «x (t)
is the population level; we should take R, for the phase space).

Example 1.2

Let f(x) and g () be continuously differentiable functions such that
X
F)= 4@ 2 o, g()z
0

with some constant ¢ . Let us consider the Cauchy problem

{92+g(x)a'c+f(x):0, t>0,

3
2(0)=2,, 2(0)=2,. 149

For any y,= (7, x;) € R2, problem (1.3) is uniquely solvable. It generates
a two-dimensional dynamical system (]R{Z, St) , provided the evolutionary ope-
rator is defined by the formula

S, (g wy) = (2 (1); 2(1))
where 2 (t) is the solution to problem (1.3). It should be noted that equations
of the type (1.3) are known as Liénard equations in literature. The van der Pol
equation:
glx)=¢(@®-1), €>0, flx)=x
and the Duffing equation:
glxz)=¢, €¢>0, f(x)=23-a-x-0b

which often occur in applications, belong to this class of equations.
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Example 1.8

Let us now consider an autonomous system of ordinary differential equations

Tp(t) =f (), @9, ..., 2y), k=1,2,...,N. (1.4)

Let the Cauchy problem for the system of equations (1.4) be uniquely solvable
over an arbitrary time interval for any initial condition. Assume that a solution
continuously depends on the initial data. Then equations (1.4) generate an N - di-
mensional dynamical system (IR{N , S,) with the evolutionary operator S, acting
in accordance with the formula

Siyg= (21 (0), ooy 2p(8)s Yo = (2105 Togs > Zpg)

where {x,(t)} is the solution to the system of equations (1.4) such that

2;(0)=2;4, 7=1,2,..., N . Generally, let X be a linear space and ' be
a continuous mapping of X into itself. Then the Cauchy problem
x(t)=F(x(t), t>0, 2(0)=2,eX (1.5)

generates a dynamical system (X R St) in a natural way provided this problem is
well-posed, i.e. theorems on existence, uniqueness and continuous dependence
of solutions on the initial conditions are valid for (1.5).

Example 1.4

Let us consider an ordinary retarded differential equation

x(t)+ox(t)=flx(t-1)), t>0, (1.6)
where f is a continuous function on R!, o > 0. Obviously an initial condition
for (1.6) should be given in the form

x(t)|t -1, 0] = O(t). (1.7
Assume that ¢(t) lies in the space C[—1, 0] of continuous functions on the
segment [—1, O]. In this case the solution to problem (1.6) and (1.7) can be
constructed by step-by-step integration. For example, if 0 < ¢ < 1, the solu-
tion & (t) is given by
t
(1) = e—at¢(0)+Jea(tT>f(¢(r—1))dr ,
0

andif ¢t € [l, 2] , then the solution is expressed by the similar formula in terms
of the values of the function # (¢) for ¢ € [0, 1] and so on. It is clear that the so-
lution is uniquely determined by the initial function ¢ (¢). If we now define an
operator S, in the space X = C[~1, 0] by the formula

S, 0)(t)=2(t+1), Te[-1,0],

where 2 (t) is the solution to problem (1.6) and (1.7), then we obtain an infi-
nite-dimensional dynamical system (C[~1, 0], S,).

13
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Now we give several examples of discrete dynamical systems. First of all it should be
noted that any system (X R St) with continuous time generates a discrete system if
we take ¢ € /Z, instead of ¢ € R, . Furthermore, the evolutionary operator S, of
a discrete dynamical system is a degree of the mapping S, i.e. S, = St1 ,tel,.
Thus, a dynamical system with discrete time is determined by a continuous mapping
of the phase space X into itself. Moreover, a discrete dynamical system is very often
defined as a pair (X , S ) , consisting of the metric space X and the continuous map-
ping S'.

Example 1.5
Let us consider a one-step difference scheme for problem (1.5):

X X

W:F(%), n=0 1,2, ... 1>0.

There arises a discrete dynamical system (X, S™), where S is the continuous
mapping of X into itself defined by the formula Sx = x + T F ().

Example 1.6
Let us consider a nonautonomous ordinary differential equation

2(t)=f(x, t), t>0, zeRl, (1.9
where f(x, t) is a continuously differentiable function of its variables and is pe-
riodic with respect to ¢, i. e. f(x, t)=f(x, t+T) for some T > 0. It is as-
sumed that the Cauchy problem for (1.9) is uniquely solvable on any time
interval. We define a monodromy operator (a period mapping) by the formula
Sxzy=x(T), where x(t) is the solution to (1.9) satisfying the initial condition
x(O) = & . It is obvious that this operator possesses the property

Skx(tjzx(t+lcT) (1.10)

for any solution 2 (¢) to equation (1.9) and anyk € Z, . The arising dynamical

system (lRil, S¥) plays an important role in the study of the long-time proper-
ties of solutions to problem (1.9).

Example 1.7 (Bernoullishift)

Let X=X, be a set of sequences » = {x;, ¢ € Z} consisting of zeroes and
ones. Let us make this set into a metric space by defining the distance by the

formula

d(x, y)=inf{27": x;=y,;, |i|<n}.
Let S be the shift operator on X, i. e. the mapping transforming the sequence
x = {xl} into the element y = {yz} , where y, = x, ;. As aresult, a dynamical

system (X, S™) comes into being. It is used for describing complicated (qua-
sirandom) behaviour in some quite realistic systems.
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In the example below we describe one of the approaches that enables us to connect
dynamical systems to nonautonomous (and nonperiodic) ordinary differential equa-
tions.

Example 1.8

Let % (x, t) be a continuous bounded function on R2. Let us define the hull
L, of the function & (x, t) as the closure of a set

{hr(x, ty=h(x, t+1), Te ]Ri}

with respect to the norm
|7l = sup {Ih (,1): v eR, t e lR{}.

Let g(2) be a continuous function. It is assumed that the Cauchy problem
(t)=g(x)+h(x, t), 2(0)=ux, (L.11)

is uniquely solvable over the interval [O, +oo) for any A e L,, . Let us define
the evolutionary operator S on the space X = Rlx L 5, by the formula
Sr(xo’ h) = (x(r), h"t)’

where x(t) is the solution to problem (1.11) and %, = (%, t +71). As a result,
a dynamical system (]R{ x Ly, St) comes into being. A similar construction is of-
ten used when L, is a compact set in the space C of continuous bounded func-
tions (for example, if h(x, L‘) is a quasiperiodic or almost periodic function).
As the following example shows, this approach also enables us to use naturally

the notion of the dynamical system for the description of the evolution of ob-
jects subjected to random influences.

Example 1.9

Assume that f; and f] are continuous mappings from a metric space Y into it-
self. Let Y be a state space of a system that evolves as follows: if i is the state of
the system at time & , then its state at time k +1 is either f,(») or f;(y) with
probability 1/2 , where the choice of Jo or f; doesnot depend on time and the
previous states. The state of the system can be defined after a number of steps
in time if we flip a coin and write down the sequence of events from the right to
the left using 0 and 1. For example, let us assume that after 8 flips we get the
following set of outcomes:
... 10110010

Here 1 corresponds to the head falling, whereas 0 corresponds to the tail fall-
ing. Therewith the state of the system at time ¢ = 8 will be written in the form:
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W= (fieSoo o010 90 So0S1°00)(¥)-
This construction can be formalized as follows. Let X, be a set of two-sided se-
quences consisting of zeroes and ones (as in Example 1.7), i.e. a collection
of elements of the type

O= (. O_,... O_{ O O... O,,...),
where m, is equal to either 1 or 0. Let us consider the space X = 22 x Y con-

sisting of pairs = (®, y), where ® € X, , ¥ € Y. Let us define the mapping
F: X— X by the formula:

F(@) = F(o, 1) = (S0, f, (1),

where S is the left-shift operator in X, (see Example 1.7). It is easy to see that
the 7 - th degree of the mapping F' actcts according to the formula

(o, y)= (8", (fy, o oSy 2 So) @)
and it generates a discrete dynamical system (22 x Y, F™). This system is often

called a universal random (discrete) dynamical system.

Examples of dynamical systems generated by partial differential equations will be gi-
ven in the chapters to follow.

Exercise 1.1  Assume that operators S, haVAe a continuous inverse for any ¢ .
Show that the family of operators {S;: ¢ € R} defined by the equa-
lity S”t =5, fort > 0 and S‘t = Sﬁll for t < 0 form a group, i.e. (1.1)
holds forall ¢, T e R.

Exercise 1.2 Prove the unique solvability of problems (1.2) and (1.3) in-
volved in Examples 1.1 and 1.2.

Exercise 1.8 Ground formula (1.10) in Example 1.6.

Exercise 1.4 Show that the mapping S, in Example 1.8 possesses semi-
group property (1.1).

Exercise 1.5 Show that the value d (2, y) involved in Example 1.7 is a met-
ric. Prove its equivalence to the metric

o0
d'(z, y) = Z 2‘|i||xi—yi|.
7 =—00
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§ 2 Trajectories and Invariant Sets

Let (X R St) be a dynamical system with continuous or discrete time. Its trajectory
(or orbit) is defined as a set of the type

y=A{u(t): t T},

where u(t) is a continuous function with values in X such that S_u(t) = u(t +1)
forall T € T, and t € T. Positive (negative) semitrajectory is defined as a set
yr={u(t): t=20}, (y"={u(t): t <0}, respectively), where a continuous on T,
(T_, respectively) function u () possesses the property S u(t) = u(t+71) for any
7>0,t>20 (>0, t<0, T+t <0, respectively). It is clear that any positive
semitrajectory y* has the form y* = {S,v: ¢t > 0}, i.e. it is uniquely determined by
its initial state v. To emphasize this circumstance, we often write y*=v*(v).
In general, it is impossible to continue this semitrajectory y*(v) to a full trajectory
without imposing any additional conditions on the dynamical system.

Exercise 2.1 Assume that an evolutionary operator St is invertible for some
t > 0. Then it is invertible for all £ > 0 and for any v € X there
exists a negative semitrajectory y~ = y~(v) ending at the point v .

A trajectory v ={u(t): t € T} is called a periodic trajectory (or a cycle) if
there exists 7 € T,, T >0 such that u(¢+7T)=w(t). Therewith the minimal
number 7' > 0 possessing the property mentioned above is called a period of a tra-
jectory. Here T is either R or Z depending on whether the system is a continuous
or a discrete one. An element u, € X is called a fixed point of a dynamical system
(X, S,) if S;ug=wug forall ¢t >0 (synonyms: equilibrium point, stationary
point).

Exercise 22 Find all the fixed points of the dynamical system (R, S,) ge-
nerated by equation (1.2) with f(2)= 2 (2 —1). Does there exist
a periodic trajectory of this system?

Exercise 28 Find all the fixed points and periodic trajectories of a dynami-
cal system in R? generated by the equations

z=-oy—x[(«? 2 —4 (2 +y2)+ 1],
y=ox-y[(z? + 2 —4 (2 + %)+ 1].
Consider the cases o0 # 0 and oo = 0. Haént: use polar coordinates.

Exercise 24 Prove the existence of stationary points and periodic trajecto-
ries of any period for the discrete dynamical system described

17
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in Example 1.7. Show that the set of all periodic trajectories is dense

s Q

a in the phase space of this system. Make sure that there exists a tra-
' jectory that passes at a whatever small distance from any point of the
X phase space.

1

The notion of invariant set plays an important role in the theory of dynamical sys-
tems. A subset Y of the phase space X is said to be:
a) positively invariant,if S,;Y c Y forall ¢t > 0;
b) megatively invariant,if S,Y 2 Y forall ¢t > 0;
c) invariant, if it is both positively and negatively invariant, i.e. if
S, Y=Y forallt>0.
The simplest examples of invariant sets are trajectories and semitrajectories.

Exercise 25 Showthat y* is positively invariant, y~ is negatively invariant
and 7y is invariant.

Exercise 2.6 Let us define the sets
Y*(A) = U S,(A) = U {v=S,u: ueAj
30 >0
and
r@= st = |l S ea

>0 t=20
for any subset A of the phase space X . Prove that y* (A) is a positively
invariant set, and if the operator .S, is invertible for some ¢ > 0,
then y~(A) is a negatively invariant set.

Other important example of invariant set is connected with the notions of ® -limit
and o -limit sets that play an essential role in the study of the long-time behaviour
of dynamical systems.

Let A < X . Then the w-limit set for A is defined by

o= [ USt(A)L’
s>20 "tzs

where S,(A)={v==S,u: u € A}. Hereinafter [ Y]y is the closure of a set ¥ in the
space X . The set

a)= [ Usi@] .
s20"t=s X
where S;1(A) = {v: S,v € A}, is called the o -limit set for A.
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Lemma 2.1

For an element y to belong to an o-limit set ®(A), it is necessary and
sufficient that there exist a sequence of elements {yn} c A and a se-
quence of numbers t,, the latter tending to infinity such that

li =
n E>nood (St’n yn’ y) O’

where d(x, y) is the distance between the elements x and y in the
space X .

Proof.
Let the sequences mentioned above exist. Then it is obvious that for any
T > 0 there exists 7, > 0 such that
Stnyn € U S,(4), m=n.
t31
This implies that
y= lm 8, y, e [ USZ(A)]
n>eo W t3 1 X
for all T > 0. Hence, the element y¥ belongs to the intersection of these sets,
ie. y e ®(4).
On the contrary, if y € ®(A), thenforall » =0, 1, 2, ...
ye [ U S (A)]
t>mn X
Hence, for any 7 there exists an element 2z, such that

1
z, € USt(A), d(y, 2,) < .
t>mn
Therewith it is obvious that 2, =S, v, , v, € A, t, 2 n. This proves the
n
lemma.

It should be noted that this lemma gives us a description of an ® -limit set but does
not guarantee its nonemptiness.

Exercise 2.7 Show that ®(A) is a positively invariant set. If for any ¢ > 0
there exists a continuous inverse to S, , then ®(A) is invariant, i.e.
S,0(A)=0(A).

Exercise 28 Let S, be an invertible mapping for every ¢ > 0. Prove the
counterpart of Lemma 2.1 for an « -limit set:

Yy e a(A)@{a{y%} €A, 3, t, —+c0; lim d(sgnlyn, y)zO}.

NN —> oo

Establish the invariance of o (A).

19
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Exercise 29 Lety={u(t): —oo << oo} be aperiodic trajectory of a dy-
namical system. Show that y = @ (u) = o(u) forany u € y.

Exercise 270 Let us consider the dynamical system (IR, S,) constructed in
Example 1.1. Let a and b be the roots of the function f(x):
f(a)=f(b)=0, a < b.Thenthe segment / ={x: a < x < b} is
an invariant set. Let F'(x) be a primitive of the function f(x)
(F'(x)=f(x)). Then the set {«: F(x) < ¢} is positively invariant
for any c .

Exercise 2.11 Assume that for a continuous dynamical system (X s Sz ) there
exists a continuous scalar function V(y) on X such that the value
V (S, y) is differentiable with respect to ¢ for any y € X and

d

a—t(V(Sty))JrocV(Sty)Sp, (>0, p>0, y e X).
Then the set {y: V(y) < R} is positively invariant for any R >
> p/o.

§ 8 Definition of Attractor

Attractor is a central object in the study of the limit regimes of dynamical systems.
Several definitions of this notion are available. Some of them are given below. From
the point of view of infinite-dimensional systems the most convenient concept is that
of the global attractor.

A bounded closed set A1 c X iscalled aglobal attractor for a dynamical sys-
tem (X, S,), if

1) Ay isaninvariant set,i.e. S, A;=A; forany t > 0;

2) the set A; uniformly attracts all trajectories starting in bounded sets,

i.e. for any bounded set B from X

lim sup {dist(Sty, Ay e B}: 0.

t — oo

We remind that the distance between an element 2 and a set A is defined by the
equality:

dist (2, A) = inf{d (2, y): y € A},
where d (2, y) is the distance between the elements 2 and y in X .

The notion of a weak global attractor is useful for the study of dynamical sys-
tems generated by partial differential equations.
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Let X be a complete linear metric space. A bounded weakly closed set A2 is
called a global weak attractor if it is invariant (S,A,=A,, t > 0) and for any
weak vicinity @ of the set Agy and for every bounded set B < X there exists
to=1,(O, B) suchthat S,B < @ fort > t,.

We remind that an open set in weak topology of the space X can be described
as finite intersection and subsequent arbitrary union of sets of the form

U .=1{r eX: l(x)<c},

where ¢ is areal number and [ is a continuous linear functional on X .

It is clear that the concepts of global and global weak attractors coincide in the
finite-dimensional case. In general, a global attractor A is also a global weak attrac-
tor, provided the set A is weakly closed.

Exercise 3.1 Let A be a global or global weak attractor of a dynamical sys-
tem (X, S,). Then it is uniquely determined and contains any boun-
ded negatively invariant set. The attractor A also contains the
o - limit set (B) of any bounded B < X .

Exercise 8.2 Assume that a dynamical system (X, .S,) with continuous
time possesses a global attractor A,. Let us consider a discrete sys-
tem (X, 77),where T = Sto with some ¢, > 0. Prove that A, is a glo-
bal attractor for the system (X, 77). Give an example which shows
that the converse assertion does not hold in general.

If the global attractor A; exists, then it contains a global minimal atiractor Aq
which is defined as a minimal closed positively invariant set possessing the property

lim dist(S,y, A3)=0 forevery yeX.
t — oo

By definition minimality means that A 3 has no proper subset possessing the proper-
ties mentioned above. It should be noted that in contrast with the definition of the
global attractor the uniform convergence of trajectories to Ag is not expected here.

Exercise 38 Show that StA3 = A3 , provided A3 is a compact set.

Exercise 3.4 Prove that ®(x) € A5 for any 2 € X . Therewith, if A4 is
a compact, then A; = | J{o(r): x € X}.

By definition the attractor A3 contains limit regimes of each individual trajectory.
It will be shown below that As # A; in general. Thus, a set of real limit regimes
(states) originating in a dynamical system can appear to be narrower than the global
attractor. Moreover, in some cases some of the states that are unessential from the
point of view of the frequency of their appearance can also be “removed” from A3,
for example, such states like absolutely unstable stationary points. The next two
definitions take into account the fact mentioned above. Unfortunately, they require
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additional assumptions on the properties of the phase space. Therefore, these defini-
tions are mostly used in the case of finite-dimensional dynamical systems.

Let a Borel measure [ such that [1(X) < oo be given on the phase space X of
a dynamical system (X, S,). A bounded set A, in X is called a Méilnor attractor
(with respect to the measure p) for (X, S,) if A, is a minimal closed invariant set
possessing the property

lim dist (S,y, Ay) =0
t— oo
for almost all elements y € X with respect to the measure 1. The Milnor attractor
is frequently called a probabilistic global minimal attractor.

At last let us introduce the notion of a statistically essential global minimal at-
tractor suggested by Ilyashenko. Let U be an open set in X and let X U(x) be its
characteristic function: X;;(v) =1, v € U; X, (x)=0, x ¢ U. Let us define the
average time T (2, U) which is spent by the semitrajectory y*(x) emanating from x
in the set U by the formula

T
T(x, U)= Iim % JXU(Stx) dt.
0

T — oo

Aset U is said to be unessential with respect to the measure p if

M(U) = p{x: t(x, U)>0}=0.
The complement Ay to the maximal unessential open set is called an Ilyashenko
attractor (with respect to the measure ).

It should be noted that the attractors A, and Ay are used in cases when the na-
tural Borel measure is given on the phase space (for example, if X is a closed mea-
surable set in RV and u is the Lebesgue measure).

The relations between the notions introduced above can be illustrated by the
following example.

Example 3.1

Let us consider a quasi-Hamiltonian system of equations in R2 :

. 0H oH
= — — H_
q =5, HH5.
3.1
: Ol ol
= —_——_— H_
D 50 Mg

where H(p, q) = (1/2)p%+q*—q® and p is a positive number. It is easy
to ascertain that the phase portrait of the dynamical system generated by equa-
tions (3.1) has the form represented on Fig. 1.
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A separatrix (“eight cur-
ve”) separates the do-
mains of the phase plane
with the different quali-
tative behaviour of the
trajectories. It is given by
é the equation H(p,q)=0.
AN q The points (p, ¢) inside
the separatrix are charac-
v terized by the equation
H(p, q) < 0. Therewith
it appears that

Fig. 1. Phase portrait of system (3.1)

A=Ay ={(p, a): H(p. q) <0},

Asz{(p, q): H(p, q)=0} U {(p» q): %H(p, Q)=§—QH(10» q)=0} )

Ay={(p. q): H(p, q)=0}.
Finally, the simple calculations show that Ag = {0, 0}, i.e. the Ilyashenko at-
tractor consists of a single point. Thus,
A=Ay D A3 DAy D Ag,

all inclusions being strict.

Exercise 8.5 Display graphically the attractors A . of the system generated
by equations (3.1) on the phase plane.

Exercise 3.6 Consider the dynamical system from Example 1.1 with
Sf(x)=ax(2%-1). Provethat 4, = {&: —1 <z < 1},
Ag={x=0; x=%1}, and A,;=A;={r=%1}.

Exercise 8.7 Provethat A, c A3 and Az < A5 in general.

Exercise 3.8 Show that all positive semitrajectories of a dynamical system
which possesses a global minimal attractor are bounded sets.

In particular, the result of the last exercise shows that the global attractor can exist
only under additional conditions concerning the behaviour of trajectories of the sys-
tem at infinity. The main condition to be met is the dissipativity discussed in the next
section.
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§ 4 Dissipativity and Asymptotic
Compactness

From the physical point of view dissipative systems are primarily connected with ir-
reversible processes. They represent a rather wide and important class of the dy-
namical systems that are intensively studied by modern natural sciences. These
systems (unlike the conservative systems) are characterized by the existence of the
accented direction of time as well as by the energy reallocation and dissipation.
In particular, this means that limit regimes that are stationary in a certain sense can
arise in the system when ¢ — +o0o . Mathematically these features of the qualitative
behaviour of the trajectories are connected with the existence of a bounded absor-
bing set in the phase space of the system.

A set By c X is said to be absorbing for a dynamical system (X, S,) if for
any bounded set B in X there exists ¢, = t,(B) such that S,(B) c B, for every
t > t;. A dynamical system (X, St) is said to be dissipative if it possesses a boun-
ded absorbing set. In cases when the phase space X of a dissipative system (X, St)
is a Banach space a ball of the form {# € X: |2y < R} can be taken as an absor-
bing set. Therewith the value R is said to be a radius of dissipativity.

As a rule, dissipativity of a dynamical system can be derived from the existence
of a Lyapunov type function on the phase space. For example, we have the following
assertion.

Theorem 4.1.

Let the phase space of a continuous dynamical system (X, Sz) be a Ba-
nach space. Assume that:

(a) there exists a continuous function U(x) on X possessing the pro-

perties
O1(l=l) < U(z) < o5(l2l) 4.1

where ¢;(r) are continuous functions on R, and ¢(r) > +x
when r — oo;

(b) there exist a derivative d%U (Sty) Sfor t > 0 and positive numbers
a and p such that

%U(Sty) <o for |S,u]>p. (4.2)

Then the dynamical system (X, S,) is dissipative.
Proof.
Let us choose R, > p suchthat ¢ (r) >0 for r > R,. Let
I = sup{Qy(7): r < 1+Ry}
and R, > R, +1 be suchthat ¢,(r)>1 for r >R, . Letus show that
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|S;y| < Ry forall t>0 and |yl <R,. (4.3)

Assume the contrary, i.e. assume that for some y € X such that |y| < R, there
exists atime 7 > 0 possessing the property ||Sf y|| > R, . Then the continuity of S,y
implies that there exists 0 < ¢, < 7 such that p < “S%yH < Ry +1. Thus, equation
(4.2) implies that

US,y) < US, v),  t2tg,

provided |S, y| > p. It follows that U(S,y) < I forall ¢ > ¢,. Hence, |S,y| < E; for
all t > t,. This contradicts the assumption. Let us assume now that B is an arbitrary
bounded set in X that does not lie inside the ball with the radius R, . Then equation
(4.2) implies that

US,y) < Uly)-oat < lg-at, yebB, (4.4)
provided |S,y| > p. Here

lg=sup{U(x): x € B}.

Let y € B. Iffor atime " < (Iz—1)/0 the semitrajectory S,y enters the ball with

the radius p, then by (4.3) we have st y” < Ry forall t > ¢". If that does not take
place, from equation (4.4) it follows that

lg—1
Oy(|Syy]) < USy) <1 for 12 L,
ie. |S,y| <R, for t > a~l(lz—1). Thus,

lg—1
S,B c {x: |z] <R}, t > TR

This and (4.3) imply that the ball with the radius R, is an absorbing set for the dy-
namical system (X, S, ). Thus, Theorem 4.1 is proved.

Exercise 4.1 Show that hypothesis (4.2) of Theorem 4.1 can be replaced
by the requirement

du(s,y)+yUs,9) < ©,

where v and C are positive constants.

Exercise 4.2 Show that the dynamical system generated in R by the diffe-
rential equation  +f' ()= 0 (see Example 1.1) is dissipative, pro-
vided the function f(x) possesses the property: xf(x) > ox2-C,
where 6 > 0 and C are constants (Hint: U(x) = 22 ). Find an up-
per estimate for the minimal radius of dissipativity.

Exercise 4.3 Consider a discrete dynamical system (R, "), where f is
a continuous function on R . Show that the system (IR, f) is dissi-
pative, provided there exist p>0 and 0< o<1 such that
|f(2)l < afz| for x| >p.
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Exercise 4.4 Consider a dynamical system (IR{Z, S,) generated (see Exam-
ple 1.2) by the Duffing equation

i+ex+a’—axr=>b,
where a and b are real numbers and € > 0. Using the properties
of the function

v _ 1.9 1 4 _a o ( §2>
Ulx, ) = 5%+ 72t =St +v(@g +5
show that the dynamical system (]R{Z, S,) is dissipative for v > 0
small enough. Find an upper estimate for the minimal radius of dissi-

pativity.

Exercise 4.5 Prove the dissipativity of the dynamical system generated
by (1.4) (see Example 1.3), provided

N N
Zxkfk(xl, X, ..., Ty) < —52xi+0, 0>0.
k=1 k=1

Exercise 4.6 Show that the dynamical system of Example 1.4 is dissipative
if f(2) is a bounded function.

Exercise 4.7 Consider a cylinder I with coordinates (z, @), x € R,
(ONS [O, 1) and the mapping 7' of this cylinder which is defined
by the formula T'(z, ¢) = (2', ¢'), where

x'=ox+ksin2no,

¢ =@+ (modl).
Here o and k& are positive parameters. Prove that the discrete dyna-
mical system (IT, 77) is dissipative, provided 0 < o0 < 1. We note
that if o = 1, then the mapping 7' is known as the Chirikov map-

ping. It appears in some problems of physics of elementary parti-
cles.

Exercise 4.8 Using Theorem 4.1 prove that the dynamical system (]R{Z, S,)
generated by equations (3.1) (see Example 3.1) is dissipative.
. 2
(Hint: U(x) = [H(p, q)]%).

In the proof of the existence of global attractors of infinite-dimensional dissipative
dynamical systems a great role is played by the property of asymptotic compactness.
For the sake of simplicity let us assume that X is a closed subset of a Banach space.
The dynamical system (X, S,) is said to be asymptotically compact if for any
t > 0 its evolutionary operator Sz can be expressed by the form

S, =8 4+52) (4.5)

where the mappings St(l) and St(z) possess the properties:
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a) for any bounded set B in X
ro(t) = sup [V -0, I — +00;
p(0) ye%" ¢ y”x

b) for any bounded set B in X there exists ¢, such that the set

(12 (B)] = { U ng)B} (4.6)

Lzt

is compact in X, where [y] is the closure of the set .
A dynamical system is said to be compact if it is asymptotically compact and
one can take St(l) = (0 in representation (4.5). It becomes clear that any finite-di-
mensional dissipative system is compact.

Exercise 4.9 Show that condition (4.6) is fulfilled if there exists a compact
set K in H such that for any bounded set B the inclusion St(2 BcK ,
A tO(B) holds. In particular, a dissipative system is compact if it
possesses a compact absorbing set.

Lemma 4.1.

The dynamical system (X, St) 1S asymptotically compact if there exists
a compact set K such that

lim sup{dist(S,u, K): u € B}=0 4.7
t— oo
Sfor any set B bounded in X.

Proof.
The distance to a compact set is reached on some element. Hence, for any
t >0 and u € X there exists an element v = St(z)u e K such that

dist (S,u, K) = |S,u -2 u].

Therefore, if we take St(l)u =Su —St(z)u , it is easy to see that in this case de-
composition (4.5) satisfies all the requirements of the definition of asymptotic
compactness.

Remark 4.1.

In most applications Lemma 4.1 plays a major role in the proof of the
property of asymptotic compaciness. Moreover, in cases when the phase
space X of the dynamical system (X, Sz) does not possess the structure
of a linear space it is convenient to define the notion of the asymptolic
compactness using equation (4.7). Namely, the system (X, St) s said
to be asymplotically compact if there exists a compact K possessing
property (4.7) for any bounded set B in X. For one more approach
to the definition of this concept see Exercise 5.1 below.
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Exercise 4.10 Consider the infinite-dimensional dynamical system genera-
ted by the retarded equation

x(t)+ox(t)=flx(t-1)),

where o > 0 and f(2) is bounded (see Example 1.4). Show that
this system is compact.

Exercise 4.11 Consider the system of Lorentz equations arising as a three-
mode Galerkin approximation in the problem of convection in a thin
layer of liquid:

X =-0x+0y,
Yy=rx—y—-xz,
2 =-bz+xy.
Here o, 7, and b are positive numbers. Prove the dissipativity of

the dynamical system generated by these equations in R?.
Hint: Consider the function

V(z, y, 2) = %(x2+y2+(z—7"—0)2)

on the trajectories of the system.

$§ &5 Theorems on Existence
of Global Attractor

For the sake of simplicity it is assumed in this section that the phase space X is
a Banach space, although the main results are valid for a wider class of spaces
(see, e. g., Exercise 5.8). The following assertion is the main result.

Theorem 5.1.

Assume that a dynamical system (X, S,) is dissipative and asymptoti-
cally compact. Let B be a bounded absorbing set of the system (X, St). Then
the set A = ®(B) is a nonempty compact set and is a global attractor of the
dynamical system (X, S,). The attractor A is a connected set in X .

In particular, this theorem is applicable to the dynamical systems from Exercises
4.2-4.11. It should also be noted that Theorem 5.1 along with Lemma 4.1 gives the
following criterion: a dissipative dynamical system possesses a compact global at-
tractor if and only if it is asymptotically compact.

The proof of the theorem is based on the following lemma.
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Lemma 5.1.

Let a dynamical system (X, St) be asymptotically compact. Then for
any bounded set B of X the o-limit set »(B) is a nonempty compact
moariant set.

Proof.
Let y,, € B. Then for any sequence {t, } tending to infinity the set { S( )yn ,
=1, 2, ... } is relatively compact, i.e. there exist a sequence 7, and an ele-
ment y € X such that S( )ynk tends to ¥ as k — oo. Hence, the asymptotic
compactness gives us that "k

_ < |s(1) 2y =52
”y anky”k“ < Stnky"’%H “y Stnkynk“_)() as ko oo.

Thus, ¥y = lim SZW ynk. Due to Lemma 2.1 this indicates that ®(B) is non-
empty. *

Let us prove the invariance of  -limit set. Let y € ® (B ) . Then according
to Lemma 2.1 there exist sequences {¢,}, ¢, — o, and {2, } < B such that
Stnzn—> y . However, the mapping S, is continuous. Therefore,

S =505, z -8y, n — oo .

t+t,
Lemma 2.1 implies that S,y € OJ(B) . Thus,
S,0(B)c o(B), t>0.

Let us prove the reverse inclusion. Let ¥ € ®(B). Then there exist sequences

{v,} =B and {t,: t, > oo} such that S; v, —>y. Let us consider the se-
quence y,, = Sz 4V, t, 2 t.The asymptotic compactness implies that there

exist a subsequence L, ", and an element 2 € X such that

2= lim S(2)

—t Yy -
koo mpt T

As stated above, this gives us that

= kh_I)an — ynk.
Therefore, 2 € ®(B). Moreover,
Sz = Tm S8, v, = lms§, v, =y.
t k — oo g oo g Tk Y

Hence, y € S, ®(B). Thus, the invariance of the set ®(B) is proved.

Let us prove the compactness of the set ®(B). Assume that {z,,} is a se-
quence in (o(B) . Then Lemma 2.1 implies that for any # we can find ¢, > n and
Y, € B such that Hzn_Stn yn" < 1/m. As said above, the property of asymp-
totic compactness enables us to find an element 2 and a sequence {rn,} such
that

HSt’”k Yn, —zH -0, k—>oo.
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This implies that z € ®(B) and 2,, — 2. This means that ®(B) is a closed and
compact set in H . Lemma 5.1 is proved completely.

Now we establish Theorem 5.1. Let B be a bounded absorbing set of the dynamical
system. Let us prove that ®(B) is a global attractor. It is sufficient to verify that
(B) uniformly attracts the absorbing set B . Assume the contrary. Then the value
sup{dist (S,y, o(B)): y € B} does not tend to zero as t — oo . This means that
there exist & > 0 and a sequence {t,,: t,— oo} such that

sup {dist(Stny, o(B)): y € B} >20.

Therefore, there exists an element y, € B such that
dist(St%yn, o(B)) > 0, mn=1,2,... (5.1)

As before, a convergent subsequence {Szn ynk} can be extracted from the sequence
{St, Yy, } - Therewith Lemma 2.1 implies
= lim S (B
¢ = lm Sy, <o)
which contradicts estimate (5.1). Thus, ®(B) is a global attractor. Its compactness
follows from the easily verifiable relation

A=o0B)=) [ ﬂst(z)B]

>0 t2>1
Let us prove the connectedness of the attractor by reductio ad absurdum. Assume
that the attractor A is not a connected set. Then there exists a pair of open sets U;
and U, such that

UNA=@, i=1,2, AcUUU,, UNU=@.
Let A° = conv(A) be a convex hull of the set A4, i.e.

N N
Ac:HZxM: v,eA, A; 20, 27%:1, N=1, ZH

i=1 i=1

It is clear that A€ is a bounded connected set and A¢ > A . The continuity of the
mapping S, implies that the set S, A° is also connected. Therewith A=S5,A < 5, A°.
Therefore, U; 1 S,A° # &, i =1, 2. Hence, for any t > 0 the pair U}, U, cannot
cover S, A°. It follows that there exists a sequence of points x, = S, y,, € S, A°
such that x, ¢ Uy U U, . The asymptotic compactness of the dynamical system
enables us to extract a subsequence {nk} such that x,, = S”k Yn, tends in X to an
element y as k — co . Itis clear that y ¢ U; U Uy and y € ®(A°). These equations
contradict one another since ®(A°) ¢ ®(B)=A < U; UU,. Therefore, Theorem
5.1 is proved completely.
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It should be noted that the connectedness of the global attractor can also be proved
without using the linear structure of the phase space (do it yourself).

Exercise 5.1 Show that the assumption of asymptotic compactness in Theo-
rem 5.1 can be replaced by the Ladyzhenskaya assumption: the se-
quence {S; u,} contains a convergent subsequence for any
bounded sequence {un} c X and for any increasing sequence
{t,} € T, such that t, — +oo. Moreover, the Ladyzhenskaya as-
sumption is equivalent to the condition of asymptotic compactness.

Exercise 5.2 Assume that a dynamical system (X R St) possesses a compact
global attractor A. Let A" be a minimal closed set with the property

lim dist (S, , A%)=0 forevery yeX.
t —> oo

Then A"c A and A"= | J{o(x): 2 € X},ie A" coincides with the
global minimal attractor (cf. Exercise 3.4).

Exercise 5.8 Assume that equation (4.7) holds. Prove that the global at-
tractor A possesses the property A = o(K) c K.

Exercise 5.4 Assume that a dissipative dynamical system possesses a glo-
bal attractor A . Show that A = ®(B) for any bounded absorbing set
B of the system.

The fact that the global attractor A has the form A = ®(B), where B is an absorb-
ing set of the system, enables us to state that the set S, B not only tends to the at-
tractor A , but is also uniformly distributed over it as t — oo . Namely, the following
assertion holds.

Theorem 5.2.

Assume that a dissipative dynamical system (X, Sz) possesses a, com-
pact global attractor A. Let B be a bounded absorbing set for (X, S,). Then

lim sup{dist(a, S,B): a € A}=0. 5.2)

t — o0

Proof.
Assume that equation (5.2) does not hold. Then there exist sequences {a,, } ¢
c A and {t,: t, — oo} suchthat

dist (a,, , San) >0 forsome 0O >0. (5.3)
The compactness of A enables us to suppose that {an} converges to an element
a € A . Therewith (see Exercise 5.4)
a= lim Srmym, {y,,} < B,

m —> oo
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where {1,,} is a sequence such that 1,,— oo . Let us choose a subsequence {m,, }
such that t,,, >, +1g forevery n =1, 2, ... . Here tp is chosen such that S, B <
c Bforallt >tp. Letz, = STmnftn Ypm, - Then it is clear that {2,,} € B and

a= lim S

Y,, = lm S z, .
7 —> 0o n 'm powo

Equation (5.3) implies that
dist(a,, Sy, z2,) = dist(a,, S; B) =2 d.

This contradicts the previous equation. Theorem 5.2 is proved.

For a description of convergence of the trajectories to the global attractor it is con-
venient to use the Hausdorff metric that is defined on subsets of the phase space
by the formula

p(C, D) =max{h(C, D); h(D,C)}, (5.4)
where C, D € X and
h(C, D)= sup{dist(c, D): ¢ € C}. (5.5)

Theorems 5.1 and 5.2 give us the following assertion.

Corollary 5.1.

Let (X, St) be an asymptotically compact dissipative system. Then its
global attractor A possesses the property tli)moo p(StB, A)=0 for any
bounded absorbing set B of the system (X, S,).

In particular, this corollary means that for any € > 0 there exists te > 0 such that
for every t >, the set S,B gets into the ¢ -vicinity of the global attractor A;
and vice versa, the attractor A lies in the ¢&-vicinity of the set S,B. Here B is
a bounded absorbing set.

The following theorem shows that in some cases we can get rid of the require-
ment of asymptotic compactness if we use the notion of the global weak attractor.

Theorem 5.3.

Let the phase space H of a dynamical system (H, Sz) be a separable
Hilbert space. Assume that the system (H, Sz) is dissipative and its evolu-
tionary operator S, is weakly closed, i.e. for all t > 0 the weak convergence
Y,~>y and S, Yy, 2 tmply that z=S,y. Then the dynamical system
(H, S,) possesses a global weak attractor.

The proof of this theorem basically repeats the reasonings used in the proof of Theo-
rem 5.1. The weak compactness of bounded sets in a separable Hilbert space plays
the main role instead of the asymptotic compactness.
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Lemma 5.2.

Assume that the hypotheses of Theorem 5.3 hold. For B ¢ H we define
the weak -limit set ®,,(B) by the formula

0, B)= [ g St(B)} , (5.6)

s>0 t=>2s w
where [Y]w s the weak closure of the set Y. Then for any bounded set
B c H the set 0, (B) is a nonempty weakly closed bounded invariant

set.

Proof.

The dissipativity implies that each of the sets v, (B) = [Uz i SSt(B)] I
bounded and therefore weakly compact. Then the Cantor theorem on the col-
lection of nested compact sets gives us that ,,(B) = (1), . ,7.,(B) is a non-
empty weakly closed bounded set. Let us prove its invariance. Let y € ®,,(B).
Then there exists a sequence y,, € | J,, ,S,(B) such that y,, — y weakly. The
dissipativity property implies that the set {St yn} is bounded when ¢ is large
enough. Therefore, there exist a subsequence {yn } and an element 2 such
that y,, -y and S, Y — 2 weakly. The weak closedness of S, implies that
z =S,y Since S,y,, € v, (B) for m, > s, we have that z € v, (B) for all s.
Hence, 2 € ®,,(B). Therefore, S, ®,(B) c ®,(B). The proof of the reverse
inclusion is left to the reader as an exercise.

For the proof of Theorem 5.3 it is sufficient to show that the set
A, = cow(B), (6.7

where B is a bounded absorbing set of the system (H, St) ,is a global weak attractor
for the system. To do that it is sufficient to verify that the set B is uniformly attract-
edto A, = w,(B) in the weak topology of the space [ . Assume the contrary. Then
there exist a weak vicinity @ of the set A, and sequences {y,,} B and {t,,: ¢, —
— oo} such that St,, Y, & O.However, the set {Stn Y,,} is weakly compact. There-
fore, there exist an element 2 ¢ @ and a sequence {7, } such that

Z2=w _klgnoost%y”k .

However, Sy, 4, € Vu(B) for t, >s. Thus, z € yo(B) forall s 20 and 2 €
€ o, (B), which is impossible. Theorem 5.3 is proved.

Exercise 5.5 Assume that the hypotheses of Theorem 5.3 hold. Show that
the global weak attractor A, is a connected set in the weak topology
of the phase space H .

Exercise 5.6 Show that the global weak minimal attractor A = J{®,, (2):
x € H} is astrictly invariant set.
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Exercise 5.7 Prove the existence and describe the structure of global and
global minimal attractors for the dynamical system generated by
the equations

wr —y —x (2 +y?),

x+wy —y(2®+y?)

—
IS
Il I

]

for every real [L.
Exercise 5.8 Assume that X is a metric space and (X, St) is an asymptoti-
cally compact (in the sense of the definition given in Remark 4.1)
dynamical system. Assume also that the attracting compact K is

contained in some bounded connected set. Prove the validity of the
assertions of Theorem 5.1 in this case.

In conclusion to this section, we give one more assertion on the existence of the global
attractor in the form of exercises. This assertion uses the notion of the asymptotic
smoothness (see [3] and [9]). The dynamical system (X ) St) is said to be asympto-
tically smooth if for any bounded positively invariant (S,B c B, t > 0) set
B c X there exists a compact K such that /2 (S,B, K) > 0 as t - oo, where the
value 2 ( -, -) is defined by formula (5.5).

Exercise 5.9 Prove that every asymptotically compact system is asymptoti-
cally smooth.

Exercise 510 Let (X, S,) be an asymptotically smooth dynamical system.
Assume that for any bounded set B < X the set y¥*(B)=
= J¢ » 05,(B) is bounded. Show that the system (X, S,) posses-
ses a global attractor A of the form

A= U{w(B): Bc X, Bisbounded}.

Exercise 5.11 In addition to the assumptions of Exercise 5.10 assume that
(X, St) is pointwise dissipative, i.e. there exists a bounded set
B, c X such that distx(S,y, By) = 0 as t - co for every point
y € X . Prove that the global attractor A is compact.

§ 6 On the Structure of Global Attractor

The study of the structure of global attractor of a dynamical system is an important
problem from the point of view of applications. There are no universal approaches to
this problem. Even in finite-dimensional cases the attractor can be of complicated
structure. However, some sets that undoubtedly belong to the attractor can be poin-
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ted out. It should be first noted that every stationary point of the semigroup Sz be-
longs to the attractor of the system. We also have the following assertion.

Lemma 6.1.

Assume that an element 2 lies in the global attractor A of a dynamical
system (X, St). Then the point z belongs to some trajectory Yy that lies
in A wholly.

Proof.

Since S;A =A and z € A, then there exists a sequence {zn} c A such
that 2y =2, S;2,=2,,_1, n=1, 2, ... . Therewith for discrete time the re-
quired trajectory is y = {u,,: n € Z}, where u, =S,z for n >0 and u,, =
= z_,, for n < 0.For continuous time let us consider the value

S, 2, t>0,
u(t) =

Siin?y —Mm<t<-n+l, mn=1,2, ..

Then it is clear that % (t) € A forall t € R and S u(t) = u(t+71) for 1> 0,
t € R. Therewith (0) = 2. Thus, the required trajectory is also built in the
continuous case.

Exercise 6.1 Show that an element 2 belongs to a global attractor if and
only if there exists a bounded trajectory y = {u(t): —o0 <t < o0}
such that » (0) = z.

Unstable sets also belong to the global attractor. Let Y be a subset of the phase
space X of the dynamical system (X, S,). Then the unstable set emanating
Jrom Y is defined as the set M, (Y) of points # € X for every of which there exists
atrajectory y = {u(t): t € T} such that

u(0) =2, tlirg dist(u(t), ¥)=0.

Exercise 6.2 Prove that M (Y) is invariant, i.e. S,IM, (Y) = M (Y) for all
t>0.

Lemma 6.2.

Let N be a set of stationary points of the dynamical system (X, Sz)
possessing a global attractor A. Then M (N) c A.

Proof.

It is obvious that the set N ={z: S,z =2, (>0} lies in the attractor
of the system and thus it is bounded. Let & € M, (/). Then there exists a tra-
jectory v, ={u(t), t €T} suchthat u(0) =2 and

dist (u(t), /) >0, T—>-c0.
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Therefore, the set B, ={u(t): T < —s} is bounded when s >0 is large
enough. Hence, the set S, B tends to the attractor of the system as ¢ — +o00.
However, 2 € S, B, for ¢t > s. Therefore,

dist (2, A) < sup{dist(S,y, A): y e B} >0, t—+o0.

This implies that 2 € A . The lemma is proved.

Exercise 6.3 Assume that the set /N of stationary points is finite. Show
that

l
M[+(N) = U M[+(zk)7
k=1

where 2z, are the stationary points of S, (the set M +(zk) is called
an unstable manifold emanating from the stationary point 2, ).

Thus, the global attractor A includes the unstable set M, ("). It turns out that un-
der certain conditions the attractor includes nothing else. We give the following defi-
nition. Let Y be a positively invariant set of a semigroup S,: S, Y < Y, t > 0. The
continuous functional @ (y) defined on Yis called the Lyapunov function of the
dynamical system (X, S,) on Y if the following conditions hold:
a) forany y € Y the function CD(St y) is a nonincreasing function with re-
specttot > 0;
b) if for some ¢, > 0 and y € X the equation ®(y) = CD(StOy) holds, then
y =S,y forallt > 0,1ie. y is astationary point of the semigroup S, .

Theorem 6.1.
Let a dynamical system (X, Sz) possess a compact attractor A. Assume

also that the Lyapunov function O (y) exists on A. Then A = M (W), where
N is the set of stationary points of the dynamical system.

Proof.
Let y € A. Let us consider a trajectory y passing through y (its existence fol-
lows from Lemma 6.1). Let

y=A{u(t): teT} and y;={u(t): t <7}.
Since y; < A, the closure [y;] is a compact set in X . This implies that the o -limit
set
a(y)= () [vd]
<0

of the trajectory y is nonempty. It is easy to verify that the set a(y) is invariant:
S,a(y) = a(y). Let us show that the Lyapunov function ®(y)is constant on o.(y).
Indeed, if € a(y), then there exists a sequence {t, } tending to —co such that
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Consequently,
() = lim ®(u(t,)).
(u) = lim ®(u(t,))
By virtue of monotonicity of the function ®(u) along the trajectory we have
D(u)=sup{D(u(1)): T<0}.
Therefore, the function ®(u ) is constant on o (7). Hence, the invariance of the set

o(y) gives us that ®(S,u) = D(u), t > 0 forall u € a(y). This means that o(y)
lies in the set & of stationary points. Therewith (verify it yourself)

tli)rr_loodist(u(t), o(y))=0.

Hence, y € M (/Y'). Theorem 6.1 is proved.

Exercise 6.4 Assume that the hypotheses of Theorem 6.1 hold. Then for
any element y € A its o -limit set @ (y) consists of stationary points
of the system.

Thus, the global attractor coincides with the set of all full trajectories connecting the
stationary points.

Exercise 6.5 Assume that the system (X, S,) possesses a compact global
attractor and there exists a Lyapunov function on X. Assume that
the Lyapunov function is bounded below. Show that any semitrajec-
tory of the system tends to the set /" of stationary points of the sys-
tem as ¢ > +oo , i.e. the global minimal attractor coincides with the
set JY.

In particular, this exercise confirms the fact realized by many investigators that the
global attractor is a too wide object for description of actually observed limit regimes
of a dynamical system.

Exercise 6.6 Assume that (R, S,) is a dynamical system generated by the
logistic equation (see Example 1.1): z +ox(x—-1)=0, a>0.
Show that V(x) = 23/3 —22/2 is a Lyapunov function for this sys-
tem.

Exercise 6.7 Show that the total energy
1

12,1 4 _a 2_
2x+4x 29& bx

is a Lyapunov function for the dynamical system generated (see
Example 1.2) by the Duffing equation

E(x, &)=

r+ex+a3—ax=>b, €>0.
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If in the definition of a Lyapunov functional we omit the second requirement, then
a minor modification of the proof of Theorem 6.1 enables us to get the following as-
sertion.

Theorem 6.2.

Assume that a dynamical system (X, Sz) possesses a, compact global at-
tractor A and there exists a continuous function Y(y) on X such that
‘I’(St y) does mot increase with respect to t for any y € X. Let % be a set of
elements u € A such that ¥ (u(t)) = ¥ (u) for all —oo < t < oo. Here {u(t)} is
a trajectory of the system passing through w (u(0)=wu). Then M (%)=A
and % contains the global minimal attractor A" = | |, . x ©(x).

Proof.

In fact, the property M, (%) = A was established in the proof of Theorem 6.1.
As to the property A" ¢ 9, it follows from the constancy of the function ‘P(u,) on
the o -limit set () of any element x € X .

Exercise 6.8 Apply Theorem 6.2 to justify the results of Example 3.1 (see
also Exercise 4.8).

If the set W of stationary points of a dynamical system (X 5 St) is finite, then Theo-
rem 6.1 can be extended a little. This extension is described below in Exercises 6.9—
6.12. In these exercises it is assumed that the dynamical system (X, S,) is continu-
ous and possesses the following properties:

(a) there exists a compact global attractor A ;

(b) there exists a Lyapunov function ®(x) on 4 ;

(c) the set N ={z,,... 2y} of stationary points is finite, therewith ®(z,) #

#* CD(zj) for 7 # 5 and the indexing of % possesses the property

D(z)) < D(z9) < ... <D(2y)- (6.1)
We denote

J
A= UMy, J=12 ., N, 4=9.
k=1

Exercise 6.9 Show that StAjzAj forallj=1, 2, ... N.
Exercise 6.10 Assume that B cAj\{zj}.Then
lim sup { dist (S, , Aj71)3 yeB}=0. (6.2)

t — oo
Exercise 6.11 Assume that the function @ is defined on the whole X . Then
(6.2) holds for any bounded set B c {x: ®(x)< ®(z;) -5},
where & is a positive number.
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Exercise 6.12 Assume that [M],(z;)] is the closure of the set M, (2;) and
oM, (2;) = [M,(#;)]\M,(z;) is its boundary. Show that M, z;c
c Aj_1 and

5 ML ()] = [M(2))], S,6M(z;) = M (=)).

It can also be shown (see the book by A. V. Babin and M. 1. Vishik [1]) that under
some additional conditions on the evolutionary operator S, the unstable manifolds
M +(zj) are surfaces of the class C!, therewith the facts given in Exercises 6.9-6.12
remain true if strict inequalities are substituted by nonstrict ones in (6.1). It should
be noted that a global attractor possessing the properties mentioned above is fre-
quently called regular.

Let us give without proof one more result on the attractor of a system with a fi-
nite number of stationary points and a Lyapunov function. This result is important
for applications.

At first let us remind several definitions. Let S be an operator acting in a Ba-
nach space X . The operator S is called Frechét differentiable at a point
2 € X provided that there exists a linear bounded operator S'(x): X - X such
that

I1S(y) =S(x) =S"(x)(y—2)I < y(lz—yl)lx -yl
for all ¥ from some vicinity of the point #, where ¥(&) — 0 as & — 0. Therewith,
the operator S is said to belong to the class C1t% 0< o< 1,onaset Y if it is
differentiable at every point x € Y and

”S’(x)_S,(ZJ)HL(X’ X) < C||=75_y||a

for all ¥ from some vicinity of the point x € Y. A stationary point 2 of the mapping
S is called hyperbolic if S € C1*% in some vicinity of the point 2, the spectrum
of the linear operator S’(2) does not cross the unit circle {A: |A|=1} and the spec-
tral subspace of the operator corresponding to the set {A: |A| > 1} is finite-dimen-
sional.

Theorem 6.3.

Let X be a Banach space and let a continuous dynamical system
(X, SL) possess the properties:
1) there exists a global attractor A;
2) there exists a vicinity Q of the attractor A such that

”Stx -5, y” < Ced(t-1) ”STx -5, y”

Jorall t > 1> 0, provided S,x and S,y belong to Q forall t > 0;
3) there exists a Lyapunov function continuous on X;
4) the set N'={z, ..., 2y} of stationary points is finite and all the
points are hyperbolic;
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5) the mapping (¢, u)— S, u is continuous.
Then for any compact set B in X the estimate

sup {dist Sy, A): y eB} < Cgze M (6.3)
holds for all t > 0, where n > 0 does not depend on B.

The proof of this theorem as well as other interesting results on the asymptotic be-
haviour of a dynamical system possessing a Lyapunov function can be found in the
book by A. V. Babin and M. I. Vishik [1].

To conclude this section, we consider a finite-dimensional example that shows
how the Lyapunov function method can be used to prove the existence of periodic
trajectories in the attractor.

Example 6.1 (onthetheme by E. Hopf)

Studying Galerkin approximations in a model suggested by E. Hopf for the de-
scription of possible mechanisms of turbulence appearence, we obtain the fol-
lowing system of ordinary differential equations

u+pu+v2+w=0, (6.4)
v+ vo—vu—Pw=0, (6.5)
w+vw —wu+Bv=0. (6.6)

Here p is a positive parameter, v and B are real parameters. It is clear that the
Cauchy problem for (6.4)—(6.6) is solvable, at least locally for any initial condi-
tion. Let us show that the dynamical system generated by equations (6.4)—(6.6)
is dissipative. It will also be sufficient for the proof of global solvability. Let us
introduce a new unknown function «* = u + /2 —v. Then equations (6.4)—
(6.6) can be rewritten in the form

w+uut o2+ wd = u(g—v),

7)+%uv—®u*—ﬁw:0,

w+%uw—wu*+ Bv=0.

These equations imply that
1d
2dt

on any interval of existence of solutions. Hence,

d %2 2 2 2 9 9 TR
d-t((|u| + 0 + | ))+ (o + o2 + ) < “(‘2‘ v) .

« l
(b + 1o + o)+l + 5 (ol + 1) = u(h -v)u
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Thus,

(1) + [0 (D) + Jw () <

< (la(O)F + o (0 + o (0)F ) eht + (%—vf(l—e“”) .

Firstly, this equation enables us to prove the global solvability of problem (6.4)—
(6.6) for any initial condition and, secondly, it means that the set

By = {(u, v, W): (u+§_v)2+02+w2 . 1+(§_v)2}

is absorbing for the dynamical system (IR{S, S,) generated by the Cauchy prob-
lem for equations (6.4)—(6.6). Thus, Theorem 5.1 guarantees the existence of
a global attractor A. It is a connected compact set in R .

Exercise 6.13 Verify that By, is a positively invariant set for (]R{3, S,).

In order to describe the structure of the global attractor A we introduce the polar
coordinates

v(t)=7r(t)cos@(t), w(t)=r(t)sing(t)
on the plane of the variables {v; w}. As a result, equations (6.4)—(6.6) are trans-
formed into the system
{u—i—uu—i—rz:O, (6.7
r+vr—ur=0, (6.8
therewith, ¢(t) = — ¢+ ¢, . System (6.7) and (6.8) has a stationary point {u =0,
r=0} forall p >0 and v € R.If v < 0, then one more stationary point {u=v,

r= =WV} occurs in system (6.7) and (6.8). It corresponds to a periodic trajectory
of the original problem (6.4)—(6.6).

Exercise 6.4 Show that the point (0; 0) is a stable node of system (6.7)
and (6.8) when v > 0 and it is a saddle when v < 0.

Exercise 6.15 Show that the stationary point {u=v, r=.-uVv} is stable

(v < 0)being anode if —11/8 < v < 0 and a focus if v < — % .

If v>0,then (6.7) and (6.8) imply that

%d%(u2+7f2) + min(y, v)(u?+7r2) < 0.

Therefore,

|u(t)|2 + |7”(t)|2 < |u(0)|2 + |7ﬂ(0)|2 e—2min(u, V)t .

41



42

s Q

~ 0 =T o

Basic Concepts of the Theory of Infinite-Dimensional Dynamical Systems

Hence, for v > 0 the global attractor A of the system (]Rig, S,) consists of the single
stationary exponentially attracting point

{u=0,v=0, w=0}.

Exercise 6.16 Prove that for v =0 the global attractor of problem (6.4)—
(6.6) consists of the single stationary point {#=0, v=0, w=0}.
Show that it is not exponentially attracting.

Now we consider the case v < 0. Let us again refer to problem (6.7) and (6.8). It is
clear that the line » = 0 is a stable manifold of the stationary point {u =0, »=0}.
Moreover, it is obvious that if () > 0, then the value 7 (¢) remains positive for all
t > ;. Therefore, the function

V(u, r) = Fu=v)* + L2 +uvinr (6.9)

is defined on all the trajectories, the initial point of which does not lie on the line
{r=0}. Simple calculations show that

d%(V(u(t), r(6)+ 1 (w(t)-v)> = 0 (6.10)
and
Vi, r) 2 V(v =)+ 4 (lu=viZ+ - i) 6.11)

therewith, V(v, ¥=uv)=(1/2)u|v| In(e/(u[vl)). Equation (6.10) implies that
the function V(u, 7”) does not increase along the trajectories. Therefore, any semi-
trajectory {(u(t); r(t)), t € R,} emanating from the point {ug, r,; 7, # 0} of
the system (R xR,, S,) generated by equations (6.7) and (6.8) possesses the
property V(u(t), »(t)) < V(ug, ry) for t > 0. Therewith, equation (6.9) implies
that this semitrajectory can not approach the line { r= 0} at a distance less then
exp{[1/(uVv)]-V(uy, 7y)}. Hence, this semitrajectory tends to 7= {u=v,
7= 4—pv}. Moreover, for any & € R the set

Bg ={y=(u,r): V(u,r) <&}
is uniformly attracted to 7 ,i.e. forany & > 0 there exists ¢, = ¢, (&, &) such that
S Be < {y: ly—7l < e}.
Indeed, if it is not true, then there exist &, > 0, a sequence ¢, — +o0,and 2, € B
such that ‘Sx n 2]‘ > &, . The monotonicity of V() and property (6.11) imply that
KL
1.2
V(S z,) = V(Stn 2,) = V(v, J=uv)+ 5 €0

forall 0 <t < t, - Let 2z be a limit point of the sequence {zn} Then after passing
to the limit we find out that
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\

S )|
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Fig. 2. Qualitative behaviour of solutions to problem (6.7), (6.8):
a)-i/8< v<O, b) v< —-u/8

V(S,2) 2 V(v, JSuv)+ e, 120

with 2 ¢ {r=0}. Thus, the last inequality is impossible since S,z -7 ={u=v,
r=.—uv}. Hence
lim sup{dist(S,y, 7): v € Bg} =0. (6.12)

t — oo
The qualitative behaviour of solutions to problem (6.7) and (6.8) on the semiplane
is shown on Fig. 2.
In particular, the observations above mean that the global minimal attractor
A in of the dynamical system (]R{S, S,) generated by equations (6.4)—(6.6) consists
of the saddle point {« =0, v=0, w =0} and the stable limit cycle

C,={u=v, v?+w?=-puv} (6.13)
for v < 0. Therewith, equation (6.12) implies that the cycle C,, uniformly attracts
all bounded sets B in R? possessing the property

d = nf{v?+w?: (u, v, w)eB}>0, (6.14)

i.e. which lie at a positive distance from the line {v =0, w=10}.

Exercise 6.17 Using the structure of equations (6.7) and (6.8) near the sta-
tionary point {u=v, r=.-uVv}, prove that a bounded set B pos-
sessing property (6.14) is uniformly and exponentially attracted to
the cycle C,,, i.e.

sup{dist(S,y, C,), y € B} < ce V'8

for t > 5, where v is a positive constant.
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Now let y, = (ug. vy, w,) lie in the global attractor A of the system (R3, S,).
Assume that 7, # 0 and r% = 7)% + w% # —lVv. Then (see Lemma 6.1) there exists
a trajectory y = {y/(t)=(u(t); v(t); w(t)), te R} lyingin A suchthat y(0)=y,.
The analysis given above shows that y(t) - C,, as t — +oco. Let us show that
y(t) > 0 when t - —oco . Indeed, the function V(u(t), #(t)) is monotonely nonde-
creasing as t — —oo . If we argue by contradiction and use the fact that |y(¢)| is

bounded we can easily find out that

lim V(u(t), r(t)) =
t — —o0o
and therefore
1/2
r(t)= (Iv(t)l2 + Iw(t)lzj -0 as (- —o. (6.16)

Equation (6.7) gives us that

t

w(t) = e * =Ty (s) —J e M= [p(1)]P dr. (6.17)

S

Since u (s) is bounded for all s € R, we can get the equation
t
u(t) = —-[ ek _T)[V(’E)]Z dr

by tending s — —co in (6.17). Therefore, by virtue of (6.16) we find that w () — 0
as t - —oo. Thus, y(t) > 0 as t - —oo. Hence, for v < 0 the global attractor A

Fig. 3. Attractor of the system (6.4)—(6.6);
a)—U/8<v<0,b)v<—u/8
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of the system (IR?, S,) coincides with the union of the unstable manifold M, (0)
emanating from the point {#=0, v=0, w=0} and the limit cycle (6.13). The at-
tractor is shown on Fig. 3.

§ 7 Stability Properties of Attractor
and Reduction Principle

A positively invariant set M in the phase space of a dynamical system (X, Sz) is said
to be stable (in Lyapunov’s sense) in X if its every vicinity @ contains some
vicinity @' such that S,(@') @ forall t > 0. Therewith, M is said to be asymp-
totically stable if it is stable and S,y - M as t — oo for every y € O@'. A set
M is called uniformly asymptotically stable if it is stable and

lim sup {dist (S, M): y € @'} =0. (7.1
t — oo
The following simple assertion takes place.

Theorem 7.1.

Let A be the compact global attractor of a continuous dynamical sys-
tem (X, S,). Assume that there exists its bounded vicinity U such that the
mapping (t, u) > S,u is continuous on R, x U. Then A is a stable set.

Proof.

Assume that @ is a vicinity of A . Then there exists 7' > 0 such that S, U c @
for t > T'. Let us show that there exists a vicinity @' of the attractor A such that
S,0'c O forallt € [0, T]. Assume the contrary. Then there exist sequences {,, }
and {¢, } such that dist(u,,, A) >0, {t,}<[0, T] and Sy, U, & O.The set A being
compact, we can choose a subsequence {7, } such that Uy, >UEA s 1, —
—>te [O, T]. Therefore, the continuity property of the function (t, u) - Stu
gives us that SM,%unk—) S,u € A. This contradicts the equation Stnun ¢ @ . Thus,
there exists @' such that S,@"'c @ for ¢ € [0, T]. We can choose T such that
S,(G'NU)c @ for all t > 0. Therefore, the attractor A is stable. Theorem 7.1
is proved.

It is clear that the stability of the global attractor implies its uniform asymptotic
stability.

Exercise 7.1 Assume that M is a positively invariant set of a system
(X, S,). Prove that if there exists an element ¢ M such that its
o -limit set o(y) possesses the property o (y) 1M # &, then M
is not stable.
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In particular, the result of this exercise shows that the global minimal attractor can
appear to be an unstable set.

Exercise 7.2 Let usreturn to Example 3.1 (see also Exercises 4.8 and 6.8).
Show that:
(a) the global attractor A; and the Milnor attractor A, are
stable;
(b) the global minimal attractor A and the Ilyashenko at-
tractor Ay are unstable.

Now let us consider the question concerning the stability of the attractor with re-
spect to perturbations of a dynamical system. Assume that we have a family of dy-
namical systems (X S ) with the same phase space X and with an evolutionary
operator S dependmg on a parameter A which varies in a complete metric space
A . The followmg assertion was proved by L. V. Kapitansky and I. N. Kostin [6].

Theorem 7.2.

Assume that a dynamical system (X, SZ‘ ) possesses a compact global at-
tractor A for every A e A. Assume that the following conditions hold:
(a) there exists a compact K< X such that A>c K forall A € A;
MY A Ay, 2 e A™ and X, = 2, then S7L Xy = Sy, % for some
by > O
Then the family of attractors A s upper semicontinuous at the point ko,
i.e.

n(a™, AM0) = sup{dist(y, 40): ye ™) 50 72)

as A, — Ag.

Proof.

Assume that equation (7.2) does not hold. Then there exist a sequence k -
— A, and a sequence x, € A such that dist (2, A 0) > § for some 0 > 0. But
the sequence x,;, lies in the compact K . Therefore, Wlthout loss of generality we can
assume that x;,, — x, € K for some x; € K and x, ¢ A 0. Let us show that this re-
sult leads to contradiction. Let v, = {u,(t): —oo <t < oo} be a trajectory of the dy-
namical system (X, S;*) passing through the element x, (u,(0) = 2, ). Using the
standard diagonal process it is easy to find that there exist a subsequence {k(7)}
and a sequence of elements {,, } ¢ K such that

lim uk(n)(—mto) =u,, foral m=0,1,2,
N —» o0

where u, = 2. Here t; > 0 is a fixed number. Sequential application of condition
(b) gives us that
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i : }Lk n }‘0
Upy - = nlgnwuk(n)(—(m—l)to) = nlgnwszzo( )uk(n)(_mto) = Sy, v

forallm =1, 2, ... and [ =1, 2, ..., m.It follows that the function

A
S, uy, t>0,
u(t) =
A
tﬁtom w,, —tym <t<—ty(m—1), m=1,2, ..

gives a full trajectory y passing through the point x, . It is obvious that the trajectory
Y is bounded. Therefore (see Exercise 6.1), it wholly belongs to AMo , but that con-
tradicts the equation x, ¢ A0 . Theorem 7.2 is proved.

Exercise 7.8 Following L. V. Kapitansky and I. N. Kostin [6], for L — 4,
define the upper limit A (A,; A) of the attractors A* along A by
the equality

Ak A)= ) [U{Ak; LeA, 0<dist(h )< 5}} ,
0>0
where [ ] denotes the closure operation. Prove that if the hypothe-
ses of Theorem 7.2 hold, then A (KO, A) is a nonempty compact in-
variant set lying in the attractor Ato

Theorem 7.2 embraces only the upper semicontinuity of the family of attractors
{Ak} . In order to prove their continuity (in the Hausdorff metric defined by equation
(5.4)), additional conditions should be imposed on the family of dynamical systems
(X, S}). For example, the following assertion proved by A. V. Babin and M. I. Vishik
concerning the power estimate of the deviation of the attractors A* and Ao in the
Hausdorff metric holds.

Theorem 7.3.

Assume that a dynamical system (X, Sz‘) possesses a global attractor
AN for every A € A. Let the following conditions hold:
(a) there exists a bounded set By— X such that AN = By, for all LeA
and

n(S!By, A*) < Cye M,k eA, (7.3)
with constants Cy, >0 and N > 0 independent of A and with
h(B, A) = sup{dist(b, A): b € B} ;
(b) for any Ly, Ay € A and wu,, uy € B, the estimate

dist (™1 uy, S?ZUZ) < Cre*!(dist(uy, uy) + dist(Ay, Ay)) (7.4)
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holds, with constants C, and o independent of A.

Then there exists Cy > 0 such that

A A .
p(A™, A™2) < Cy[dist(Ay, Ao)]?,  q = UEOL'

Here p(-, -) is the Hausdorff metric defined by the formula
p(B, A) =max{h(B, A); h(A, B)}.
Proof.
By virtue of the symmetry of (7.5) it is sufficient to find out that
(A", a™2) < oy [dist(My, 2)]"
Equation (7.3) implies that for any € > 0
S*B,c @,(A%) forall LeA

(7.5)

(7.6)

(7.7

when ¢t > t"(g, Cy) = 171 (In1/¢ +InC,) . Here @, (A%) is an & -vicinity of the set

A’ Tt follows from equation (7.4) that

)\,1 7\12 . . )\’1 )\‘2
h(S, By, S,°By)= sup inf dist(S, x, S, y) <
reB, yeB,

A A
< sup dist(S, 'x, S,%x) < Ce%!dist(Ay, As).
v €B

(7.8)

Since A* < By, , we have Al = S?“A}‘ c SZKBO. Therefore, with ¢ > t"(¢, C,)), equa-

tion (7.7) gives us that
Ak < §* B, O, (4%).
For any x, 2 € X the estimate
dist(x, A%) < dist(x, 2) + dist(z, A*)
holds. Hence, we can find that
dist(x, A*) < dist(x, &) +¢
forallx € X and 2 € @S(Ak) . Consequently, equation (7.9) implies that
dist(z, A*) < dist(x, S/'By)+¢&, xeX
for t > t"(&, Cy). It means that

h(Akl, Akz) = sup dist(x, sz) <

x e AM

A A A
< sup dist(x, S,°By)+e < h(S,' By, S,?By)+¢ .
reA”l

Thus, equation (7.8) gives us that for any € > 0

(7.9)
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n(A™, A™2) < Cevt dist(A, hy)+e

for ¢t > t"(e, C,). By taking € = [dist (A, kz)]q, q= n%t and t=1"(g, Cy) =
=n! (In1/& +InC,) in this formula we find estimate (7.6). Theorem 7.3 is proved.

It should be noted that condition (7.3) in Theorem 7.3 is quite strong. It can be veri-
fied only for a definite class of systems possessing the Lyapunov function (see Theo-
rem 6.3).

In the theory of dynamical systems an important role is also played by the no-
tion of the Poisson stability. A trajectory y = {u(t): —oo<t< oo} of a dynamical
system (X, S,) is said to be Poisson stable if it belongs to its ® -limit set ®(y).
It is clear that stationary points and periodic trajectories of the system are Poisson
stable.

Exercise 7.4 Show that any Poisson stable trajectory is contained in the
global minimal attractor if the latter exists.

Exercise 7.6 A trajectory y is Poisson stable if and only if any point x
of this trajectory is recurrent, i.e. for any vicinity @ > x there exists
t >0 suchthat S,z € O.

The following exercise testifies to the fact that not only periodic (and stationary) tra-
jectories can be Poisson stable.

Exercise 7.6 Let C,(R) be a Banach space of continuous functions boun-
ded on the real axis. Let us consider a dynamical system (C,(R), S})
with the evolutionary operator defined by the formula

(S S) @) =f(z+t),  f(x) e C(R).
Show that the element f,(2) = sinm, x + sinwyx is recurrent for
any real ®; and ®, (in particular, when 0)1/ Mg is an irrational

number). Therewith the trajectory v = {f,(x+1t): —oo<t <o}
is Poisson stable.

In conclusion to this section we consider a theorem that is traditionally associated
with the stability theory. Sometimes this theorem enables us to significantly decrease
the dimension of the phase space, this fact being very important for the study of infi-
nite-dimensional systems.

Theorem 7.4. (reduction principle).

Assume that in a dissipative dynamical system (X, St) there exists
a positively inmvariant locally compact set M possessing the property of
uniform attraction, i.e. for any bounded set B — X the equation
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lim sup dist(S,y, M) = (7.10)

t—>o yeB

holds. Let A be a global attractor of the dynamical system (M, St). Then A
is also a global attractor of (X, S,).

Proof.
It is sufficient to verify that
lim sup dist(S, y, A)=0 (7.11D)
t—>0yeB

for any bounded set B — X . Assume that there exists a set B such that (7.11) does
not hold. Then there exist sequences {y, } € B and {t,: t, — oo} such that

dist(S; y,,, A) 2 (7.12)

for some & > 0. Let B, be a bounded absorbing set of (X, S, ). We choose a moment
ty such that

sup {dlst(S Y, A): y e M BO} . (7.13)
This choice is possible because A is a global attractor of (M, St) . Equation (7.10)
implies that

dist(Stnft0 Yy M)>0, 1, —>o0.

n

The dissipativity property of (X, St) gives us that S, _— Y,, € By when n is large
enough. Therefore, local compactness of the set M guarantees the existence of an
element 2 € M 1 B, and a subsequence {7, } such that

z= lim S,
k — o

‘Vl]c_ Ly ynk '
This implies that S; kyn - Szoz Therefore, equation (7.12) gives us that
dist(S;,#, A) 2 8. By virtue of the fact that 2 € M B, this contradicts equation

(7.13). Theorem 7.4 is proved.

Example 7.1

We consider a system of ordinary differential equations

y+yP—y=y2%  yl,_ =Y
(7.14)

Z+2(1+y2) =0, 2|,_, =2

t=0
It is obvious that for any initial condition (, 2,) problem (7.14) is uniquely
solvable over some interval (0, t*(yo, %)) . If we multiply the first equation by
y and the second equation by 2 and if we sum the results obtained, then we get
that
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d #
%&(y2+z2)+y4_y2+32:o, t e (0, £'(yp 20))-
This implies that the function V(y, z) = y2 +22 possesses the property
d

SV(y(e), 2(0)+2 V(1) 2(0) <2, te[0, £ (yg 20)-
Therefore,
V(y(0). 2(1) < V(g 2)e 20 +1, 1 e[0, (g 2))-

This implies that any solution to problem (7.14) can be extended to the whole
semiaxis R, and the dynamical system (]R{Z, S,) generated by equation (7.14)
is dissipative. Obviously, the set M = {(y, 0): y € R} is positively invariant.
Therewith the second equation in (7.14) implies that

1d . a2, 9
5—=244+24<0 t>0.
2.dt ’
Hence, Iz(t)l2 < z(z) e~2! . Thus, the set M exponentially attracts all the bound-

ed sets in R2. Consequently, Theorem 7.4 gives us that the global attractor of
the dynamical system (M, S,) is also the attractor of the system (IR{Z, S,). But
on the set M system of equations (7.14) is reduced to the differential equation

Y+yP-y=0, y|,_,=Yo- (7.15)

Thus, the global attractors of the dynamical systems generated by equations
(7.14) and (7.15) coincide. Therewith the study of dynamics on the plane is re-
duced to the investigation of the properties of the one-dimensional dynamical
system.

Exercise 7.7 Show that the global attractor A of the dynamical system
(IR2, S,) generated by equations (7.14) has the form

A={(y, 2): -1<y <1, 2=0}.

Figure the qualitative behaviour of the trajectories on the plane.

Exercise 7.8 Consider the system of ordinary differential equations

U-y2+y2(1+22)—y(1+2%)=0
(7.16)
ZHz(l+4yt) 29022 +y*—y2+3/2)=0.

Show that these equations generate a dissipative dynamical system
in IR2 . Verify that the set M = {(y, 2): 2=y2, y € R} isinvariant
and exponentially attracting. Using Theorem 7.4, prove that the glo-
bal attractor A of problem (7.16) has the form

A={(y, 2): 2=y% —-1<y<l1}.

Hint: Consider the variable w = 2 —y2 instead of the variable 2 .
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§ 8 Finite Dimensionality
of Invariant Sets

Finite dimensionality is an important property of the global attractor which can be
established in many situations interesting for applications. There are several ap-
proaches to the proof of this property. The simplest of them seems to be the one
based on Ladyzhenskaya’s theorem on the finite dimensionality of the invariant set.
However, it should be kept in mind that the estimates of dimension based on La-
dyzhenskaya’s theorem usually turn out to be too overstated. Stronger estimates can
be obtained on the basis of the approaches developed in the books by A. V. Babin
and M. . Vishik, and by R. Temam (see the references at the end of the chapter).

Let M be a compact set in a metric space X . Then its fractal dimension
is defined by

. _ —— Inn(M, g)
dimy Ml = T =T

where 7 (M, €) is the minimal number of closed balls of the radius & which cover
the set M .

Let us illustrate this definition with the following examples.

Example 81
Let M be a segment of the length [ . It is evident that

l l
L1 < < b
5¢ 1 <n(M, e¢) < 8—1—1
Therefore,
1 l-2¢ 1 l+2¢
ln§+ln 5 < Inn(M, g) < 1n§+ln 5 -

Hence, dim;M =1, i.e. the fractal dimension coincides with the value of the
standard geometric dimension.

Example 82

Let M be the Cantor set obtained from the segment [0, 1] by the sequentual
removal of the centre thirds. First we remove all the points between 1/3 and
2/3. Then the centre thirds (1/9, 2/9) and (7/9, 8/9) of the two remaining
segments [0, 1/3] and [2/3, 1] are deleted. After that the centre parts
(1/27, 2/27),(7/27, 8/27),(19/27, 20/27) and (25/27, 26/27) of the four
remaining segments [0, 1/9], [2/9, 1/3], [2/3, 7/9] and [8/9, 1], respec-
tively, are deleted. If we continue this process to infinity, we obtain the Cantor
set M . Let us calculate its fractal dimension. First of all it should be noted that
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o0
M= ﬂJk,
k=0

Jo=[0, 1], J,=[0, 1/3]U[2/3, 1],

J,=[0, 1/9]U[2/9, 1/3]U[2/3, 7/9] U[8/9, 1]

and so on. Each set J, can be considered as a union of 2k segments of the
length 37% . In particular, the cardinality of the covering of the set M with the
segment of the length 3=% equals to 2% . Therefore,
. . In2k In2
dmM = lim ————— = 5.
S kS In(2-3F) - In3

Thus, the fractal dimension of the Cantor set is not an integer (if a set possesses
this property, it is called fractal).

It should be noted that the fractal dimension is often referred to as the metric order
of a compact. This notion was first introduced by L. S. Pontryagin and L. G. Shnirel-
man in 1932. It can be shown that any compact set with the finite fractal dimension
is homeomorphic to a subset of the space R% when d > 0 is large enough.

To obtain the estimates of the fractal dimension the following simple assertion
is useful.

Lemma 8.1.

The following equality holds:

. — InN(M, ¢)
dim,M = Tim ——2 )
T TS0 In(1/e)

where N(M, €) is the cardinality of the minimal covering of the com-

pact M with closed sets diameter of which does not exceed 2¢ (the dia-
meter of a set X is defined by the value d(X)= sup{lx—yl: 2, y € X}).

Proof.

It is evident that N (M, €) < n (M, ¢). Since any set of the diameter d lies
in a ball of the radius d , we have that 7 (M, 2¢) < N(M, €). These two inequa-
lities provide us with the assertion of the lemma.

All the sets are expected to be compact in Exercises 8.1-8.4 given below.
Exercise 81 Provethatif M} ¢ M, , then dimgM; < dimgM,, .
Exercise 82 Verify that dim,(M; UM,) < max{dim,M;; dimgM,}.

Exercise 88 Assume that M;x M, is a direct product of two sets. Then

dimy (My x My) < dimgM; + din, M, .
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Exercise 84 Let g be a Lipschitzian mapping of one metric space into
another. Then dim,g(M) < dimgM .

The notion of the dimension by Hausdorff is frequently used in the theory of dynami-
cal systems along with the fractal dimension. This notion can be defined as follows.
Let M be a compact set in X . For positive d and € we introduce the value

w(M, d, &)= inf (1),
where the infimum is taken over all the coverings of the set M with the balls of the

radius 7; < €. It is evident that (M, d, &) is a monotone function with respect
to €. Therefore, there exists

w(M, d)= lim pu(M, d, &)= sup u(M, d, €) .
£—>0 £>0

The Hausdorff dimension of the set M is defined by the value
dimyM = inf{d: n(M, d)=0}.

Exercise 85 Show that the Hausdorff dimension does not exceed the frac-
tal one.

Exercise 86 Show that the fractal dimension coincides with the Hausdorff
one in Example 8.1, the same is true for Example 8.2.

Exercise 87 Assume that M ={a,}” | < R, where a, monotonically
tends to zero. Prove that dimyM =0 (Hint: w(M, d, €) <

a —dan
<a,,.;tn2 when a,,.; <€<a,).

Exercise 88 Let M ={1/n};_; c R.Show that dim;M=1/2.

L when — 1 <¢c

(n+1)e (n+1)(n+2) =

(Hint: n<n(M, g)<nt+l+

<m)

Exercise 8.9 Leth{L} < R . Prove that dim;M = 1.
Inm
n=2
Exercise 810 Find the fractal and Hausdorff dimensions of the global mini-
mal attractor of the dynamical system in R generated by the diffe-
rential equation
. 1
y+ysin—=0.
|yl
The facts presented in Exercises 8.7-8.9 show that the notions of the fractal and
Hausdorff dimensions do not coincide. The result of Exercise 8.5 enables us to re-
strict ourselves to the estimates of the fractal dimension when proving the finite di-
mensionality of a set.
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The main assertion of this section is the following variant of Ladyzhenskaya’s
theorem. It will be used below in the proof of the finite dimensionality of global at-
tractors of a number of infinite-dimensional systems generated by partial differential
equations.

Theorem 8.1.

Assume that M is a compact set in a Hilbert space H. Let V be a contin-
uous mapping in H such that V(M) > M. Assume that there exists a finite-
dimensional projector P in the space H such that

|P(Voy =Vuy)| < L|oy—vg|, vy, vy €M, (8.1)

|(1=P)(Vvy=Vuy)| < 5||7)1—7)2||, v, Vg €M, (8.2)

where 0 < 1. We also assume that | > 1—3. Then the compact M possesses
a finite fractal dimension and

. . 91 2 771
< . = . =
dimeM < dimP lnl 5 [lnl 6} . (8.3)

We remind that a projector in a space H is defined as a bounded operator P with the
property P2 =P. A projector P is said to be finite-dimensional if the image PH is
a finite-dimensional subspace. The dimension of a projector P is defined as a num-
ber dimP = dimPH .

The following lemmata are used in the proof of Theorem 8.1.

Lemma 8.2.
Let By, be a ball of the radius R in RY. Then

N(Bp. €) < n(Bpg, €) < (1 +:2-§)d. (8.4)

Proof.
Estimate (8.4) is self-evident when € > R. Assume that € < R. Let
{&, ..., §;} be a maximal set in By with the property |§Z —§j| >€e,1#].

By virtue of its maximality for every x € Bp there exists il such that
|z —&;| < €. Hence, n(Bp, €) < 1.Itis clear that
Ba/2(éz’) < BR+8/2’ Bs/z(‘:z‘) n (Bs/z(éj)) =9, L#].

Here B,.(§) is a ball of the radius 7 centred at & . Therefore,
l

! VOI(BS/Z) = Z Vol (BS/Z (‘:z)) < Vol (BR + 8/2) :
=1
This implies the assertion of the lemma.

Exercise 811 Show that

RY
n(Bp, 8)2(5) , dimBp=d.
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Lemma 8.3.

Let F be a closed subset in H such that equations (8.1) and (8.2) hold
Sor all its elements. Then for any q >0 and € >0 the following esti-
mate holds:

NVF e(a+8) < (1 ‘”j N(F ), 8.5)

where n = dimP 1s the dimension of the projector P.

Proof.

Let {9;} be a minimal covering of the set & with its closed subsets the di-
ameter of which does not exceed 2 ¢ . Equation (8.1) implies that in PH there
exist balls B; with radius 2 ZS such that PV¥, < B;. By virtue of Lemma 8.1
there exists a covering {B }j ¢, ofthe set P V@» Wlth the balls of the diameter
2qe,where N; < (1+(41 / q))"™ . Therefore, the collection

{GU:BU+(1—P)V%; i=1,2, ..., N(% ¢), j=1,2, ..., NZ}

is a covering of the set V % . Here the sum of two sets A and B is defined by the
equality
A+B={a+b: aeA, beB}.
It is evident that
diam G, ; < diamB,; ; + diam(1-P) V.
Equation (8.2) implies that diam(1-P)V% < 2d¢. Therefore, diamG, ;S
< 2(g+9)¢e. Hence, estimate (8.5) is valid. Lemma 8.3 is proved.

Let us return to the proof of Theorem 8.1. Since M < VM , Lemma 8.3 gives us

that
41\
N(M, 8(q+5)) <SNM, €)- 1+E .
It follows that
N(M, (q+8)") < N(M, 1)- (1+‘;l) , o m=1,2 ...

We choose g and m = m (&) such that

d+qg<1, S+q)"
where 0 < € < 1. Then

nm(e)
NM, &) < N(M, (5+q)™) < N(M, 1) ( ‘;l) .
Consequently,

dim M = T SV ) n(1+40). 22
e—>0 In(l/g)
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Obviously, the choice of m (€) can be made to fulfil the condition
Ing
(&) In(g +9)
Thus,

dim, M < nln(l + ﬂ)[lnLr.
= q qg+0

By taking g = 1/2(1—3) we obtain estimate (8.3). Theorem 8.1 is proved.

Exercise 8 12 Assume that the hypotheses of Theorem 8.1 hold and
I < 1-0. Prove that dim;M = 0.

Of course, in the proof of Theorem 8.1 a principal role is played by equations (8.1)
and (8.2). Roughly speaking, they mean that the mapping V squeezes sets along the
space (1—P)H while it does not stretch them too much along PH . Negative invari-
ance of M gives usthat M « VAM forall k = 1, 2, ... . Therefore, the set M should
be initially squeezed. This property is expressed by the assertion of its finite dimen-
sionality. As to positively invariant sets, their finite dimensionality is not guaranteed
by conditions (8.1) and (8.2). However, as the next theorem states, they are attract-
ed to finite-dimensional compacts at an exponential velocity.

Theorem 8.2.

Let V be a continuous mapping defined on a compact set M in a Hil-
bert space H such that VM c M. Assume that there exists a finite-dimensi-
onal projector P such that equations (8.1) and (8.2) hold with 0 < 0 < 1/2
and |+0 2 1. Then for any 0 € (3, 1) there exists a positively invariant
closed set Ay = M such that

sup {dist(VFy, Ag): y e M} <0F, k=1,2, .. (8.6)

and
41 41
n(1+ 2L (1+29)
n 0-5 In[1+ g
l b 1 )
Mg g
where q is an arbitrary number from the interval (0, 1/2 =9).

dimfAe < dimP - max (8.7)

Proof.

The pair (M, Vk) is a discrete dynamical system. Since M is compact, Theo-
rem 5.1 gives us that there exists a global attractor M = ﬂ k>0 VEM with the pro-
perties VM, = M, and

h(VFM, M) = sup{dist(V*y, M,): y e M} —>0. (8.8)
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We construct a set Ae as an extension of M. Let E be a maximal set in V/M pos-
sessing the property dist(a, b) > 0/ fora, b e E , & # b. The existence of such
a set follows from the compactness of VIM . Ttis 0bV1ous that

L;= CardE; = N( 191)<N(V1M 19])
Lemma 8.3 with % = M, q=9—5,and8:(1/8)ej_ gives us that
j lj) ( 41) (J’—l lj—l)
N(VM,SG < 1+e_8 N\V M,SE)
with O > 0 . Hereinafter 7 = dimP . Therefore,
L. = CardE, < (1+ 4! ) N(M l) 0>5 (8.9)
'] j = =5 > 3) : :
Let us prove that the set
AezMOU{U{V’fE.: j=1,2,..., k=0,1,2,..}} (8.10)

possesses the properties required. It is evident that VAe c AG Since VkE C
c VETIM | by virtue of (8.8) all the limit points of the set

U{VkEj: j=1,2, ..., k=0,1,2, ...}

lie in M. Thus, A is a closed subset in M . The evident inequality

h(VEM, Ag) < h(VFM, E,) < 6F (8.11)
implies (8.6). Here and below % (X, Y) = sup{dist(x, Y): o € X}. Let us prove
(8.7). It is clear that

AG:VAQU{U{EJ-: Jj=1,2, ... }}. (8.12)
Let {FZ} be a minimal covering of the set Ae with the closed sets the diameter
of which is not greater than 2 ¢ . By virtue of Lemma 8.3 there exists a covering {G, }

of the set VA with closed subsets of the diameter 2&(q + J) . The cardinality of this
covering can be estimated as follows

N(e, q, 8) = N(VAg, £(q+9)) < (1 +4é)nN(Ae, £). (8.13)

Using the covering {Gi}’ we can construct a covering of the same cardinality of the
set VA, with the balls B(x,, 2&(q +9)) of the radius 2&(q +0) centered at the
points x;, =1, 2, N(e, g, 0). We increase the radius of every ball up to the
value 2e(qg+8+7). The parameter Y > 0 will be chosen below. Thus, we consider
the covering

{B(x;, 26(q+6+7)), i=1,2, ..., N(&. q. 8)}

of the set VA . It is evident that every point x € VAg belongs to this covering to-
gether with the ball B(x, 2y¢).If j > 2, the inequalities
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h(Ej, VAg) < h (VI M, VAg) < h(V'M, VEJ-_I)
hold. By virtue of equation (8.11) with the help of (8.1) and (8.2) we have that
n(V/M, VE; ) < (1+8)h(V/"'M, E; ) < (1+8)677".
Therefore, (£, VAg) < 2y¢, provided 2y& < (1 +9) 0771 ie. if
1+

2ye

lnl

0

Here [z] is an integer part of the number z . Consequently,

N(e, q, 9)
VAQU{ UEJ}C ) Bl 2e(a+8+7y)).

i Zj, i=1

In
j'2j052+

Therefore, equation (8.12) gives us that
Jo—1
N(Ay, €E) < N(e, q, &)+ Z CardE,
j=0

where & = 2(q + 0 +7). Using (8.9) and (8.13) we find that
Jo—1 .
)50ty
N(Ag, €&) < NN(Ay, s)+N(M, 3 Z 1+9_8)
Jj=
. (AN
for O > 0. Here and further n= {1+ 7)) Since

ln%
jOS—lJrC(Z, 5,7, 0),
In%
0
it is easy to find that
iy —1
S e p (1) o am (e )
0-o/ ~Plg n(1/0) 0-0/

Jj=0

where the constant 3 > 0 does not depend on & (its value is unessential further).

Therefore,
N(Ag, €§) < MN(Ay, &) +Pe*.
If we take € = ém_l , then after iterations we get
N(Ag. §™) < MN(Ag, £ 1)+ BE(-DO <

m—1

<N (Ag 1)+ BN (%)
=0
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Let us fix 0 € (0, 1/2), 6 € (5, 1) and g € (0, 1/2 —9) and choose ¥ > 0 such
that £ =2(¢+d8+7y) < 1 and £*n # 1. Then summarizing the geometric progres-
sion we obtain

am
< nm <

N(Ag, &™) < M N(Ag, 1)+ B2g—— s

< nm(N(Ae, 1)+ |§—°‘m . (8.14)

—O(B ) tr
ee—nl’ e
Let € > 0 be small enough and

=1+ [ )

where, as mentioned above, [z] is an integer part of the number 2 . Since € < ém(g) ,
equation (8.14) gives us that

N(Ag, &) < N(Ag, &™) < 0‘1(1 +%)nm(s)+ (éa)M(S),

where a; and a, are positive numbers which do not depend on ¢ . Therefore,

__ InN(A,, s)
dimeAdg = lim ————— <
e—>0 mé

(&)

—— m . 1 4eonm ( 1 )m
< lim lim —<a,(1+= +a,| — .
s—)Olnl m—)oom{ il q) 2 éo‘
&
Simple calculations give us that

dimgAy < Ll-ln {max((l +%3) , éa)}.

In

i

This easily implies estimate (8.7). Thus, Theorem 8.2 is proved.

Exercise 818 Show that for 8 < 0 < 1/2 formula (8.7) for the dimension
of the set Ay can be rewritten in the form

1n(1 + 94_%)

1
In55

dim;Ag = dim P- (8.15)

If the hypotheses of Theorem 8.2 hold, then the discrete dynamical system (M, Vk)
possesses a finite-dimensional global attractor M, . This attractor uniformly attracts
all the trajectories of the system. Unfortunately, the speed of its convergence to the
attractor cannot be estimated in general. This speed can appear to be small. However,
Theorem 8.2 implies that the global attractor is contained in a finite-dimensional po-
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sitively invariant set possessing the property of uniform exponential attraction. From
the applied point of view the most interesting corollary of this fact is that the dyna-
mics of a system becomes finite-dimensional exponentially fast independent of
the speed of convergence of the trajectories to the global attractor. Moreover, the re-
duction principle (see Theorem 7.4) is applicable in this case. Thus, finite-dimen-
sional invariant exponentially attracting sets can be used to describe the qualitative
behaviour of infinite-dimensional systems. These sets are frequently referred to as
inertial sets, or fractal exponential attractors. In some cases they turn out
to be surfaces in the phase space. In contrast with the global attractor, the inertial
set of a dynamical system can not be uniquely determined. The construction in the
proof of Theorem 8.2 shows it.

§ 9 Existence and Properties of Attractors
of a Class of Infinite-Dimensional
Dissipative Systems

The considerations given in the previous sections are mainly of general character.
They are related to a dissipative dynamical system of the generic structure. There-
with, we inevitably make additional assumptions on the behaviour of trajectories of
these systems (e.g., the asymptotic compactness, the existence of a Lyapunov func-
tion, the squeezing property along a subspace, etc.). Thereby it is natural to ask
what properties of the original objects of a particular dynamical system guarantee
the fulfilment of the assumptions mentioned above. In this section we discuss this
question in terms of the dynamical system generated by a differential equation of
the form

d
d—ty+Ay=B(y), Yl,_o=Yo 9.D

in a separable Hilbert space 3, where A is a linear operator and B is a nonlinear
mapping which is coordinated with A in some sense. Our main goal is to demon-
strate the generic line of arguments as well as to describe those properties of the
operators A and B which provide the applicability of general theorems proved in
the previous sections. The main attention is paid to the questions of existence and fi-
nite dimensionality of a global attractor. Nowadays the presented line of arguments
(or a modification of it) is one of the main components of a great number of works
on global attractors.
It is assumed below that the following conditions are fulfilled.
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(A) There exists a strongly continuous semigroup Sz of continuous map-
pings in J6 such that y(¢) = S, v, is a solution to problem (9.1) in the
sense that the following identity holds:

t
Siyy =Ty +G(t ) = Tty0+J-TZ_TB(STyO)dr, (9.2)
0
where T, = exp(—At) (see condition (B) below). The semigroup S, is
dissipative, i.e. there exists B > 0 such that for any B from the collec-
tion %(%) of all bounded subsets of the space J6 the estimate ||St y” <
< R holds when y € B and t > t,(B). We also assume that the set
v*(B)= ;s oS B isbounded forany B € B(F).

(B) The linear closed operator A generates a semigroup T, = exp(—A t)
which admits the estimate |7;| < Lyexp(®¢) (L; and © are some
constants). There exists a sequence of finite-dimensional projectors
{Pn} which strongly converges to the identity operator such that

1) A commutes with P, ,i.e. B, A c AP, forany n;
2) there exists 7, such that |7; (1- £, )| < Lyexp(—¢t) for n > n,
where €, Ly > 0;
7, =[A1(1-B,)| >0 as n—>o0.
(C)Forany R’ > 0 the nonlinear operator B (u) possesses the properties:
1)||B(u1) —B(u2)|| < Cl(R’)|u1—u2| if ||uZ|| <R, 1=1, 2;
2) for n 2 n, |uZ|| <R, 2=1, 2, and for some o >0 the fol-

lowing equations hold:

”AG(l_Pn)B(%)“ < Cy(R),

[4°(1=B,) (B(uy) = B(uy))| < C5(R)

1=

(the existence of the operator Ac(l—Eh) follows from (B2)).

It should be noted that although conditions (A)—(C) seem a little too lengthy, they are
valid for a class of problems of the theory of nonlinear oscillations as well as for
a number of systems generated by parabolic partial differential equations.

The following assertion should be mainly interpreted as a principal result which
testifies to the fact that the asymptotic behaviour of the system is determined by
a finite set of parameters.

Theorem 9.1.

If conditions (A)-(C) are fulfilled, then the semigroup S, possesses a
compact global attractor A. The attractor has a finite fractal dimension
which can be estimated as follows:

dimy /b = ay (1 +I|B,|L, Ly)(1 +D(R)e™!) dimPB, , (9.3)
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where D(R) = o +L,C|(R) and n > n, is determined from the condition
ro -

IA

ayD(R)[L{LyC5(R)] - exp{-a3D(R)(1+InLy)e~1}. (9.4)

Here aq, Gy, and ag are some absolute constants.

When proving the theorem, we mainly rely on decomposition (9.2) and the lemmata
below.
Lemma 9.1.

Let K, be a set of elements which for some t 2 0 have the form v = wuy+
+(1-B,)G(t, u), where u, € B, 6, ||u0” < ¢y R with the constant c de-
termined by the condition ”Pn” <c¢y for n=1, 2, ... Here the value
G(t, u) is the same as in (9.2) with the element u € Jb being such that
”Stu” <R for all t>0. Then the set K, is precompact in Jb for
n 2z ng.

Proof.
Properties (B2) and (C2)imply that

]
J4°(1-B)G (¢, u)] < LzJe_g(t_T)HAG(I—BL)B(STu)Hdr < Bl
0

when ||Sru|| < R for T > 0. Therefore, the set
{v: v=(1-P)G(t, u), t >0}, (9.5)
where |S,u| < R for all ¢ 2 0, is bounded in the space D(A® N (1-F,) )

with the norm ”A(’ . || . The symbol ] denotes the restriction of an operator on
a subspace. However, property (B3) implies that

lim |B,A"Y(1-E,) - A"Y(1-E,)| = 0.
m —> o

n

Therefore, the operator A~'N (1-P, )6 is compact. Hence, D(A9N1-E, ) 6)
is compactly embedded into (I—BZ) F6 . It means that the set (9.5) is precom-
pactin (1-F, ) J. This implies the precompactness of K, .

Lemma 9.2.

There exists a compact set K in the space H such that
h(s, B, K) = sup{dist(S,y, K): y e B} < Lyre “' ™10 (9.6)
Jor any bounded set B < J6 and t > t, = ty(B).

Proof.

Let w € B, where B is a bounded set in 3. Then ||Stu|| SR fort>t, =
= t,(B). By virtue of (9.2) we have that
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. Su=(1=B)T,_, S, utW,(t, ty, u),

% where

¢ W (t, to,u)anStunL(l—Pn)G(t—to,Stou).
1 It is evident that W, (¢, ¢, u) € K,, for t > t,. Therefore,

dist(S,, K,) < [(1=B)T,_, S, ] < LyRe “( 1)
This implies (9.6) with K = [K,,], where [K, ] is the closure in 6 of the set
K,, described in Lemma 9.1.
Exercise 9.1 Show that K = [K,, ] lies in the set
K, &= {v,+vy: v,€ B, b, vye (1-B,) T,

[oi] < €1

]A%2H <0y}, (9.7

where C; and C, are some constants.

In particular, Lemma 9.2 means that the system (7, Sz) is asymptotically compact.
Therefore, we can use Theorem 5.1 (see also Exercise 5.3) to guarantee the exis-
tence of the global attractor / lyingin K = [K,,].

Let us use Theorem 8.1 to prove the finite dimensionality of the attractor. Veri-

fication of the hypotheses of the theorem is based on the following assertion.

Lemma 9.3.
Let ||Stul|| <R, t20, i=1, 2. Then

|Suy =S ug| < Lyexp(D(R)t)|uy —uy (9.8)
and
- L,Cy(R)
J0-B) S =] < Loenst (10 A )y 0

Jor m 2ny and a=¢e+D(R) .

Proof.
Decomposition (9.2) and condition (C1) imply that
t
IS,y =S ug| < Ly |uy —ug| +Cy (R) '[ e~ S uy =S ug|dr | e
0

With the help of Gronwall’s lemma we obtain (9.8).
To prove (9.9) it should be kept in mind that decomposition (9.2) and equa-
tions (B2) and (C2) imply that for n 2 n,
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|(1=5,) (S uy =S, ug)| < Loe™8| Jug —ug| +

‘
+CorgC3(R)Jesr“STul—STu2|’ drt |. (9.10)
0

Here the inequality HA‘G(I—Pn)” <C, 7”2 is used . If we put (9.8) in the right-

hand side of formula (9.10), we obtain estimate (9.9).

The following simple argument completes the proof of Theorem 9.1. Let us fix
an arbitrary number 0 < 8 < 1 and choose ty and 7 such that

&t 0 o CS(R) ot
Loe OZQ and COTnLlD(R) e 0<1
Then the hypotheses of Theorem 8.1 with M = A4, V=S, , P=F, ,and | =

0
= L|B,| exp(D(R)t() hold for the attractor /. Hence, it is finite-dimensional with
estimate (9.3) holding for its fractal dimension. Theorem 9.1 is proved.

Exercise 9.2 Prove that the global attractor /4 of problem (9.1) is stable
(Himt: verify that the hypotheses of Theorem 7.1 hold).

Properties (A)-(C) also enable us to prove that the system generated by equation
(9.1) possesses an inertial set. A compact set Aexp in the phase space J6 is said to
be an imertial set (or a fractal exponential attractor) if it is positively invariant
(S;Acxp © Aeyp) » its fractal dimension is finite (dimg A, < o0) and it possesses
the property

1(S, By Agygy ) = sup{dist(S, y, Agy): v € By < Cge "0 (o1

exp
for any bounded set B < J6 and for ¢ > ¢, > t (B), where Cp and y are positive
numbers. (The importance of this notion for the theory of infinite-dimensional dy-
namical systems has been discussed at the end of Section 8).

Lemma 9.4.

Assume that properties (A)-(C) hold. Then the dynamical system
(76, St) generated by equation (9.1) possesses the following properties:
1) there exist a compact positively mvariant set K and constants
C, v >0 such that
sup{dist (S, y, K): y e B} < Cce /'8 (9.12)

Jor any bounded set B in I and fort >ty >0;
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2) there exist a vicinity © of the compact K and numbers A and

a oy > 0 such that
p
ot
. | y1=Sug) < Ay eV |y - (9.13)
1 provided that for all t 2 0 the semitrajectories S,y,; lie in the clo-

sure [O] of the set O;
3) there exist a sequence of finite-dimensional projectors {Pn} n the
space Jb, constants Ay, O, B >0, and a sequence of positive

numbers {p, } tending to zero as n — oo such that
t
[(1=B) (S 5y =S, us)] < Ay e Pr(1+p,e”2) |y~ (9.14)
Jorany yq, Yo € K.

Proof.

Let K be a compact set from Lemma 9.2. Let

K =yH(K) = U S, K.
t>0

It is clear that S,K” = K~ and equation (9.12) holds for K = K~ with C = L,R
and y = €. Let us prove that K" is a compact set. Let { } be a sequence of
elements of K" =y*(K). Then z, = =5, Y, for some t, >0 and y, € K.
If there exists an infinitely increasing subsequence {t } then equation (9.6)
gives us that
lim dist (St y”’%’ K) =0.

k — o

Therefore, the sequence {z,} possesses a limit point in K < K*. If {t,} is
a bounded sequence, then by virtue of the compactness of X there exist a num-
ber t; >0, an element y e K and a sequence {nk} such that Yn, =Y and
ty,— t. Therewith
— < —
“Stnkynk SZOyH = ”Stny Stoy” + HSt,,kank ”k H

The first term in the right-hand side of this inequality evidently tends to zero.
As for the second term, our argument is the same as in the proof of formula
(9.8). We use the boundedness of the set y+([_{ ) (see property (A)) and proper-
ties (B) and (C2) to obtain the estimate

C _
1S,01-S,us] < Ce E Jyy—us|,  wy, ys € K. (9.15)

It follows that
lim ‘Stnk Yn,~ Stnky” =0.

k — o
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Therefore,
Stnkynk - Stoy €K = VHK).

The closedness of the set X~ can be established with the help of similar argu-
ments. Thus, property (9.12) is proved for K = K*. Now we suppose that
K= Sto K", where to is chosen such that |y| < R for all ¥ € K. It is obvious
that K is a compact positively invariant set. As it is proved above, it is easy to
find the estimate of form (9.15) for all ¥, and y4 from an arbitrary bounded set
B . Here an important role is played by the boundedness of the set y*(B) (see
property (A)). Therefore, for any B € JB(J6) there exists a constant C, =
=C(B, K, t;) > 0 such that

“Stoyl_szoyzw < Couyl—yzu, Yy, Yy, € BUK .
Hence, for y € B we have that
dist(S,y, K) = dist(StOSt_zoy, StOK*) < Codist(St_zoy, K")

for ¢ > t;,. This implies estimate (9.12) with the constant C depending on K
and B . However, if we change the moment ¢z in equation (9.12), we can pre-
sume that, for example, C' = 1. Therewith ¥ = €. Thus, the first assertion of the
lemma is proved.

Since the set K lies in the ball of dissipativity { € J#: |z]| <R}, estimates
(9.13) and (9.14) follow from Lemma 9.3. Moreover,

B=v=¢, p,=CyrSCy(R)-DR) . (9.16)

Thus, Lemma 9.4 is proved.

Lemma 9.4 along with the theorem given below enables us to verify the existence of
an inertial set for the dynamical system generated by equation (9.1).

Theorem 9.2.

Let the phase space F of a dynamical system (¥, S,) be a Hilbert
space. Assume that in F6 there exists a compact positively invariant set K
possessing properties (9.12)—(9.14). Then for any Vv > In2 there exists an

inertial set Agxp of the dynamical system (%, S,) such that

Y+a
n(S,B, A,) < C(B,Vv)-exp {—y (1 —ml&_l) ( —zB)} 9.17)

Jor any bounded set B and t > ty. Here, as above, h(X,Y) = sup{dist(x, Y):
x € X}. Moreover,

dimg A7, < Co-(1+In|P,|) dimP,

Ve < , 9.18)
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where the number n is determined from the condition
oL
2

p, < (4A4)P -exp {—v%%} 9.19)

and constant C, does not depend on v and n.

The proof of the theorem is based on the following preliminary assertions.

Lemma 9.5.

Let (K, Sz) be a dynamical system, its phase space being a compact in
a Hilbert space Jb. Assume that for all (yl, y2) e K equations (9.13)
and (9.14) are valid. Then for any v > In2 there exists an inertial set
A of the system (K, S ,) such that

exp

h(S K, Al )= sup{dist(S v, cyeKp<C, eVt (9.20)

exp ) exp) ’

Moreover, estimate (9.18) holds for the value d]mfAexp

Proof.
We use Theorem 8.2 with M =K, V= S ,and 6 = —e‘V where £y and
71 are chosen to fulfil

A, e_BtO:gz %16_\} and p, 20 <1

In this case conditions (8.1) and (8.2) are valid for V = St with & = = e“’ and
l= ||P ||A e%1'0 . Therefore, there exists a bounded closed positively invariant
set Ag with 6 < 0 < 1/2 such that (see (8.6) and (8.15))

sup{dist(V"y, Ag): yeK} <0™, m=1, 2, .. 9.21)
and
dimy A, < 1n(1+ 4l ) nl | dimp (9.22)
S0 0-0/| 20 "

Assume that O = 20 = e~V and consider the set

Anp = [J18 400 020 <10}

exp —

Here v = lnl

0

> In2 . It is easy to see that

dmfAeXp 1+ d]Hlf AeXp
Therefore, equations (9.20) and (9.18) follow from (9.21) and (9.20) after some
simple calculations.

Lemma 9.6.

Assume that in the phase space Fb of a dynamical system (F, St)
there exist compact sets K and K, such that (a) K, c K; (b) properties



Existence and Properties of Attractors ...

(9.12) and (9.13) are valid for K; and (c) the set K, possesses the pro-
perty

n(S,K, Ky) < Ce 10, (9.23)

where h(X,Y)=sup{dist(x,Y): v e X}. Then for any bounded set Bc J
and t 2 tg the following inequality holds

Yo

Proof.

By virtue of (9.12) every bounded set B reaches the vicinity @ in finite
time and stays in it. Therefore, it is sufficient to prove the lemma for a set
B € B(J) suchthat S,Bc[0O] for t >0, where [ @] denotes the closure of @.
Let ky € Ky and y € B. Evidently,

||Sty —k0|| < ”S%tS(l—%)t Y =Sy, k” + ”Suz k _kOH
forany 0 < » < 1 and k¥ € K. With the help of (9.13) we have that

(Xl%t|

|Siy —ko| < Aje |S(1_%)ty—lc||+||Smlc—k0||.

Therefore, forany 0 < % < 1 and k¥ € K we have that

. t .
dist(S; y, Ko) < Aye Sy y — K|+ dist(S,,, ko, Kp) <

< A Sy K|+ (S, K K.

If we take an infimum over k¥ € K and a supremum over ¥y € B, we find that
o %t
h(StB, KO) < Ae 1 h(S(lfx)tB, K)—i—h(SmK, KO)
forall 0 < » < 1.Hence, equations (9.12) and (9.23) give us that
h(S,B, Ky) < Cge 1" 1)y ¢ o770l

for t > tp. If we choose % =7y (y+7,+ 0&1)71, we obtain (9.24). Lemma 9.6
is proved.

If we now use Lemma 9.6 with K, = A‘éxp and estimate (9.20), we get equation

(9.17). This completes the proof of Theorem 9.2.

Thus, by virtue of Lemma 9.4 and Theorem 9.2 the dynamical system (J, St) gene-
rated by equation (9.1) possesses an inertial set A‘éxp for which equations (9.17)-
(9.19) hold with relations (9.16).

It should be noted that a slightly different approach to the construction of iner-
tial sets is developed in the book by A. Eden, C. Foias, B. Nicolaenko, and R. Temam
(see the list of references). This book contains further developments and applica-
tions of the theory of inertial sets.
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To conclude this section, we outline the results on the behaviour of the projec-
tion onto the finite-dimensional subspace P, F6 of the trajectories of the system
(%6, S,) generated by equation (9.1).

Assume that an element y, belongs to the global attractor /% of a dynamical
system (6, S,). Lemma 6.1 implies that there exists a trajectory v = {y(t), t € R}
lying in A wholly such that y(0) = Yo - Therewith the following assertion is valid.

Lemma 9.7.

Assume that properties (A)-(C) are fulfilled and let y, e Ho. Then the
Jollowing equation holds:
0

(1=B,)yo = J (1-B)T_By(t)dt, n=n,, (9.25)

—00
where {y (1)} is a trajectory passing through y,,, the number n, can be
Jound from B2) and the integral in (9.25) converges in the norm of the

space Fb.
Proof.
Since y, = S,y (—t), equation (9.2) gives us that
0
(1=B)wy = (1=B)| T+ [(1=B)T B (e | 026

St
A trajectory in the attractor possesses the property |y (¢)| < R, t € (—o0, o).
Therefore, property (B2) implies that

|(1=B,) T,y (=t)] < Ly-Re78' and |(1-B,)T_ B(y(7))| < LyCre ¢l .

These estimates enable us to pass to the limit in (9.26) as t - —oo . Thereupon
we obtain (9.25).

The following assertion is valid under the hypotheses of Theorem 9.1.

Theorem 9.3.

There exists Ny > n such that for all N = N, the following assertions
are valid:
1) for any two trajectories yl(t) and yz(t) lying in the attractor of the
system gemerated by equation (9.1) the equality Pyy,(t)=Fyy,(t)
Jorall t € R implies that y,(t) = y5(1);
2) for any two solutions u(t) and u,(t) of the system (9.1) the equa-
tion
lim Py (uy(t) —ug(t)) =0 (9.27)
t — —o0

implies that |u(t) —uy (1) > 0 as t - 0.
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We can also obtain an 'uipper estimate of the number N from the inequali-
ty vy, < ag&(LyCy(R)) .

Proof.
Equation (9.25) implies that for any trajectory yz(t) lying in the attractor
of system (9.1) the equation

t
(-Ru)= [ 1=POT,_ B (m)dr, =12,
—0o0
holds. Therefore, if Py y,(t) = Py y5(t), then properties (B2), (B3), and (C2) give us
that
t

[91(t) —y2(1)] < CoriyLaCy(R) J e =Dy (1) —yy (D) dr.

—o0
It follows that the estimate
ty
|91(t) = ()] < Ayexp{=et+Ay(t—1)} '[ e yy(t) —yy(1)]de
—o0

holds for ¢ > ¢, where Ay = CyryLyCy(R). If we tend ¢, — —oo, we obtain the
first assertion, provided Ay < €.
Now let us prove the second assertion of the theorem. Let

oy (2) = | Py (g () =y (1))] -
Then
Jer (1) =g ()] < oy (2) + [ (1=Fy) (ug (1) —ug(2))] -

Therefore, equation (9.10) for the function y (¢) = ||u1 - u2|| exp (€t) gives us that

t
V(D) < aeld) e+ L (0) ~u(0)] + Ay [ w(m)ar.
0
This and Gronwall’s lemma imply that
Jur(t) —ug ()| < o4y (1) + Lo exp(=(& —Ay) 1) |11 (0) —uy(0)] +

l

+ANJ oy (T) exp(—(€ —Ay) (1~ 1)) dT.
0
Therefore, if A); < €, then equation (9.27) gives us that ||u1(t) — Uy (t)” — 0. Thus,
the second assertion of Theorem 9.3 is proved.
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Theorem 9.3 can be presented in another form. Let {ek k=1, ..., dN} be a basis
in the space Py J6. Let us define linear functionals l;(u) = (u, e;) on F6, j=
=1, ..., dy. Theorem 9.3 implies that the asymptotic behaviour of trajectories of
the system (%, St) is uniquely determined by its values on the functionals lj.
Therefore, it is natural that the family of functionals {lj} is said to be the determin-
ing collection. At present some general approaches have been worked out which
enable us to define whether a particular set of functionals is determining. Chapter 5
is devoted to the exposition of these approaches. It should be noted that for the first
time Theorem 9.3 was proved for the two-dimensional Navier-Stokes system by
C. Foias and D. Prodi (the second assertion) and by O. A. Ladyzhenskaya (the first
assertion).

Concluding the chapter, we would like to note that the list of references given
below does not claim to be full. It contains only references to some monographs and
reviews devoted to the developments of the questions touched on here and compris-
ing intensive bibliography.
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