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The mathematical theory of dynamical systems is based on the qualitative theo-
ry of ordinary differential equations the foundations of which were laid by Henri
Poincaré (1854–1912). An essential role in its development was also played by the
works of A. M. Lyapunov (1857–1918) and A. A. Andronov (1901–1952). At present
the theory of dynamical systems is an intensively developing branch of mathematics
which is closely connected to the theory of differential equations.

In this chapter we present some ideas and approaches of the theory of dynami-
cal systems which are of general-purpose use and applicable to the systems genera-
ted by nonlinear partial differential equations.

§ 1 Notion of Dynamical System§ 1 Notion of Dynamical System§ 1 Notion of Dynamical System§ 1 Notion of Dynamical System

In this book dynamical system  dynamical system  dynamical system  dynamical system is taken to mean the pair of objects  con-
sisting of a complete metric space  and a family  of continuous mappings of the
space  into itself with the properties

, , (1.1)

where  coincides with either a set  of nonnegative real numbers or a set
. If , we also assume that  is a continuous

function with respect to  for any . Therewith  is called a phase space phase space phase space phase space, or
a state space, the family  is called an    evolutionary operator evolutionary operator evolutionary operator evolutionary operator (or semigroup),
parameter  plays the role of time. If , then dynamical system is
called discretediscretediscretediscrete  (or a system with discrete time). If , then  is fre-
quently called to be dynamical system with continuouscontinuouscontinuouscontinuous time. If a notion of dimen-
sion can be defined for the phase space  (e. g., if  is a lineal), the value  is
called a dimensiondimensiondimensiondimension of dynamical system.

Originally a dynamical system was understood as an isolated mechanical system
the motion of which is described by the Newtonian differential equations and which
is characterized by a finite set of generalized coordinates and velocities. Now people
associate any time-dependent process with the notion of dynamical system. These
processes can be of quite different origins. Dynamical systems naturally arise in
physics, chemistry, biology, economics and sociology. The notion of dynamical sys-
tem is the key and uniting element in synergetics. Its usage enables us to cover
a rather wide spectrum of problems arising in particular sciences and to work out
universal approaches to the description of qualitative picture of real phenomena
in the universe.
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Let us look at the following examples of dynamical systems.

E x a m p l e  1.1

Let  be a continuously differentiable function on the real axis posessing the
property , where is a constant. Consider the Cauchy
problem for an ordinary differential equation

,  , . (1.2)

For any  problem (1.2) is uniquely solvable and determines a dynamical
system in . The evolutionary operator  is given by the formula ,
where  is a solution to problem (1.2). Semigroup property (1.1) holds
by virtue of the theorem of uniqueness of solutions to problem (1.2). Equations
of the type (1.2) are often used in the modeling of some ecological processes.
For example, if we take , , then we get a logistic equ-
ation that describes a growth of a population with competition (the value 
is the population level; we should take  for the phase space).

E x a m p l e  1.2

Let  and  be continuously differentiable functions such that

, 

with some constant . Let us consider the Cauchy problem

(1.3)

For any , problem (1.3) is uniquely solvable. It generates
a two-dimensional dynamical system , provided the evolutionary ope-
rator is defined by the formula

,  

where  is the solution to problem (1.3). It should be noted that equations
of the type (1.3) are known as Liénard equations in literature. The van der Pol
equation:

and the Duffing equation:

which often occur in applications, belong to this class of equations.
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E x a m p l e  1.3

Let us now consider an autonomous system of ordinary differential equations

. (1.4)

Let the Cauchy problem for the system of equations (1.4) be uniquely solvable
over an arbitrary time interval for any initial condition. Assume that a solution
continuously depends on the initial data. Then equations (1.4) generate an di-
mensional dynamical system  with the evolutionary operator  acting
in accordance with the formula

,

where  is the solution to the system of equations (1.4) such that
, . Generally, let be a linear space and  be

a continuous mapping of  into itself. Then the Cauchy problem

(1.5)

generates a dynamical system  in a natural way provided this problem is
well-posed, i.e. theorems on existence, uniqueness and continuous dependence
of solutions on the initial conditions are valid for (1.5).

E x a m p l e  1.4

Let us consider an ordinary retarded differential equation

, , (1.6)

where is a continuous function on  . Obviously an initial condition
for (1.6) should be given in the form

. (1.7)

Assume that  lies in the space  of continuous functions on the
segment  In this case the solution to problem (1.6) and (1.7) can be
constructed by step-by-step integration. For example, if  the solu-
tion  is given by

,

and if , then the solution is expressed by the similar formula in terms
of the values of the function  for  and so on. It is clear that the so-
lution is uniquely determined by the initial function . If we now define an
operator  in the space  by the formula

,

where is the solution to problem (1.6) and (1.7), then we obtain an infi-
nite-dimensional dynamical system .
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Now we give several examples of discrete dynamical systems. First of all it should be
noted that any system  with continuous time generates a discrete system if
we take  instead of  Furthermore, the evolutionary operator  of
a discrete dynamical system is a degree of the mapping  i. e. .
Thus, a dynamical system with discrete time is determined by a continuous mapping
of the phase space  into itself. Moreover, a discrete dynamical system is very often
defined as a pair  consisting of the metric space  and the continuous map-
ping 

E x a m p l e  1.5

Let us consider a one-step difference scheme for problem (1.5):

, , .

There arises a discrete dynamical system , where  is the continuous
mapping of  into itself defined by the formula .

E x a m p l e  1.6

Let us consider a nonautonomous ordinary differential equation

,  , , (1.9)

where  is a continuously differentiable function of its variables and is pe-
riodic with respect to  i. e.  for some . It is as-
sumed that the Cauchy problem for (1.9) is uniquely solvable on any time
interval. We define a monodromymonodromymonodromymonodromy operator (a period mapping) by the formula

 where  is the solution to (1.9) satisfying the initial condition
. It is obvious that this operator possesses the property

(1.10)

for any solution  to equation (1.9) and any . The arising dynamical
system  plays an important role in the study of the long-time proper-
ties of solutions to problem (1.9).

E x a m p l e  1.7 (Bernoulli shift)

Let  be a set of sequences  consisting of zeroes and
ones. Let us make this set into a metric space by defining the distance by the
formula

.

Let  be the shift operator on , i. e. the mapping transforming the sequence
 into the element , where . As a result, a dynamical

system  comes into being. It is used for describing complicated (qua-
sirandom) behaviour in some quite realistic systems.
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In the example below we describe one of the approaches that enables us to connect
dynamical systems to nonautonomous (and nonperiodic) ordinary differential equa-
tions.

E x a m p l e  1.8

Let be a continuous bounded function on . Let us define the hull
 of the function  as the closure of a set

 

with respect to the norm

. 

Let  be a continuous function. It is assumed that the Cauchy problem

(1.11)

is uniquely solvable over the interval  for any . Let us define
the evolutionary operator  on the space  by the formula

,

where  is the solution to problem (1.11) and . As a result,
a dynamical system  comes into being. A similar construction is of-
ten used when  is a compact set in the space  of continuous bounded func-
tions (for example, if  is a quasiperiodic or almost periodic function).
As the following example shows, this approach also enables us to use naturally
the notion of the dynamical system for the description of the evolution of ob-
jects subjected to random influences.

E x a m p l e  1.9

Assume that  and  are continuous mappings from a metric space  into it-
self. Let  be a state space of a system that evolves as follows: if is the state of
the system at time , then its state at time  is either  or  with
probability , where the choice of  or  does not depend on time and the
previous states. The state of the system can be defined after a number of steps
in time if we flip a coin and write down the sequence of events from the right to
the left using  and . For example, let us assume that after 8 flips we get the
following set of outcomes:

.

Here  corresponds to the head falling, whereas  corresponds to the tail fall-
ing. Therewith the state of the system at time  will be written in the form:
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.

This construction can be formalized as follows. Let  be a set of two-sided se-
quences consisting of zeroes and ones (as in Example 1.7), i.e. a collection
of elements of the type

,

where  is equal to either  or . Let us consider the space  con-
sisting of pairs , where , . Let us define the mapping

:  by the formula:

,

where  is the left-shift operator in  (see Example 1.7). It is easy to see that
the th degree of the mapping  actcts according to the formula

and it generates a discrete dynamical system . This system is often
called a universal random (discrete) dynamical system.

Examples of dynamical systems generated by partial differential equations will be gi-
ven in the chapters to follow.

Assume that operators  have a continuous inverse for any .
Show that the family of operators  defined by the equa-
lity  for  and  for  form a group, i.e. (1.1)
holds for all .

Prove the unique solvability of problems (1.2) and (1.3) in-
volved in Examples 1.1 and 1.2.

Ground formula (1.10) in Example 1.6.

Show that the mapping  in Example 1.8 possesses semi-
group property (1.1).

Show that the value  involved in Example 1.7 is a met-
ric. Prove its equivalence to the metric

.
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§ 2 Trajectories and Invariant Sets§ 2 Trajectories and Invariant Sets§ 2 Trajectories and Invariant Sets§ 2 Trajectories and Invariant Sets

Let be a dynamical system with continuous or discrete time. Its trajectorytrajectorytrajectorytrajectory

(or orbitorbitorbitorbit) is defined as a set of the type 

,

where is a continuous function with values in  such that 
for all  and . Positive (negative) semitrajectorysemitrajectorysemitrajectorysemitrajectory is defined as a set

, ( , respectively), where a continuous on 
( , respectively) function  possesses the property  for any

,  ( , respectively). It is clear that any positive
semitrajectory  has the form , i.e. it is uniquely determined by
its initial state . To emphasize this circumstance, we often write .
In general, it is impossible to continue this semitrajectory  to a full trajectory
without imposing any additional conditions on the dynamical system.

Assume that an evolutionary operator  is invertible for some
. Then it is invertible for all  and for any  there

exists a negative semitrajectory  ending at the point .

A trajectory  is called a periodic trajectoryperiodic trajectoryperiodic trajectoryperiodic trajectory  (or a cyclecyclecyclecycle)    if
there exists ,  such that . Therewith the minimal
number  possessing the property mentioned above is called a periodperiodperiodperiod of a tra-
jectory. Here is either  or  depending on whether the system is a continuous
or a discrete one. An element  is called a fixed pointfixed pointfixed pointfixed point of a dynamical system

 if  for all  (synonyms: equilibrium pointequilibrium pointequilibrium pointequilibrium point , stationary stationary stationary stationary

pointpointpointpoint).

Find all the fixed points of the dynamical system  ge-
nerated by equation (1.2) with . Does there exist
a periodic trajectory of this system?

Find all the fixed points and periodic trajectories of a dynami-
cal system in  generated by the equations

Consider the cases  and . Hint: use polar coordinates. 

Prove the existence of stationary points and periodic trajecto-
ries of any period for the discrete dynamical system described
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in Example 1.7. Show that the set of all periodic trajectories is dense
in the phase space of this system. Make sure that there exists a tra-
jectory that passes at a whatever small distance from any point of the
phase space.

The notion of invariant set plays an important role in the theory of dynamical sys-
tems. A subset  of the phase space  is said to be:

a) positively invariantpositively invariantpositively invariantpositively invariant, if  for all ;
b) negatively invariantnegatively invariantnegatively invariantnegatively invariant, if  for all ;
c) invariantinvariantinvariantinvariant, if it is both positively and negatively invariant, i.e. if

 for all .
The simplest examples of invariant sets are trajectories and semitrajectories.

Show that  is positively invariant,  is negatively invariant
and  is invariant.

Let us define the sets

and

for any subset  of the phase space . Prove that  is a positively
invariant set, and if the operator  is invertible for some 
then  is a negatively invariant set.

Other important example of invariant set is connected with the notions of -limit
and -limit sets that play an essential role in the study of the long-time behaviour
of dynamical systems.

Let . Then the -limit setlimit setlimit setlimit set  for  is defined by

,

where . Hereinafter is the closure of a set  in the
space . The set 

,

where , is called the -limit setlimit setlimit setlimit set  for .
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Lemma 2.1

For an element  to belong to an -limit set , it is necessary and

sufficient that there exist a sequence of elements  and a se-

quence of numbers , the latter tending to infinity such that

,

where is the distance between the elements  and  in the

space .

Proof.

Let the sequences mentioned above exist. Then it is obvious that for any
 there exists  such that

.

This implies that

for all . Hence, the element  belongs to the intersection of these sets,
i.e.  .

On the contrary, if , then for all 

.

Hence, for any  there exists an element  such that

.

Therewith it is obvious that , , . This proves the
lemma.

It should be noted that this lemma gives us a description of an -limit set but does
not guarantee its nonemptiness.

Show that is a positively invariant set. If for any 
there exists a continuous inverse to , then  is invariant, i.e.

.

Let be an invertible mapping for every . Prove the
counterpart of Lemma 2.1 for an -limit set:

.

Establish the invariance of .
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Let be a periodic trajectory of a dy-
namical system. Show that  for any .

Let us consider the dynamical system  constructed in
Example 1.1. Let  and be the roots of the function 

, . Then the segment  is
an invariant set. Let be a primitive of the function 
( ). Then the set  is positively invariant
for any .

Assume that for a continuous dynamical system  there
exists a continuous scalar function  on  such that the value

 is differentiable with respect to  for any  and

, .

Then the set  is positively invariant for any 
.

§ 3 Definition of A§ 3 Definition of A§ 3 Definition of A§ 3 Definition of Atttttractortractortractortractor

Attractor is a central object in the study of the limit regimes of dynamical systems.
Several definitions of this notion are available. Some of them are given below. From
the point of view of infinite-dimensional systems the most convenient concept is that
of the global attractor.

A bounded closed set  is called a global attractorglobal attractorglobal attractorglobal attractor  for a dynamical sys-
tem , if

1)  is an invariant set, i.e.  for any ;
2) the set  uniformly attracts all trajectories starting in bounded sets,

i.e. for any bounded set  from 

.

We remind that the distance between an element  and a set  is defined by the
equality:

,

where  is the distance between the elements  and  in .
The notion of a weak global attractor is useful for the study of dynamical sys-

tems generated by partial differential equations.
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Let  be a complete linear metric space. A bounded weakly closed set  is
called a global weak attractorglobal weak attractorglobal weak attractorglobal weak attractor if it is invariant  and for any
weak vicinity  of the set  and for every bounded set  there exists

 such that  for .
We remind that an open set in weak topology of the space  can be described

as finite intersection and subsequent arbitrary union of sets of the form

,

where  is a real number and  is a continuous linear functional on .
It is clear that the concepts of global and global weak attractors coincide in the

finite-dimensional case. In general, a global attractor  is also a global weak attrac-
tor, provided the set  is weakly closed.

Let be a global or global weak attractor of a dynamical sys-
tem . Then it is uniquely determined and contains any boun-
ded negatively invariant set. The attractor  also contains the

limit set  of any bounded .

Assume that a dynamical system  with continuous
time possesses a global attractor . Let us consider a discrete sys-
tem , where  with some . Prove that  is a glo-
bal attractor for the system . Give an example which shows
that the converse assertion does not hold in general.

If the global attractor  exists, then it contains a global minimal attractorglobal minimal attractorglobal minimal attractorglobal minimal attractor  
which is defined as a minimal closed positively invariant set possessing the property 

for every .

By definition minimality means that  has no proper subset possessing the proper-
ties mentioned above. It should be noted that in contrast with the definition of the
global attractor the uniform convergence of trajectories to  is not expected here.

Show that , provided  is a compact set.

Prove that  for any . Therewith, if is
a compact, then .

By definition the attractor  contains limit regimes of each individual trajectory.
It will be shown below that  in general. Thus, a set of real limit regimes
(states) originating in a dynamical system can appear to be narrower than the global
attractor. Moreover, in some cases some of the states that are unessential from the
point of view of the frequency of their appearance can also be “removed” from ,
for example, such states like absolutely unstable stationary points. The next two
definitions take into account the fact mentioned above. Unfortunately, they require
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additional assumptions on the properties of the phase space. Therefore, these defini-
tions are mostly used in the case of finite-dimensional dynamical systems.

Let a Borel measure  such that  be given on the phase space  of
a dynamical system . A bounded set  in  is called a Milnor attractorMilnor attractorMilnor attractorMilnor attractor

(with respect to the measure ) for  if  is a minimal closed invariant set
possessing the property

for almost all elements  with respect to the measure . The Milnor attractor
is frequently called a probabilistic global minimal attractor. 

At last let us introduce the notion of a statistically essential global minimal at-
tractor suggested by Ilyashenko. Let be an open set in X  and let  be its
characteristic function: , ; , . Let us define the
average time  which is spent by the semitrajectory  emanating from 
in the set  by the formula

.

A set  is said to be unessential with respect to the measure  if

.

The complement  to the maximal unessential open set is called an IlyashenkoIlyashenkoIlyashenkoIlyashenko

aaaatttttractor tractor tractor tractor (with respect to the measure ).
It should be noted that the attractors  and  are used in cases when the na-

tural Borel measure is given on the phase space (for example, if  is a closed mea-
surable set in  and  is the Lebesgue measure).

The relations between the notions introduced above can be illustrated by the
following example.

E x a m p l e  3.1

Let us consider a quasi-Hamiltonian system of equations in :

(3.1)

where  and  is a positive number. It is easy
to ascertain that the phase portrait of the dynamical system generated by equa-
tions (3.1) has the form represented on Fig. 1.
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A separatrix (“eight cur-
ve”) separates the do-
mains of the phase plane
with the different quali-
tative behaviour of the
trajectories. It is given by
the equation .
The points  inside
the separatrix are charac-
terized by the equation

. Therewith
it appears that

,

,

.

Finally, the simple calculations show that , i.e. the Ilyashenko at-
tractor consists of a single point. Thus,

,  

all inclusions being strict.

Display graphically the attractors  of the system generated
by equations (3.1) on the phase plane.

Consider the dynamical system from Example 1.1 with 
. Prove that , 

, and .

Prove that  and   in general.

Show that all positive semitrajectories of a dynamical system
which possesses a global minimal attractor are bounded sets.

In particular, the result of the last exercise shows that the global attractor can exist
only under additional conditions concerning the behaviour of trajectories of the sys-
tem at infinity. The main condition to be met is the dissipativity discussed in the next
section.

Fig. 1. Phase portrait of system (3.1)
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§ 4 Dissipativity and Asymptotic§ 4 Dissipativity and Asymptotic§ 4 Dissipativity and Asymptotic§ 4 Dissipativity and Asymptotic

CompactnessCompactnessCompactnessCompactness

From the physical point of view dissipative systems are primarily connected with ir-
reversible processes. They represent a rather wide and important class of the dy-
namical systems that are intensively studied by modern natural sciences. These
systems (unlike the conservative systems) are characterized by the existence of the
accented direction of time as well as by the energy reallocation and dissipation.
In particular, this means that limit regimes that are stationary in a certain sense can
arise in the system when . Mathematically these features of the qualitative
behaviour of the trajectories are connected with the existence of a bounded absor-
bing set in the phase space of the system.

A set  is said to be absorbingabsorbingabsorbingabsorbing  for a dynamical system  if for
any bounded set  in  there exists  such that  for every

. A dynamical system  is said to be dissipativedissipativedissipativedissipative if it possesses a boun-
ded absorbing set. In cases when the phase space  of a dissipative system 
is a Banach space a ball of the form  can be taken as an absor-
bing set. Therewith the value  is said to be a radius of dissipativityradius of dissipativityradius of dissipativityradius of dissipativity.

As a rule, dissipativity of a dynamical system can be derived from the existence
of a Lyapunov type function on the phase space. For example, we have the following
assertion.

Theorem 4.1.

Let the phase sLet the phase sLet the phase sLet the phase sppppace of a continuous dynamical system  be a Ba-ace of a continuous dynamical system  be a Ba-ace of a continuous dynamical system  be a Ba-ace of a continuous dynamical system  be a Ba-

nach space. Assume that:nach space. Assume that:nach space. Assume that:nach space. Assume that:

(a) there exists a continuous function  on  possessing the pro-there exists a continuous function  on  possessing the pro-there exists a continuous function  on  possessing the pro-there exists a continuous function  on  possessing the pro-

pertiespertiespertiesperties

,,,, (4.1)

where  are continuous functions on  and where  are continuous functions on  and where  are continuous functions on  and where  are continuous functions on  and 

when ;when ;when ;when ;

(b) there exist a derivative  for  and positive numbers there exist a derivative  for  and positive numbers there exist a derivative  for  and positive numbers there exist a derivative  for  and positive numbers

 and  such that and  such that and  such that and  such that

forforforfor .... (4.2)

Then the dynamical system  is dissipative.Then the dynamical system  is dissipative.Then the dynamical system  is dissipative.Then the dynamical system  is dissipative.

Proof.

Let us choose  such that  for . Let

and  be such that  for  .  Let us show that 
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for all and . (4.3)

Assume the contrary, i.e. assume that for some  such that  there
exists a time  possessing the property . Then the continuity of 
implies that there exists  such that . Thus, equation
(4.2) implies that

,

provided . It follows that  for all . Hence,  for
all . This contradicts the assumption. Let us assume now that is an arbitrary
bounded set in  that does not lie inside the ball with the radius . Then equation
(4.2) implies that

, , (4.4)

provided . Here

.

Let . If for a time  the semitrajectory  enters the ball with
the radius , then by (4.3) we have  for all . If that does not take
place, from equation (4.4) it follows that

for ,

i.e. for . Thus,

,  .

This and (4.3) imply that the ball with the radius  is an absorbing set for the dy-
namical system . Thus, Theorem 4.1 is proved.

Show that hypothesis (4.2) of Theorem 4.1 can be replaced
by the requirement

,

where  and are positive constants.

Show that the dynamical system generated in  by the diffe-
rential equation  (see Example 1.1) is dissipative, pro-
vided the function  possesses the property: ,
where  and are constants (Hint: ). Find an up-
per estimate for the minimal radius of dissipativity.

Consider a discrete dynamical system , where  is
a continuous function on . Show that the system  is dissi-
pative, provided there exist  and  such that

 for  .
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Consider a dynamical system  generated (see Exam-
ple 1.2) by the Duffing equation

,

where  and are real numbers and . Using the properties
of the function

show that the dynamical system  is dissipative for 
small enough. Find an upper estimate for the minimal radius of dissi-
pativity.

Prove the dissipativity of the dynamical system generated
by (1.4) (see Example 1.3), provided

,  .

Show that the dynamical system of Example 1.4 is dissipative
if is a bounded function.

Consider a cylinder  with coordinates , ,
 and the mapping  of this cylinder which is defined

by the formula , where

,

.

Here  and are positive parameters. Prove that the discrete dyna-
mical system  is dissipative, provided . We note
that if , then the mapping  is known as the Chirikov map-
ping. It appears in some problems of physics of elementary parti-
cles.

Using Theorem 4.1 prove that the dynamical system 
generated by equations (3.1) (see Example 3.1) is dissipative.
(Hint: ).

In the proof of the existence of global attractors of infinite-dimensional dissipative
dynamical systems a great role is played by the property of asymptotic compactness.
For the sake of simplicity let us assume that is a closed subset of a Banach space.
The dynamical system  is said to be asymptotically compact asymptotically compact asymptotically compact asymptotically compact if for any

 its evolutionary operator  can be expressed by the form

, (4.5)

where the mappings  and  possess the properties:
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a) for any bounded set  in 

, ;

b) for any bounded set  in  there exists  such that the set

(4.6)

is compact in , where is the closure of the set .
A dynamical system is said to be compact compact compact compact if it is    asymptotically compact and

one can take  in representation (4.5). It becomes clear that any finite-di-
mensional dissipative system is compact.

Show that condition (4.6) is fulfilled if there exists a compact
set  in  such that for any bounded set  the inclusion ,

 holds. In particular, a dissipative system is compact if it
possesses a compact absorbing set.

Lemma 4.1.

The dynamical system  is asymptotically compact if there exists

a compact set  such that

(4.7)

for any set  bounded in .

Proof.

The distance to a compact set is reached on some element. Hence, for any
 and  there exists an element  such that

.

Therefore, if we take , it is easy to see that in this case de-
composition (4.5) satisfies all the requirements of the definition of asymptotic
compactness.

Remark 4.1.

In most applications Lemma 4.1 plays a major role in the proof of the

property of asymptotic compactness. Moreover, in cases when the phase

space  of the dynamical system  does not possess the structure

of a linear space it is convenient to define the notion of the asymptotic

compactness using equation (4.7). Namely, the system  is said

to be asymptotically compact if there exists a compact  possessing

property (4.7) for any bounded set  in . For one more approach

to the definition of this concept see Exercise 5.1 below.
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Consider the infinite-dimensional dynamical system genera-
ted by the retarded equation

,

where  and is bounded (see Example 1.4). Show that
this system is compact.

Consider the system of Lorentz equations arising as a three-
mode Galerkin approximation in the problem of convection in a thin
layer of liquid:

Here , , and are positive numbers. Prove the dissipativity of
the dynamical system generated by these equations in .
Hint: Consider the function

on the trajectories of the system.

§ 5 Theorems on Existence§ 5 Theorems on Existence§ 5 Theorems on Existence§ 5 Theorems on Existence

of Global Aof Global Aof Global Aof Global Atttttractortractortractortractor

For the sake of simplicity it is assumed in this section that the phase space  is
a Banach space, although the main results are valid for a wider class of spaces
(see, e. g., Exercise 5.8). The following assertion is the main result.

Theorem 5.1.

Assume that a dynamical system  is dissipative and asymptoti-Assume that a dynamical system  is dissipative and asymptoti-Assume that a dynamical system  is dissipative and asymptoti-Assume that a dynamical system  is dissipative and asymptoti-

cally compact. Let be a bounded absorbing set of the system cally compact. Let be a bounded absorbing set of the system cally compact. Let be a bounded absorbing set of the system cally compact. Let be a bounded absorbing set of the system .... Then Then Then Then

the set  is a nonempty compact set and is a global attractor of thethe set  is a nonempty compact set and is a global attractor of thethe set  is a nonempty compact set and is a global attractor of thethe set  is a nonempty compact set and is a global attractor of the

dynamical system  The attractor  is a connected set in dynamical system  The attractor  is a connected set in dynamical system  The attractor  is a connected set in dynamical system  The attractor  is a connected set in 

In particular, this theorem is applicable to the dynamical systems from Exercises
4.2–4.11. It should also be noted that Theorem 5.1 along with Lemma 4.1 gives the
following criterion: a dissipative dynamical system possesses a compact global at-
tractor if and only if it is asymptotically compact.

The proof of the theorem is based on the following lemma.
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Lemma 5.1.

Let a dynamical system  be asymptotically compact. Then for

any bounded set  of  the -limit set  is a nonempty compact

invariant set.

Proof.

Let . Then for any sequence  tending to infinity the set 
 is relatively compact, i.e. there exist a sequence  and an ele-

ment  such that  tends to  as . Hence, the asymptotic
compactness gives us that

as . 

Thus, . Due to Lemma 2.1 this indicates that  is non-
empty.

Let us prove the invariance of -limit set. Let . Then according
to Lemma 2.1 there exist sequences , and  such that

. However, the mapping  is continuous. Therefore,

, .

Lemma 2.1 implies that . Thus,

,  .

Let us prove the reverse inclusion. Let . Then there exist sequences
 and  such that . Let us consider the se-

quence , . The asymptotic compactness implies that there
exist a subsequence  and an element  such that

.

As stated above, this gives us that

.

Therefore, . Moreover,

.

Hence, . Thus, the invariance of the set  is proved.
Let us prove the compactness of the set . Assume that  is a se-

quence in . Then Lemma 2.1 implies that for any  we can find  and
 such that . As said above, the property of asymp-

totic compactness enables us to find an element  and a sequence  such
that

.
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This implies that  and . This means that is a closed and
compact set in . Lemma 5.1 is proved completely.

Now we establish Theorem 5.1. Let  be a bounded absorbing set of the dynamical
system. Let us prove that  is a global attractor. It is sufficient to verify that

 uniformly attracts the absorbing set . Assume the contrary. Then the value
 does not tend to zero as . This means that

there exist  and a sequence  such that

.

Therefore, there exists an element  such that

. (5.1)

As before, a convergent subsequence  can be extracted from the sequence
. Therewith Lemma 2.1 implies

which contradicts estimate (5.1). Thus,  is a global attractor. Its compactness
follows from the easily verifiable relation

.

Let us prove the connectedness of the attractor by reductio ad absurdum. Assume
that the attractor  is not a connected set. Then there exists a pair of open sets 
and  such that 

,  , , .

Let  be a convex hull of the set , i.e.

.

It is clear that  is a bounded connected set and . The continuity of the
mapping  implies that the set  is also connected. Therewith .
Therefore, , . Hence, for any  the pair ,  cannot
cover . It follows that there exists a sequence of points 
such that . The asymptotic compactness of the dynamical system
enables us to extract a subsequence  such that  tends in  to an
element  as . It is clear that  and . These equations
contradict one another since . Therefore, Theorem

5.1 is proved completely.
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It should be noted that the connectedness of the global attractor can also be proved
without using the linear structure of the phase space (do it yourself).

Show that the assumption of asymptotic compactness in Theo-
rem 5.1 can be replaced by the Ladyzhenskaya assumption: the se-
quence  contains a convergent subsequence for any
bounded sequence  and for any increasing sequence

 such that . Moreover, the Ladyzhenskaya as-
sumption is equivalent to the condition of asymptotic compactness.

Assume that a dynamical system  possesses a compact
global attractor . Let be a minimal closed set with the property

for every .

Then  and , i.e.  coincides with the
global minimal attractor (cf. Exercise 3.4).

Assume that equation (4.7) holds. Prove that the global at-
tractor  possesses the property .

Assume that a dissipative dynamical system possesses a glo-
bal attractor . Show that  for any bounded absorbing set

 of the system.

The fact that the global attractor  has the form , where is an absorb-
ing set of the system, enables us to state that the set  not only tends to the at-
tractor , but is also uniformly distributed over it as . Namely, the following
assertion holds.

Theorem 5.2.

Assume that a dissipative dynamical system  possesses a com-Assume that a dissipative dynamical system  possesses a com-Assume that a dissipative dynamical system  possesses a com-Assume that a dissipative dynamical system  possesses a com-

pact global attractor pact global attractor pact global attractor pact global attractor .... Let  Let  Let  Let be a bounded absorbing set for be a bounded absorbing set for be a bounded absorbing set for be a bounded absorbing set for .... Then Then Then Then

.... (5.2)

Proof.

Assume that equation (5.2) does not hold. Then there exist sequences 
 and  such that

for some . (5.3) 

The compactness of  enables us to suppose that  converges to an element
. Therewith (see Exercise 5.4)
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where is a sequence such that . Let us choose a subsequence 
such that  for every . Here  is chosen such that 

 for all . Let . Then it is clear that  and

. 

Equation (5.3) implies that

. 

This contradicts the previous equation. Theorem 5.2 is proved.

For a description of convergence of the trajectories to the global attractor it is con-
venient to use the Hausdorff metric Hausdorff metric Hausdorff metric Hausdorff metric that is defined on subsets of the phase space
by the formula

, (5.4) 

where  and

. (5.5)

Theorems 5.1 and 5.2 give us the following assertion.

Corollary 5.1.

Let  be an asymptotically compact dissipative system. Then its

global attractor  possesses the property  for any

bounded absorbing set  of the system .

In particular, this corollary means that for any  there exists  such that
for every  the set  gets into the -vicinity of the global attractor ;
and vice versa, the attractor  lies in the -vicinity of the set . Here is
a bounded absorbing set.

The following theorem shows that in some cases we can get rid of the require-
ment of asymptotic compactness if we use the notion of the global weak attractor.

Theorem 5.3.

Let the phase space  of a dynamical system  be a separableLet the phase space  of a dynamical system  be a separableLet the phase space  of a dynamical system  be a separableLet the phase space  of a dynamical system  be a separable

Hilbert space. Assume that the system  is dissipative and its evolu-Hilbert space. Assume that the system  is dissipative and its evolu-Hilbert space. Assume that the system  is dissipative and its evolu-Hilbert space. Assume that the system  is dissipative and its evolu-

tionary operator tionary operator tionary operator tionary operator  is weakly closed, i.e. for all  is weakly closed, i.e. for all  is weakly closed, i.e. for all  is weakly closed, i.e. for all  the weak convergence the weak convergence the weak convergence the weak convergence

 and  imply that  and  imply that  and  imply that  and  imply that .... Then the dynamical system Then the dynamical system Then the dynamical system Then the dynamical system

 possesses a global weak attractor possesses a global weak attractor possesses a global weak attractor possesses a global weak attractor....

The proof of this theorem basically repeats the reasonings used in the proof of Theo-
rem 5.1. The weak compactness of bounded sets in a separable Hilbert space plays
the main role instead of the asymptotic compactness.
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Lemma 5.2.

Assume that the hypotheses of Theorem 5.3 hold. For  we define

the weak -limit set  by the formula

, (5.6) 

where  is the weak closure of the set . Then for any bounded set

 the set  is a nonempty weakly closed bounded invariant

set.

Proof.

The dissipativity implies that each of the sets  is
bounded and therefore weakly compact. Then the Cantor theorem on the col-
lection of nested compact sets gives us that  is a non-
empty weakly closed bounded set. Let us prove its invariance. Let .
Then there exists a sequence  such that  weakly. The
dissipativity property implies that the set  is bounded when  is large
enough. Therefore, there exist a subsequence  and an element  such
that  and  weakly. The weak closedness of  implies that

. Since  for , we have that  for all .
Hence, . Therefore, . The proof of the reverse
inclusion is left to the reader as an exercise.

For the proof of Theorem 5.3 it is sufficient to show that the set

, (5.7) 

where is a bounded absorbing set of the system , is a global weak attractor
for the system. To do that it is sufficient to verify that the set  is uniformly attract-
ed to  in the weak topology of the space . Assume the contrary. Then
there exist a weak vicinity  of the set  and sequences  and 

 such that . However, the set  is weakly compact. There-
fore, there exist an element  and a sequence  such that

.

However,  for . Thus,  for all  and 
, which is impossible. Theorem 5.3 is proved.

Assume that the hypotheses of Theorem 5.3 hold. Show that
the global weak attractor  is a connected set in the weak topology
of the phase space .

Show that the global weak minimal attractor 
 is a strictly invariant set.
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Prove the existence and describe the structure of global and
global minimal   attractors for the dynamical system generated by
the equations

for every real .

Assume that is a metric space and is an asymptoti-
cally compact (in the sense of the definition given in Remark 4.1)
dynamical system. Assume also that the attracting compact  is
contained in some bounded connected set. Prove the validity of the
assertions of Theorem 5.1 in this case.

In conclusion to this section, we give one more assertion on the existence of the global
attractor in the form of exercises. This assertion uses the notion of the asymptotic
smoothness (see [3] and [9]). The dynamical system  is said to be asympto- asympto- asympto- asympto-

tically smooth tically smooth tically smooth tically smooth if for any bounded positively invariant  set
 there exists a compact  such that  as , where the

value  is defined by formula (5.5).

Prove that every asymptotically compact system is asymptoti-
cally smooth.

Let be an asymptotically smooth dynamical system.
Assume that for any bounded set  the set 

 is bounded. Show that the system  posses-
ses a global attractor  of the form

.

In addition to the assumptions of Exercise 5.10 assume that
 is pointwise dissipative, i.e. there exists a bounded set
 such that  as  for every point

. Prove that the global attractor  is compact.

§ 6 On the Structure of Global Attractor§ 6 On the Structure of Global Attractor§ 6 On the Structure of Global Attractor§ 6 On the Structure of Global Attractor

The study of the structure of global attractor of a dynamical system is an important
problem from the point of view of applications. There are no universal approaches to
this problem. Even in finite-dimensional cases the attractor can be of complicated
structure. However, some sets that undoubtedly belong to the attractor can be poin-
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ted out. It should be first noted that every stationary point of the semigroup  be-
longs to the attractor of the system. We also have the following assertion.

Lemma 6.1.

Assume that an element  lies in the global attractor  of a dynamical

system . Then the point  belongs to some trajectory  that lies

in  wholly.

Proof. 

Since  and , then there exists a sequence  such
that , , . Therewith for discrete time the re-
quired trajectory is , where  for  and 

 for . For continuous time let us consider the value

Then it is clear that  for all  and  for ,
. Therewith . Thus, the required trajectory is also built in the

continuous case.

Show that an element  belongs to a global attractor if and
only if there exists a bounded trajectory 
such that .

Unstable sets also belong to the global attractor. Let  be a subset of the phase
space  of the dynamical system . Then the unstable set emanatingunstable set emanatingunstable set emanatingunstable set emanating

from from from from  is defined as the set  of points  for every of which there exists
a trajectory  such that

.

Prove that  is invariant, i.e.  for all
.

Lemma 6.2.

Let  be a set of stationary points of the dynamical system 

possessing a global attractor . Then .

Proof.

It is obvious that the set  lies in the attractor
of the system and thus it is bounded. Let . Then there exists a tra-
jectory  such that  and

.
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Therefore, the set  is bounded when  is large
enough. Hence, the set tends to the attractor of the system as .
However,  for . Therefore,

.

This implies that . The lemma is proved.

Assume that the set  of stationary points is finite. Show
that

,

where are the stationary points of  (the set  is called
an unstable manifold emanating from the stationary point ).

Thus, the global attractor  includes the unstable set . It turns out that un-
der certain conditions the attractor includes nothing else. We give the following defi-
nition. Let  be a positively invariant set of a semigroup , . The
continuous functional defined on is called the Lyapunov functionLyapunov functionLyapunov functionLyapunov function of the
dynamical system  on  if the following conditions hold:

a) for any  the function  is a nonincreasing function with re-
spect to ;

b) if for some  and  the equation  holds, then
 for all , i.e. is a stationary point of the semigroup .

Theorem 6.1.

Let a dynamical system  possess a compact attractor Let a dynamical system  possess a compact attractor Let a dynamical system  possess a compact attractor Let a dynamical system  possess a compact attractor .... Assume Assume Assume Assume

also that the Lyapunov function  exists on also that the Lyapunov function  exists on also that the Lyapunov function  exists on also that the Lyapunov function  exists on .... Then , where Then , where Then , where Then , where

 is the set of stationary points of the dynamical system. is the set of stationary points of the dynamical system. is the set of stationary points of the dynamical system. is the set of stationary points of the dynamical system.

Proof.

Let . Let us consider a trajectory  passing through  (its existence fol-
lows from Lemma 6.1). Let

and .

Since , the closure  is a compact set in . This implies that the -limit
set

 

of the trajectory  is nonempty. It is easy to verify that the set  is invariant:
. Let us show that the Lyapunov function is constant on .

Indeed, if , then there exists a sequence  tending to  such that
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.

Consequently,

.

By virtue of monotonicity of the function  along the trajectory we have

.

Therefore, the function  is constant on . Hence, the invariance of the set
 gives us that ,  for all . This means that 

lies in the set  of stationary points. Therewith (verify it yourself)

. 

Hence, . Theorem 6.1 is proved.

Assume that the hypotheses of Theorem 6.1 hold. Then for
any element  its -limit set  consists of stationary points
of the system.

Thus, the global attractor coincides with the set of all full trajectories connecting the
stationary points.

Assume that the system  possesses a compact global
attractor and there exists a Lyapunov function on . Assume that
the Lyapunov function is bounded below. Show that any semitrajec-
tory of the system tends to the set  of stationary points of the sys-
tem as , i.e. the global minimal attractor coincides with the
set .

In particular, this exercise confirms the fact realized by many investigators that the
global attractor is a too wide object for description of actually observed limit regimes
of a dynamical system.

Assume that  is a dynamical system generated by the
logistic equation (see Example 1.1): .
Show that  is a Lyapunov function for this sys-
tem.

Show that the total energy

 

is a Lyapunov function for the dynamical system generated (see
Example 1.2) by the Duffing equation

,  .
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If in the definition of a Lyapunov functional we omit the second requirement, then
a minor modification of the proof of Theorem 6.1 enables us to get the following as-
sertion.

Theorem 6.2.

Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-

tractor tractor tractor tractor  and there exists a continuous function  on  and there exists a continuous function  on  and there exists a continuous function  on  and there exists a continuous function  on  such that such that such that such that

 does not increase with respect to  for any  does not increase with respect to  for any  does not increase with respect to  for any  does not increase with respect to  for any .... Let  Let  Let  Let be a set ofbe a set ofbe a set ofbe a set of

elements  such that  for all elements  such that  for all elements  such that  for all elements  such that  for all .... Here  Here  Here  Here  isisisis
a trajectory of the system passing through  a trajectory of the system passing through  a trajectory of the system passing through  a trajectory of the system passing through  ( ).... Then  Then  Then  Then 

and  contains the global minimal attractor and  contains the global minimal attractor and  contains the global minimal attractor and  contains the global minimal attractor ....

Proof. 

In fact, the property  was established in the proof of Theorem 6.1.
As to the property , it follows from the constancy of the function  on
the -limit set  of any element .

Apply Theorem 6.2 to justify the results of Example 3.1 (see
also Exercise 4.8).

If the set  of stationary points of a dynamical system  is finite, then Theo-
rem 6.1 can be extended a little. This extension is described below in Exercises 6.9–
6.12. In these exercises it is assumed that the dynamical system  is continu-
ous and possesses the following properties:

(a) there exists a compact global  attractor ;
(b) there exists a Lyapunov function  on ;
(c) the set  of stationary points is finite, therewith 

 for  and the indexing of  possesses the property

. (6.1)

We denote

,  , .

Show that  for all .

Assume that . Then

. (6.2)

Assume that the function  is defined on the whole . Then
(6.2) holds for any bounded set ,
where is a positive number.
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Assume that is the closure of the set  and
 is its boundary. Show that 

 and

, .

It can also be shown (see the book by A. V. Babin and M. I. Vishik [1]) that under
some additional conditions on the evolutionary operator  the unstable manifolds

 are surfaces of the class , therewith the facts given in Exercises 6.9–6.12
remain true if strict inequalities are substituted by nonstrict ones in (6.1). It should
be noted that a global attractor possessing the properties mentioned above is fre-
quently called regularregularregularregular.

Let us give without proof one more result on the attractor of a system with a fi-
nite number of stationary points and a Lyapunov function. This result is important
for applications.

At first let us remind several definitions. Let be an operator acting in a Ba-
nach space . The operator  is called Frechét differentiable at a pointFrechét differentiable at a pointFrechét differentiable at a pointFrechét differentiable at a point

 provided that there exists a linear bounded operator  such
that

for all  from some vicinity of the point x, where  as . Therewith,
the operator  is said to belong to the class , on a set  if it is
differentiable at every pointdifferentiable at every pointdifferentiable at every pointdifferentiable at every point  and

for all  from some vicinity of the point . A stationary point  of the mapping
 is called hyperbolichyperbolichyperbolichyperbolic if  in some vicinity of the point , the spectrum

of the linear operator  does not cross the unit circle  and the spec-
tral subspace of the operator corresponding to the set  is finite-dimen-
sional.

Theorem 6.3.

Let Let Let Let  be a Banach space and let a continuous dynamical systembe a Banach space and let a continuous dynamical systembe a Banach space and let a continuous dynamical systembe a Banach space and let a continuous dynamical system

 possess the properties: possess the properties: possess the properties: possess the properties:

1) there exists a global attractor ;there exists a global attractor ;there exists a global attractor ;there exists a global attractor ;

2) there exists a vicinity  of the attractor  such thatthere exists a vicinity  of the attractor  such thatthere exists a vicinity  of the attractor  such thatthere exists a vicinity  of the attractor  such that

for all , provided  and  belong to  for all ;for all , provided  and  belong to  for all ;for all , provided  and  belong to  for all ;for all , provided  and  belong to  for all ;

3) there exists a Lyapunov function continuous on ;there exists a Lyapunov function continuous on ;there exists a Lyapunov function continuous on ;there exists a Lyapunov function continuous on ;

4) the set  of stationary points is finite and all thethe set  of stationary points is finite and all thethe set  of stationary points is finite and all thethe set  of stationary points is finite and all the

points are hyperbolic;points are hyperbolic;points are hyperbolic;points are hyperbolic;
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5) the mapping is continuous.the mapping is continuous.the mapping is continuous.the mapping is continuous.

Then for any compact set  in  the estimateThen for any compact set  in  the estimateThen for any compact set  in  the estimateThen for any compact set  in  the estimate

(6.3)

holds for all , where  does not depend on holds for all , where  does not depend on holds for all , where  does not depend on holds for all , where  does not depend on ....

The proof of this theorem as well as other interesting results on the asymptotic be-
haviour of a dynamical system possessing a Lyapunov function can be found in the
book by A. V. Babin and M. I. Vishik [1].

To conclude this section, we consider a finite-dimensional example that shows
how the Lyapunov function method can be used to prove the existence of periodic
trajectories in the attractor.

E x a m p l e  6.1 (on the theme by E. Hopf)

Studying Galerkin approximations in a model suggested by E. Hopf for the de-
scription of possible mechanisms of turbulence appearence, we obtain the fol-
lowing system  of ordinary differential equations

Here is a positive parameter,  and are real parameters. It is clear that the
Cauchy problem for (6.4)–(6.6) is solvable, at least locally for any initial condi-
tion. Let us show that the dynamical system generated by equations (6.4)–(6.6)
is dissipative. It will also be sufficient for the proof of global solvability. Let us
introduce a new unknown function . Then equations (6.4)–
(6.6) can be rewritten in the form

These equations imply that

 

on any interval of existence of solutions. Hence,

.
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Thus,

Firstly, this equation enables us to prove the global solvability of problem (6.4)–
(6.6) for any initial condition and, secondly, it means that the set

is absorbing for the dynamical system  generated by the Cauchy prob-
lem for equations (6.4)–(6.6). Thus, Theorem 5.1 guarantees the existence of
a global attractor . It is a connected compact set in .

Verify that  is a positively invariant set for .

In order to describe the structure of the global attractor  we introduce the polar
coordinates

,  

on the plane of the variables . As a result, equations (6.4)–(6.6) are trans-
formed into the system

therewith, . System (6.7) and (6.8) has a stationary point 
 for all  and . If , then one more stationary point 

 occurs in system (6.7) and (6.8). It corresponds to a periodic trajectory
of the original problem (6.4)–(6.6).

Show that the point is a stable node of system (6.7)
and (6.8) when  and it is a saddle when .

Show that the stationary point  is stable
( ) being a node if  and a focus if .

If , then (6.7) and (6.8) imply that

.

Therefore,

.
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Hence, for  the global attractor  of the system  consists of the single
stationary exponentially attracting point

.

Prove that for  the global attractor of problem (6.4)–
(6.6) consists of the single stationary point .
Show that it is not exponentially attracting.

Now we consider the case . Let us again refer to problem (6.7) and (6.8). It is
clear that the line  is a stable manifold of the stationary point .
Moreover, it is obvious that if , then the value  remains positive for all

. Therefore, the function

(6.9)

is defined on all the trajectories, the initial point of which does not lie on the line
. Simple calculations show that

(6.10)

and

; (6.11)

therewith, . Equation (6.10) implies that
the function  does not increase along the trajectories. Therefore, any semi-
trajectory  emanating from the point  of
the system  generated by equations (6.7) and (6.8) possesses the
property  for . Therewith, equation (6.9) implies
that this semitrajectory can not approach the line  at a distance less then

. Hence, this semitrajectory tends to 
. Moreover, for any  the set

is uniformly attracted to , i.e. for any  there exists  such that

.

Indeed, if it is not true, then there exist , a sequence , and 
such that . The monotonicity of  and property (6.11) imply that

for all . Let  be a limit point of the sequence . Then after passing
to the limit we find out that
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with . Thus, the last inequality is impossible since 
. Hence

. (6.12)

The qualitative behaviour of solutions to problem (6.7) and (6.8) on the semiplane
is shown on Fig. 2.

In particular, the observations above mean that the global minimal attractor
 of the dynamical system  generated by equations (6.4)–(6.6) consists

of the saddle point  and the stable limit cycle

(6.13)

for . Therewith, equation (6.12) implies that the cycle  uniformly attracts
all bounded sets  in  possessing the property

, (6.14)

i.e. which lie at a positive distance from the line .

Using the structure of equations (6.7) and (6.8) near the sta-
tionary point , prove that a bounded set  pos-
sessing property (6.14) is uniformly and exponentially attracted to
the cycle , i.e.

for , where is a positive constant.
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Now let  lie in the global attractor  of the system .
Assume that  and . Then (see Lemma 6.1) there exists
a trajectory  lying in  such that .
The analysis given above shows that  as . Let us show that

 when . Indeed, the function  is monotonely nonde-
creasing as . If we argue by contradiction and use the fact that is
bounded we can easily find out that

and therefore

as . (6.16)

Equation (6.7) gives us that

. (6.17)

Since  is bounded for all , we can get the equation

by tending  in (6.17). Therefore, by virtue of (6.16) we find that 
as . Thus,  as . Hence, for  the global attractor 
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of the system  coincides with the union of the unstable manifold 
emanating from the point  and the limit cycle (6.13). The at-
tractor is shown on Fig. 3.

§ 7 Stability Properties of Attractor§ 7 Stability Properties of Attractor§ 7 Stability Properties of Attractor§ 7 Stability Properties of Attractor

and Reduction Principleand Reduction Principleand Reduction Principleand Reduction Principle

A positively invariant set  in the phase space of a dynamical system  is said
to be stable (in Lyapunov’s sense)stable (in Lyapunov’s sense)stable (in Lyapunov’s sense)stable (in Lyapunov’s sense) in  if its every vicinity  contains some
vicinity  such that  for all . Therewith,  is said to be asymp-asymp-asymp-asymp-

totically stable totically stable totically stable totically stable if it is stable and  as  for every . A set
is called uniformly asymptotically stableuniformly asymptotically stableuniformly asymptotically stableuniformly asymptotically stable if it is stable and

(7.1)

The following simple assertion takes place.

Theorem 7.1.

Let Let Let Let be the compact global attractor of a continuous dynamical sys-be the compact global attractor of a continuous dynamical sys-be the compact global attractor of a continuous dynamical sys-be the compact global attractor of a continuous dynamical sys-

tem tem tem tem .... Assume that there exists its bounded vicinity  such that the Assume that there exists its bounded vicinity  such that the Assume that there exists its bounded vicinity  such that the Assume that there exists its bounded vicinity  such that the

mapping  is continuous on mapping  is continuous on mapping  is continuous on mapping  is continuous on .... Then  Then  Then  Then is a stable set.is a stable set.is a stable set.is a stable set.

Proof.

Assume that  is a vicinity of . Then there exists  such that 
for . Let us show that there exists a vicinity  of the attractor  such that

 for all . Assume the contrary. Then there exist sequences 
and  such that ,  and . The set  being
compact, we can choose a subsequence  such that  as 

. Therefore, the continuity property of the function 
gives us that . This contradicts the equation  . Thus,
there exists  such that  for . We can choose  such that

 for all . Therefore, the attractor  is stable. Theorem 7.1

is proved.

It is clear that the stability of the global attractor implies its uniform asymptotic
stability.

Assume that is a positively invariant set of a system
. Prove that if there exists an element  such that its

-limit set  possesses the property , then 
is not stable. 
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In particular, the result of this exercise shows that the global minimal attractor can
appear to be an unstable set.

Let us return to Example 3.1 (see also Exercises 4.8 and 6.8).
Show that:

(a) the global attractor  and the Milnor attractor  are 
stable;

(b) the global minimal attractor  and the Ilyashenko at-
tractor are unstable.

Now let us consider the question concerning the stability of the attractor with re-
spect to perturbations of a dynamical system. Assume that we have a family of dy-
namical systems  with the same phase space  and with an evolutionary
operator  depending on a parameter  which varies in a complete metric space

. The following assertion was proved by L. V. Kapitansky and I. N. Kostin [6].

Theorem 7.2.

Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-

tractor  for every . Assume that the following conditions hold:tractor  for every . Assume that the following conditions hold:tractor  for every . Assume that the following conditions hold:tractor  for every . Assume that the following conditions hold:

(a) there exists a compact  such that  for all ;there exists a compact  such that  for all ;there exists a compact  such that  for all ;there exists a compact  such that  for all ;

(b) if if if if ,,,,  and   and   and   and ,,,, then  for some then  for some then  for some then  for some

....

Then the family of aThen the family of aThen the family of aThen the family of attttttttractors  is upper semicontinuous at the point ,ractors  is upper semicontinuous at the point ,ractors  is upper semicontinuous at the point ,ractors  is upper semicontinuous at the point ,

i.e.i.e.i.e.i.e.

(7.2) 

as as as as ....

Proof.

Assume that equation (7.2) does not hold. Then there exist a sequence 
 and a sequence  such that  for some . But

the sequence  lies in the compact . Therefore, without loss of generality we can
assume that  for some  and . Let us show that this re-
sult leads to contradiction. Let  be a trajectory of the dy-
namical system  passing through the element  ( ). Using the
standard diagonal process it is easy to find that there exist a subsequence 
and a sequence of elements  such that

for all ,

where . Here  is a fixed number. Sequential application of condition
(b) gives us that
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for all  and  . It follows that the function

gives a full trajectory  passing through the point . It is obvious that the trajectory
 is bounded. Therefore (see Exercise 6.1), it wholly belongs to , but that con-

tradicts the equation . Theorem 7.2 is proved.

Following L. V. Kapitansky and I. N. Kostin [6], for 
define the upper limit  of the attractors  along  by
the equality

,

where  denotes the closure operation. Prove that if the hypothe-
ses of Theorem 7.2 hold, then  is a nonempty compact in-
variant set lying in the attractor .

Theorem 7.2 embraces only the upper semicontinuity of the family of attractors
. In order to prove their continuity (in the Hausdorff metric defined by equation

(5.4)), additional conditions should be imposed on the family of dynamical systems
. For example, the following assertion proved by A. V. Babin and M. I. Vishik

concerning the power estimate of the deviation of the attractors  and  in the
Hausdorff metric holds.

Theorem 7.3.

Assume that a dynamical system  possesses a global attractorAssume that a dynamical system  possesses a global attractorAssume that a dynamical system  possesses a global attractorAssume that a dynamical system  possesses a global attractor

 for every  for every  for every  for every .... Let the following conditions hold: Let the following conditions hold: Let the following conditions hold: Let the following conditions hold:

(a) there exists a bounded set  such that  for all there exists a bounded set  such that  for all there exists a bounded set  such that  for all there exists a bounded set  such that  for all 

andandandand

,,,, (7.3) 

with constants  and  independent of  and withwith constants  and  independent of  and withwith constants  and  independent of  and withwith constants  and  independent of  and with

;;;;

(b) for any  and  the estimate for any  and  the estimate for any  and  the estimate for any  and  the estimate 

(7.4)
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holds, with constants  and  independent of holds, with constants  and  independent of holds, with constants  and  independent of holds, with constants  and  independent of ....

Then there exists  such thatThen there exists  such thatThen there exists  such thatThen there exists  such that

.... (7.5)

Here Here Here Here     is the Hausdorff metric defined by the formulais the Hausdorff metric defined by the formulais the Hausdorff metric defined by the formulais the Hausdorff metric defined by the formula

....

Proof.

By virtue of the symmetry of (7.5) it is sufficient to find out that

. (7.6)

Equation (7.3) implies that for any 

for all (7.7) 

when . Here  is an -vicinity of the set
. It follows from equation (7.4) that

(7.8)

Since , we have .  Therefore, with , equa-
tion (7.7) gives us that

. (7.9)

For any  the estimate

holds. Hence, we can find that 

for all  and . Consequently, equation (7.9) implies that

for . It means that

Thus, equation (7.8) gives us that for any 
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for . By taking ,  and 
 in this formula we find estimate (7.6). Theorem 7.3 is proved. 

It should be noted that condition (7.3) in Theorem 7.3 is quite strong. It can be veri-
fied only for a definite class of systems possessing the Lyapunov function (see Theo-
rem 6.3).

In the theory of dynamical systems an important role is also played by the no-
tion of the Poisson stability. A trajectory  of a dynamical
system  is said to be Poisson stable Poisson stable Poisson stable Poisson stable if it belongs to its -limit set .
It is clear that stationary points and periodic trajectories of the system are Poisson
stable.

Show that any Poisson stable trajectory is contained in the
global minimal attractor if the latter exists.

A trajectory  is Poisson stable if and only if any point 
of this trajectory is recurrent, i.e. for any vicinity  there exists

 such that .

The following exercise testifies to the fact that not only periodic (and stationary) tra-
jectories can be Poisson stable.

Let  be a Banach space of continuous functions boun-
ded on the real axis. Let us consider a dynamical system 
with the evolutionary operator defined by the formula

.

Show that the element  is recurrent for
any real  and  (in particular, when  is an irrational
number). Therewith the trajectory 
is Poisson stable.

In conclusion to this section we consider a theorem that is traditionally associated
with the stability theory. Sometimes this theorem enables us to significantly decrease
the dimension of the phase space, this fact being very important for the study of infi-
nite-dimensional systems.

Theorem 7.4. (reduction principle).

Assume that in a dissipative dynamical system  there existsAssume that in a dissipative dynamical system  there existsAssume that in a dissipative dynamical system  there existsAssume that in a dissipative dynamical system  there exists

a positively invariant locally compact set a positively invariant locally compact set a positively invariant locally compact set a positively invariant locally compact set  possessing the property of possessing the property of possessing the property of possessing the property of

uniform attraction, i.e. for any bounded set  the equationuniform attraction, i.e. for any bounded set  the equationuniform attraction, i.e. for any bounded set  the equationuniform attraction, i.e. for any bounded set  the equation
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(7.10)

holds. Let holds. Let holds. Let holds. Let be a global attractor of the dynamical system . Then be a global attractor of the dynamical system . Then be a global attractor of the dynamical system . Then be a global attractor of the dynamical system . Then 

is also a global attractor of is also a global attractor of is also a global attractor of is also a global attractor of ....

Proof.

It is sufficient to verify that

(7.11) 

for any bounded set . Assume that there exists a set  such that (7.11) does
not hold. Then there exist sequences  and  such that

(7.12) 

for some . Let  be a bounded absorbing set of . We choose a moment
 such that

. (7.13)

This choice is possible because  is a global attractor of . Equation (7.10)
implies that 

. 

The dissipativity property of  gives us that  when  is large
enough. Therefore, local compactness of the set  guarantees the existence of an
element  and a subsequence  such that

.

This implies that . Therefore, equation (7.12) gives us that
. By virtue of the fact that  this contradicts equation

(7.13). Theorem 7.4 is proved.

E x a m p l e  7.1

We consider a system of ordinary differential equations

(7.14) 

It is obvious that for any initial condition  problem (7.14) is uniquely
solvable over some interval . If we multiply the first equation by

 and the second equation by  and if we sum the results obtained, then we get
that
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,  .

This implies that the function  possesses the property

,  .

Therefore,

, .

This implies that any solution to problem (7.14) can be extended to the whole
semiaxis  and the dynamical system  generated by equation (7.14)
is dissipative. Obviously, the set  is positively invariant.
Therewith the second equation in (7.14) implies that

, .

Hence, . Thus, the set  exponentially attracts all the bound-
ed sets in . Consequently, Theorem 7.4 gives us that the global attractor of
the dynamical system  is also the attractor of the system . But
on the set  system of equations (7.14) is reduced to the differential equation

. (7.15)

Thus, the global attractors of the dynamical systems generated by equations
(7.14) and (7.15) coincide. Therewith the study of dynamics on the plane is re-
duced to the investigation of the properties of the one-dimensional dynamical
system.

Show that the global attractor  of the dynamical system
 generated by equations (7.14) has the form

.

Figure the qualitative behaviour of the trajectories on the plane.

Consider the system of ordinary differential equations

(7.16)

Show that these equations generate a dissipative dynamical system
in . Verify that the set ,  is invariant
and exponentially attracting. Using Theorem 7.4, prove that the glo-
bal attractor  of problem (7.16) has the form

.

Hint: Consider the variable  instead of the variable .
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§ 8 Finite Dimensionality§ 8 Finite Dimensionality§ 8 Finite Dimensionality§ 8 Finite Dimensionality

of Invariant Setsof Invariant Setsof Invariant Setsof Invariant Sets

Finite dimensionality is an important property of the global attractor which can be
established in many situations interesting for applications. There are several ap-
proaches to the proof of this property. The simplest of them seems to be the one
based on Ladyzhenskaya’s theorem on the finite dimensionality of the invariant set.
However, it should be kept in mind that the estimates of dimension based on La-
dyzhenskaya’s theorem usually turn out to be too overstated. Stronger estimates can
be obtained on the basis of the approaches developed in the books by A. V. Babin
and M. I. Vishik, and by R. Temam (see the references at the end of the chapter).

Let be a compact set in a metric space . Then its  fractal dimensionfractal dimensionfractal dimensionfractal dimension

is defined by

,

where  is the minimal number of closed balls of the radius  which cover
the set . 

Let us illustrate this definition with the following examples.

E x a m p l e  8.1

Let  be a segment of the length . It is evident that

.

Therefore,

.

Hence, , i.e. the fractal dimension coincides with the value of the
standard geometric dimension.

E x a m p l e  8.2

Let  be the Cantor set obtained from the segment  by the sequentual
removal of the centre thirds. First we remove all the points between  and

. Then the centre thirds  and  of the two remaining
segments  and  are deleted. After that the centre parts

, ,  and  of the four
remaining segments , ,  and , respec-
tively, are deleted. If we continue this process to infinity, we obtain the Cantor
set . Let us calculate its fractal dimension. First of all it should be noted that 
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,

,

and so on. Each set  can be considered as a union of  segments of the
length . In particular, the cardinality of the covering of the set  with the
segment of the length  equals to . Therefore,

.

Thus, the fractal dimension of the Cantor set is not an integer (if a set possesses
this property, it is called fractal).

It should be noted that the fractal dimension is often referred to as the metric order
of a compact. This notion was first introduced by L. S. Pontryagin and L. G. Shnirel-
man in 1932. It can be shown that any compact set with the finite fractal dimension
is homeomorphic to a subset of the space  when  is large enough. 

To obtain the estimates of the fractal dimension the following simple assertion
is useful.

Lemma 8.1.

The following equality holds: 

,

where  is the cardinality of the minimal covering of the com-

pact  with closed sets diameter of which does not exceed  (the dia-

meter of a set  is defined by the value ).

Proof.

It is evident that . Since any set of the diameter  lies
in a ball of the radius , we have that . These two inequa-
lities provide us with the assertion of the lemma.

All the sets are expected to be compact in Exercises 8.1–8.4 given below.

Prove that if , then .

Verify that .

Assume that is a direct product of two sets. Then

.
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Let  be a Lipschitzian mapping of one metric space into
another. Then .

The notion of the dimension by Hausdorff is frequently used in the theory of dynami-
cal systems along with the fractal dimension. This notion can be defined as follows.
Let be a compact set in . For positive  and  we introduce the value

,

where the infimum is taken over all the coverings of the set  with the balls of the
radius . It is evident that  is a monotone function with respect
to . Therefore, there exists

.

The Hausdorff dimensionHausdorff dimensionHausdorff dimensionHausdorff dimension of the set  is defined by the value

.

Show that the Hausdorff dimension does not exceed the frac-
tal one.

Show that the fractal dimension coincides with the Hausdorff
one in Example 8.1, the same is true for Example 8.2.

Assume that , where  monotonically
tends to zero. Prove that  (Hint: 

 when ).

Let . Show that .

Hint:  when 

 .

Let . Prove that .

Find the fractal and Hausdorff dimensions of the global mini-
mal attractor of the dynamical system in  generated by the diffe-
rential equation

.

The facts presented in Exercises 8.7–8.9 show that the notions of the fractal and
Hausdorff dimensions do not coincide. The result of Exercise 8.5 enables us to re-
strict ourselves to the estimates of the fractal dimension when proving the finite di-
mensionality of a set.
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The main assertion of this section is the following variant of Ladyzhenskaya’s
theorem. It will be used below in the proof of the finite dimensionality of global at-
tractors of a number of infinite-dimensional systems generated by partial differential
equations.

Theorem 8.1.

Assume that Assume that Assume that Assume that is a compact set in a Hilbert space is a compact set in a Hilbert space is a compact set in a Hilbert space is a compact set in a Hilbert space .... Let  Let  Let  Let  bebebebe a contin- a contin- a contin- a contin-

uous mapping in  such that uous mapping in  such that uous mapping in  such that uous mapping in  such that .... Assume that there exists a finite- Assume that there exists a finite- Assume that there exists a finite- Assume that there exists a finite-

dimensional projector  in the space dimensional projector  in the space dimensional projector  in the space dimensional projector  in the space  such thatsuch thatsuch thatsuch that

,,,, ,,,, (8.1)

,,,, ,,,, (8.2)

where where where where .... We also assume that  We also assume that  We also assume that  We also assume that .... Then the compact  Then the compact  Then the compact  Then the compact  possesses possesses possesses possesses

a finite fractal dimension anda finite fractal dimension anda finite fractal dimension anda finite fractal dimension and

.... (8.3)

We remind that a projector in a space  is defined as a bounded operator  with the
property . A projector  is said to be finite-dimensional if the image  is
a finite-dimensional subspace. The dimension of a projector  is defined as a num-
ber .

The following lemmata are used in the proof of Theorem 8.1.

Lemma 8.2.

Let  be a ball of the radius  in . Then

. (8.4)

Proof.

Estimate (8.4) is self-evident when . Assume that . Let
 be a maximal set in  with the property , .

By virtue of its maximality for every  there exists  such that
. Hence, . It is clear that

, , .

Here  is a ball of the radius  centred at . Therefore,

.

This implies the assertion of the lemma.

Show that

, .
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Lemma 8.3.

Let  be a closed subset in  such that equations (8.1) and (8.2) hold

for all its elements. Then for any  and  the following esti-

mate holds:

, (8.5)

where is the dimension of the projector .

Proof.

Let  be a minimal covering of the set  with its closed subsets the di-
ameter of which does not exceed . Equation (8.1) implies that in  there
exist balls  with radius  such that . By virtue of Lemma 8.1
there exists a covering  of the set  with the balls of the diameter

, where . Therefore, the collection

is a covering of the set . Here the sum of two sets  and  is defined by the
equality

.

It is evident that

.

Equation (8.2) implies that . Therefore, 
.  Hence, estimate (8.5) is valid. Lemma 8.3 is proved.

Let us return to the proof of Theorem 8.1. Since , Lemma 8.3 gives us
that

.

It follows that

.

We choose  and  such that

,

where . Then

.

Consequently,

.
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Obviously, the choice of  can be made to fulfil the condition

.

Thus,

.

By taking  we obtain estimate (8.3). Theorem 8.1 is proved.

Assume that the hypotheses of Theorem 8.1 hold and 
. Prove that .

Of course, in the proof of Theorem 8.1 a principal role is played by equations (8.1)
and (8.2). Roughly speaking, they mean that the mapping  squeezes sets along the
space  while it does not stretch them too much along . Negative invari-
ance of  gives us that  for all . Therefore, the set  should
be initially squeezed. This property is expressed by the assertion of its finite dimen-
sionality. As to positively invariant sets, their finite dimensionality is not guaranteed
by conditions (8.1) and (8.2). However, as the next theorem states, they are attract-
ed to finite-dimensional compacts at an exponential velocity.

Theorem 8.2.

Let  be a continuous mapping defined on a compact set Let  be a continuous mapping defined on a compact set Let  be a continuous mapping defined on a compact set Let  be a continuous mapping defined on a compact set  in a Hi in a Hi in a Hi in a Hil-l-l-l-

bert space  such that bert space  such that bert space  such that bert space  such that .... Assume that there exists a finite-dimensi- Assume that there exists a finite-dimensi- Assume that there exists a finite-dimensi- Assume that there exists a finite-dimensi-

onal projector  such that equations onal projector  such that equations onal projector  such that equations onal projector  such that equations (8.1) and  and  and  and (8.2) hold with hold with hold with hold with    

and and and and .... Then for any  there exists a positively invariant Then for any  there exists a positively invariant Then for any  there exists a positively invariant Then for any  there exists a positively invariant

closed set  such thatclosed set  such thatclosed set  such thatclosed set  such that

 (8.6)

andandandand

 ,,,, (8.7)

where where where where is an arbitrary number from the intervalis an arbitrary number from the intervalis an arbitrary number from the intervalis an arbitrary number from the interval    ....

Proof.

The pair  is a discrete dynamical system. Since is compact, Theo-
rem 5.1 gives us that there exists a global attractor  with the pro-
perties  and

. (8.8)
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We construct a set  as an extension of . Let be a maximal set in  pos-
sessing the property  for , . The existence of such
a set follows from the compactness of . It is obvious that

.

Lemma 8.3 with , and  gives us that

with . Hereinafter . Therefore,

,  . (8.9)

Let us prove that the set

(8.10) 

possesses the properties required. It is evident that . Since 
, by virtue of (8.8) all the limit points of the set

lie in . Thus,  is a closed subset in . The evident inequality

(8.11)

implies (8.6). Here and below . Let us prove
(8.7). It is clear that

. (8.12)

Let be a minimal covering of the set  with the closed sets the diameter
of which is not greater than . By virtue of Lemma 8.3 there exists a covering 
of the set  with closed subsets of the diameter . The cardinality of this
covering can be estimated as follows

. (8.13)

Using the covering  we can construct a covering of the same cardinality of the
set  with the balls  of the radius  centered at the
points  We increase the radius of every ball up to the
value . The parameter  will be chosen below. Thus, we consider
the covering

of the set . It is evident that every point  belongs to this covering to-
gether with the ball . If , the inequalities
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hold. By virtue of equation (8.11) with the help of (8.1) and (8.2) we have that

.

Therefore, , provided , i.e. if

.

Here is an integer part of the number . Consequently,

.

Therefore, equation (8.12) gives us that

,

where . Using (8.9) and (8.13) we find that

for . Here and further . Since

,

it is easy to find that

for ,

where the constant  does not depend on  (its value is unessential further).
Therefore,

.

If we take , then after iterations we get
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Let us fix ,  and  and choose  such
that  and . Then summarizing the geometric progres-
sion we obtain

(8.14)

Let  be small enough and

,

where, as mentioned above,  is an integer part of the number . Since ,
equation (8.14) gives us that

,

where  and are positive numbers which do not depend on . Therefore,

Simple calculations give us that

.

This easily implies estimate (8.7). Thus, Theorem 8.2 is proved.

Show that for  formula (8.7) for the dimension
of the set  can be rewritten in the form

. (8.15)

If the hypotheses of Theorem 8.2 hold, then the discrete dynamical system 
possesses a finite-dimensional global attractor . This attractor uniformly attracts
all the trajectories of the system. Unfortunately, the speed of its convergence to the
attractor cannot be estimated in general. This speed can appear to be small. However,
Theorem 8.2 implies that the global attractor is contained in a finite-dimensional po-
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sitively invariant set possessing the property of uniform exponential attraction. From
the applied point of view the most interesting corollary of this fact is that the dyna-
mics of a system becomes finite-dimensional finite-dimensional finite-dimensional finite-dimensional exponentially fast independent of
the speed of convergence of the trajectories to the global attractor. Moreover, the re-
duction principle (see Theorem 7.4) is applicable in this case. Thus, finite-dimen-
sional invariant exponentially attracting sets can be used to describe the qualitative
behaviour of infinite-dimensional systems. These sets are frequently referred to as
inertial setsinertial setsinertial setsinertial sets , or fractal exponential attractorsfractal exponential attractorsfractal exponential attractorsfractal exponential attractors . In some cases they turn out
to be surfaces in the phase space. In contrast with the global attractor, the inertial
set of a dynamical system can not be uniquely determined. The construction in the
proof of Theorem 8.2 shows it. 

§ 9 Existence and Properties of Attractors§ 9 Existence and Properties of Attractors§ 9 Existence and Properties of Attractors§ 9 Existence and Properties of Attractors

of a Class of Infinite-Dimensionalof a Class of Infinite-Dimensionalof a Class of Infinite-Dimensionalof a Class of Infinite-Dimensional

Dissipative SystemsDissipative SystemsDissipative SystemsDissipative Systems

The considerations given in the previous sections are mainly of general character.
They are related to a dissipative dynamical system of the generic structure. There-
with, we inevitably make additional assumptions on the behaviour of trajectories of
these systems (e.g., the asymptotic compactness, the existence of a Lyapunov func-
tion, the squeezing property along a subspace, etc.). Thereby it is natural to ask
what properties of the original objects of a particular dynamical system guarantee
the fulfilment of the assumptions mentioned above. In this section we discuss this
question in terms of the dynamical system generated by a differential equation of
the form

(9.1)

in a separable Hilbert space , where  is a linear operator and  is a nonlinear
mapping which is coordinated with  in some sense. Our main goal is to demon-
strate the generic line of arguments as well as to describe those properties of the
operators  and  which provide the applicability of general theorems proved in
the previous sections. The main attention is paid to the questions of existence and fi-
nite dimensionality of a global attractor. Nowadays the presented line of arguments
(or a modification of it) is one of the main components of a great number of works
on global attractors.

It is assumed below that the following conditions are fulfilled.

d
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(A) There exists a strongly continuous semigroup  of continuous map-
pings in  such that  is a solution to problem (9.1) in the
sense that the following identity holds:

, (9.2)

where  (see condition (B) below). The semigroup  is
dissipative, i.e. there exists  such that for any  from the collec-
tion  of all bounded subsets of the space  the estimate 

 holds when  and . We also assume that the set
 is bounded for any .

(B) The linear closed operator  generates a semigroup 
which admits the estimate  (  and  are some
constants). There exists a sequence of finite-dimensional projectors

 which strongly converges to the identity operator such that
1)  commutes with , i.e.  for any ;
2) there exists  such that  for ,

where ;
3) as .

(C) For any  the nonlinear operator  possesses the properties:
1)  if  ;
2) for , and for some  the fol-

lowing equations hold:

(the existence of the operator  follows from (B2)).

It should be noted that although conditions (A)–(C) seem a little too lengthy, they are
valid for a class of problems of the theory of nonlinear oscillations as well as for
a number of systems generated by parabolic partial differential equations.

The following assertion should be mainly interpreted as a principal result which
testifies to the fact that the asymptotic behaviour of the system is determined by
a finite set of parameters.

Theorem 9.1.

If conditions If conditions If conditions If conditions (A)–(C) are fulfilled, then the semigroup  possesses a are fulfilled, then the semigroup  possesses a are fulfilled, then the semigroup  possesses a are fulfilled, then the semigroup  possesses a

compact global attractor compact global attractor compact global attractor compact global attractor .... The attractor has a finite fractal dimension The attractor has a finite fractal dimension The attractor has a finite fractal dimension The attractor has a finite fractal dimension

which can be estimated as follows:which can be estimated as follows:which can be estimated as follows:which can be estimated as follows:

,,,, (9.3)
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where  and  is determined from the conditionwhere  and  is determined from the conditionwhere  and  is determined from the conditionwhere  and  is determined from the condition

.... (9.4)

Here Here Here Here  and  are some absolute constants and  are some absolute constants and  are some absolute constants and  are some absolute constants....

When proving the theorem, we mainly rely on decomposition (9.2) and the lemmata
below.

Lemma 9.1.

Let  be a set of elements which for some  have the form 

, where ,  with the constant  de-

termined by the condition  for . Here the value

 is the same as in (9.2) with the element  being such that

 for all . Then the set  is precompact in  for

.

Proof.

Properties (B2) and (C2) imply that

when  for . Therefore, the set

, (9.5) 

where  for all , is bounded in the space 

with the norm . The symbol  denotes the restriction of an operator on

a subspace. However, property (B3) implies that

.

Therefore, the operator  is compact. Hence, 
is compactly embedded into . It means that the set (9.5) is precom-
pact in . This implies the precompactness of .

Lemma 9.2.

There exists a compact set  in the space  such that

(9.6)

for any bounded set  and .

Proof.

Let , where is a bounded set in . Then  for 
. By virtue of (9.2) we have that
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, 

where

. 

It is evident that  for . Therefore,

. 

This implies (9.6) with , where is the closure in  of the set
 described in Lemma 9.1.

Show that  lies in the set

(9.7)

where  and  are some constants.

In particular, Lemma 9.2 means that the system  is asymptotically compact.
Therefore, we can use Theorem 5.1 (see also Exercise 5.3) to guarantee the exis-
tence of the global attractor  lying in .

Let us use Theorem 8.1 to prove the finite dimensionality of the attractor. Veri-
fication of the hypotheses of the theorem is based on the following assertion.

Lemma 9.3.

Let . Then

(9.8)

and

(9.9)

for  and  .

Proof.

Decomposition (9.2) and condition (C1) imply that

.

With the help of Gronwall’s lemma we obtain (9.8).
To prove (9.9) it should be kept in mind that decomposition (9.2) and equa-

tions (B2) and (C2) imply that for 
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(9.10)

Here the inequality  is used . If we put (9.8) in the right-
hand side of formula (9.10), we obtain estimate (9.9).

The following simple argument completes the proof of Theorem 9.1. Let us fix
an arbitrary number  and choose  and  such that

and .

Then the hypotheses of Theorem 8.1 with , , and 
 hold for the attractor . Hence, it is finite-dimensional with

estimate (9.3) holding for its fractal dimension. Theorem 9.1 is proved.

Prove that the global attractor  of problem (9.1) is stable
(Hint: verify that the hypotheses of Theorem 7.1 hold).

Properties (A)–(C) also enable us to prove that the system generated by equation
(9.1) possesses an inertial set. A compact set  in the phase space  is said to
be an inertial setinertial setinertial setinertial set (or a fractal exponential attractor) if it is positively invariant

, its fractal dimension is finite  and it possesses
the property

(9.11)

for any bounded set  and for , where  and are positive
numbers. (The importance of this notion for the theory of infinite-dimensional dy-
namical systems has been discussed at the end of Section 8).

Lemma 9.4.

Assume that properties (A)–(C) hold. Then the dynamical system

 generated by equation (9.1) possesses the following properties:

1) there exist a compact positively invariant set  and constants

 such that

(9.12)

for any bounded set  in  and for ;
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2) there exist a vicinity  of the compact  and numbers  and

 such that

, (9.13)

provided that for all  the semitrajectories  lie in the clo-

sure  of the set ;

3) there exist a sequence of finite-dimensional projectors  in the

space , constants , and a sequence of positive

numbers  tending to zero as  such that

(9.14)

for any .

Proof. 

Let  be a compact set from Lemma 9.2. Let

. 

It is clear that  and equation (9.12) holds for  with 
and . Let us prove that  is a compact set. Let  be a sequence of
elements of . Then  for some  and .
If there exists an infinitely increasing subsequence , then equation (9.6)
gives us that

.

Therefore, the sequence  possesses a limit point in . If is
a bounded sequence, then by virtue of the compactness of  there exist a num-
ber , an element  and a sequence  such that  and

. Therewith

The first term in the right-hand side of this inequality evidently tends to zero.
As for the second term, our argument is the same as in the proof of formula
(9.8). We use the boundedness of the set  (see property (A)) and proper-
ties (B) and (C2) to obtain the estimate

,  . (9.15)

It follows that

.

� K  1N
�1 0�

S
t
y1 S

t
y2�  1N e

�1 t
y1 y2��

t 0
 S
t
y

i

�� � �

P
n


 �
�  2 ,N �2 , H 0�

2
n


 � n "&

1 P
n

�� � S
t
y1 S

t
y2�� �  2N e H t� 1 2

n
e
�2 t�� � y1 y2��

y1, y2 K�

K

K* (� K� � S
t
K

t 0

-��

S
t
K* K*. K K*� C L2 R�

( �� K* z
n


 �
K* (� K� �� z

n
Stn

y
n

� t
n

0� y
n

K�
tnk

 �

Stnk
y

n
k

K�; <
= >dist

k "&
lim 0�

z
n


 � K K *. t
n


 �
K

t0 0� y K� n
k


 � ynk
y&

tnk
t&

S
tnk

y
n

k
S

t0
y� Stn

y S
t0

y� S
tnk

y
nk

S
tnk

y� .��

(+ K� �

St y1 St y2� C e
C

K
t

y1 y2�� y1, y2 K�

S
tnk

y
nk

S
tnk

y�
k "&
lim 0�



E x i s t e n c e  a n d  P r o p e r t i e s  o f  A t t r a c t o r s  … 67 
Therefore,

.

The closedness of the set  can be established with the help of similar argu-
ments. Thus, property (9.12) is proved for . Now we suppose that

, where  is chosen such that  for all . It is obvious
that  is a compact positively invariant set. As it is proved above, it is easy to
find the estimate of form (9.15) for all  and  from an arbitrary bounded set

. Here an important role is played by the boundedness of the set  (see
property (A)). Therefore, for any  there exists a constant 

 such that

.

Hence, for  we have that

for . This implies estimate (9.12) with the constant  depending on 
and . However, if we change the moment  in equation (9.12), we can pre-
sume that, for example, . Therewith . Thus, the first assertion of the
lemma is proved.

Since the set  lies in the ball of dissipativity , estimates
(9.13) and (9.14) follow from Lemma 9.3. Moreover,

,

. (9.16)

Thus, Lemma 9.4 is proved. 

Lemma 9.4 along with the theorem given below enables us to verify the existence of
an inertial set for the dynamical system generated by equation (9.1).

Theorem 9.2.

Let the phase space  of a dynamical system  be a HilbertLet the phase space  of a dynamical system  be a HilbertLet the phase space  of a dynamical system  be a HilbertLet the phase space  of a dynamical system  be a Hilbert

space. Assume that in  there exists a compact positively invariant set space. Assume that in  there exists a compact positively invariant set space. Assume that in  there exists a compact positively invariant set space. Assume that in  there exists a compact positively invariant set 

possessing properties possessing properties possessing properties possessing properties (9.12)––––(9.14). Then for any  there exists an. Then for any  there exists an. Then for any  there exists an. Then for any  there exists an

inertial set  of the dynamical system  such thatinertial set  of the dynamical system  such thatinertial set  of the dynamical system  such thatinertial set  of the dynamical system  such that

 (9.17)

for any bounded set  and for any bounded set  and for any bounded set  and for any bounded set  and .... Here, as above,  Here, as above,  Here, as above,  Here, as above, 

. Moreover,. Moreover,. Moreover,. Moreover,

,,,, (9.18)
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where the number  is determined from the conditionwhere the number  is determined from the conditionwhere the number  is determined from the conditionwhere the number  is determined from the condition

(9.19)

and constant  does not depend on  and and constant  does not depend on  and and constant  does not depend on  and and constant  does not depend on  and ....

The proof of the theorem is based on the following preliminary assertions.

Lemma 9.5.

Let  be a dynamical system, its phase space being a compact in

a Hilbert space . Assume that for all  equations (9.13)
and (9.14) are valid. Then for any  there exists an inertial set

 of the system  such that

.  (9.20)

Moreover, estimate (9.18) holds for the value .

Proof.

We use Theorem 8.2 with , , and , where  and
 are chosen to fulfil

and .

In this case conditions (8.1) and (8.2) are valid for  with  and
 Therefore, there exists a bounded closed positively invariant

set  with  such that (see (8.6) and (8.15))

 (9.21)

and

 (9.22)

Assume that  and consider the set

.

Here . It is easy to see that

.

Therefore, equations (9.20) and (9.18) follow from (9.21) and (9.20) after some
simple calculations.

Lemma 9.6.

Assume that in the phase space  of a dynamical system 

there exist compact sets  and  such that (a) ; (b) properties
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(9.12) and (9.13) are valid for ; and (c) the set  possesses the pro-

perty

,  (9.23) 

where . Then for any bounded set 

and  the following inequality holds

.  (9.24)

Proof.

By virtue of (9.12) every bounded set  reaches the vicinity  in finite
time and stays in it. Therefore, it is sufficient to prove the lemma for a set

 such that  for , where  denotes the closure of .
Let  and . Evidently,

for any  and . With the help of (9.13) we have that

.

Therefore, for any  and  we have that

If we take an infimum over  and a supremum over , we find that

for all . Hence, equations (9.12) and (9.23) give us that

 

for . If we choose , we obtain (9.24). Lemma 9.6
is proved.

If we now use Lemma 9.6 with  and estimate (9.20), we get equation
(9.17). This completes the proof of Theorem 9.2.

Thus, by virtue of Lemma 9.4 and Theorem 9.2 the dynamical system  gene-
rated by equation (9.1) possesses an inertial set  for which equations (9.17)–
(9.19) hold with relations (9.16).

It should be noted that a slightly different approach to the construction of iner-
tial sets is developed in the book by A. Eden, C. Foias, B. Nicolaenko, and R. Temam
(see the list of references). This book contains further developments and applica-
tions of the theory of inertial sets.
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To conclude this section, we outline the results on the behaviour of the projec-
tion onto the finite-dimensional subspace  of the trajectories of the system

 generated by equation (9.1).
Assume that an element  belongs to the global attractor  of a dynamical

system . Lemma 6.1 implies that there exists a trajectory 
lying in  wholly such that . Therewith the following assertion is valid.

Lemma 9.7.

Assume that properties (A)–(C) are fulfilled and let . Then the

following equation holds:

,  , (9.25)

where  is a trajectory passing through , the number  can be

found from (B2) and the integral in (9.25) converges in the norm of the

space .

Proof.

Since , equation (9.2) gives us that

. (9.26)

A trajectory in the attractor possesses the property , .
Therefore, property (B2) implies that

and .

These estimates enable us to pass to the limit in (9.26) as . Thereupon
we obtain (9.25).

The following assertion is valid under the hypotheses of Theorem 9.1.

Theorem 9.3.

There exists  such that for all  the following assertionsThere exists  such that for all  the following assertionsThere exists  such that for all  the following assertionsThere exists  such that for all  the following assertions

are valid:are valid:are valid:are valid:

1) for any two trajectories  and  lying in the attractor of thefor any two trajectories  and  lying in the attractor of thefor any two trajectories  and  lying in the attractor of thefor any two trajectories  and  lying in the attractor of the

system generated by equation system generated by equation system generated by equation system generated by equation (9.1) the equality  the equality  the equality  the equality 

for all  implies that ;for all  implies that ;for all  implies that ;for all  implies that ;

2) for any two solutions  and  of the system for any two solutions  and  of the system for any two solutions  and  of the system for any two solutions  and  of the system (9.1) the equa- the equa- the equa- the equa-

tiontiontiontion

(9.27)

implies that  as implies that  as implies that  as implies that  as ....
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We can also obtain an upper estimate of the number  from the inequali-We can also obtain an upper estimate of the number  from the inequali-We can also obtain an upper estimate of the number  from the inequali-We can also obtain an upper estimate of the number  from the inequali-

ty ty ty ty ....

Proof.

Equation (9.25) implies that for any trajectory  lying in the attractor
of system (9.1) the equation

,

holds. Therefore, if , then properties (B2), (B3), and (C2) give us
that

It follows that the estimate

holds for , where . If we tend , we obtain the
first assertion, provided .

Now let us prove the second assertion of the theorem. Let

. 

Then

.

Therefore, equation (9.10) for the function  gives us that

.

This and Gronwall’s lemma imply that

Therefore, if , then equation (9.27) gives us that . Thus,
the second assertion of Theorem 9.3 is proved.
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Theorem 9.3 can be presented in another form. Let  be a basis
in the space . Let us define linear functionals  on  

. Theorem 9.3 implies that the asymptotic behaviour of trajectories of
the system  is uniquely determined by its values on the functionals .
Therefore, it is natural that the family of functionals  is said to be the determin-
ing collection. At present some general approaches have been worked out which
enable us to define whether a particular set of functionals is determining. Chapter 5
is devoted to the exposition of these approaches. It should be noted that for the first
time Theorem 9.3 was proved for the two-dimensional Navier-Stokes system by
C. Foias and D. Prodi (the second assertion) and by O. A. Ladyzhenskaya (the first
assertion).

Concluding the chapter, we would like to note that the list of references given
below does not claim to be full. It contains only references to some monographs and
reviews devoted to the developments of the questions touched on here and compris-
ing intensive bibliography.
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